System and Method for Computing Mach Number and True Airspeed

Total Page:16

File Type:pdf, Size:1020Kb

System and Method for Computing Mach Number and True Airspeed (19) TZZ ¥¥_ _T (11) EP 2 833 152 B1 (12) EUROPEAN PATENT SPECIFICATION (45) Date of publication and mention (51) Int Cl.: of the grant of the patent: G01P 5/16 (2006.01) G01P 13/02 (2006.01) 19.07.2017 Bulletin 2017/29 G01P 21/02 (2006.01) (21) Application number: 14178085.8 (22) Date of filing: 22.07.2014 (54) System and method for computing mach number and true airspeed System und Verfahren zur Berechnung der Mach-Zahl und wahren Luftgeschwindigkeit Système et procédé de calcul de nombre de mach et de la vitesse réelle de l’air (84) Designated Contracting States: • Hillier, John AL AT BE BG CH CY CZ DE DK EE ES FI FR GB Morristown, NJ 07962-2245 (US) GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR (74) Representative: Houghton, Mark Phillip Patent Outsourcing Limited (30) Priority: 02.08.2013 US 201313958307 1 King Street Bakewell, Derbyshire DE45 1DZ (GB) (43) Date of publication of application: 04.02.2015 Bulletin 2015/06 (56) References cited: EP-A2- 2 348 285 EP-A2- 2 434 296 (73) Proprietor: Honeywell International Inc. US-A1- 2010 100 260 Morris Plains, NJ 07950 (US) • DENKER J S: "See how it flies, LIFT, THRUST, (72) Inventors: WEIGHT, AND DRAG", INTERNET CITATION, 3 • Nathan, Visvanathan Thanigai June 2004 (2004-06-03), XP002330050, Retrieved Morristown, NJ 07962-2245 (US) from the Internet: • Anandappan, Thanga URL:http://www.av8n.com/how/htm/4forces.ht Morristown, NJ 07962-2245 (US) ml [retrieved on 2005-05-31] Note: Within nine months of the publication of the mention of the grant of the European patent in the European Patent Bulletin, any person may give notice to the European Patent Office of opposition to that patent, in accordance with the Implementing Regulations. Notice of opposition shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention). EP 2 833 152 B1 Printed by Jouve, 75001 PARIS (FR) EP 2 833 152 B1 Description TECHNICAL FIELD 5 [0001] The exemplary embodiments described herein generally relates to computing MACH number and true airspeed and more particularly to computing MACH number and true airspeed when a pitot tube is unavailable or malfunctioning. BACKGROUND 10 [0002] Measurement, computation, and display of true airspeed (TAS), MACH number (MN), and/or calibrated airspeed (CAS), as well as altitude, enables a pilot to maintain a recommended safe airspeed. Typically, these airspeeds (TAS, MN, CAS) and altitude are provided by an air data computer (ADC) that receives pertinent information from pitot static sensors. The ADC and pitot sensors typically include redundancies for high reliability; however, failures still occur resulting in improper aircraft operation. 15 [0003] Despite these multiple redundancies, maintenance safety, damage avoidance either on ground or in flight, and numerous pre-flight checks, a chance of malfunctioning of the pitot static sensor remains. In addition, the typically highly reliable ADC also may become undependable, providing incorrect information. It is therefore essential to have an alternate method of MN and TAS computation adapted for general aviation, business, regional and helicopters, and air transport aircraft either with or without a flight management system. 20 [0004] Accordingly, it is desirable to provide a system and method for calculating Mach number and true airspeed for comparison with, or in lieu of, a pitot static sensor. Furthermore, other desirable features and characteristics of the exemplary embodiments will become apparent from the subsequent detailed description and the appended claims, taken in conjunction with the accompanying drawings and the foregoing technical field and background. [0005] EP2348285A2 discloses an avionics system comprising a primary airspeed data source and a flight manage- 25 ment computer. The primary airspeed data source is configured to calculate a primary airspeed. The flight management computer is configured to use airspeed as an aid to control an aircraft, wherein the flight management computer is further configured to determine an alternative airspeed for use by the flight management computer as an aid to control an aircraft when the primary airspeed is unavailable. [0006] EP2434296A2 discloses an apparatus and method for identifying an airspeed for an aircraft. The apparatus 30 consists of a plurality of pitot-static probes generating firs t data, a plurality of angle of attack sensor systems generating second data and a plurality of light detection and ranging sensors generating third data. A signal consolidation system is configured to detect errors in the first data generated by the plurality of pitot-static probes, the second data generated by the plurality of angle of attack sensor systems, and the third data generated by the plurality of light detection and ranging sensors. 35 BRIEF SUMMARY [0007] The present invention provides a method for validating at least one of a first true airspeed or a first Mach number of an aircraft in flight, according to claim 1 of the appended claims. 40 [0008] The invention further provides a system for validating at least one of a first true airspeed or a first Mach number of an aircraft in flight, according to claim 6 of the appended claims. [0009] A system and method are provided for computing MACH number and true airspeed when a pitot tube is unavailable or malfunctioning. [0010] In an exemplary embodiment, a method for determining at least one of a first true airspeed or a first Mach 45 number of an aircraft in flight comprises sensing an air velocity and a first altitude by a pitot static sensor; providing at least one of a second true airspeed and a second Mach number by an air data computer coupled to the pitot static sensor and in response to the air velocity and the first altitude; storing within a storage medium standard atmospheric data, thrust data, wing surface area, and a coefficient of lift for the aircraft; determining by a flight management system a load factor and a weight of the aircraft; determining a second altitude by an altitude sensor; determining an angle of 50 attack by a sensor on the aircraft; sensing a temperature of the air adjacent the aircraft; and determining, from the group consisting of the standard atmospheric data, the thrust data, the wing surface area, the coefficient of lift, the load factor, the weight, the second altitude, the temperature, and the angle of attack, at least one of the first true airspeed or first Mach number, by a processor coupled to the storage medium, the flight management system, the altitude sensor, and the temperature sensor. 55 [0011] In another exemplary embodiment, a method of determining at least one of a true airspeed or a Mach number of an aircraft in flight comprises storing within a storage medium standard atmospheric data, thrust data, wing surface area, and a coefficient of lift for the aircraft; determining by a flight management system a load factor and a weight of the aircraft; determining an altitude by an altitude sensor; determining an angle of attack by a sensor on the aircraft; 2 EP 2 833 152 B1 sensing a temperature of the air adjacent the aircraft; and determining, from the group consisting of the standard atmos- pheric data, the thrust data, the wing surface area, the coefficient of lift, the load factor, the weight, the altitude, the temperature, and the angle of attack, the true airspeed or the Mach number, by a processor coupled to the storage medium, the flight management system, the altitude sensor, and the temperature sensor. 5 [0012] In yet another exemplary embodiment, a system for determining at least one of a first true airspeed or a first Mach number of an aircraft in flight comprises a pitot static sensor configured to sense an air velocity and a first altitude; an air data computer coupled to the pitot static sensor and configured to provide at least one of a second true airspeed and a second Mach number; a storage medium configured to store standard atmospheric data, 10 DETAILED DESCRIPTION [0013] The following detailed description is merely illustrative in nature and is not intended to limit the embodiments of thesubject matter or theapplication and uses of suchembodiments. Any implementationdescribed hereinas exemplary is not necessarily to be construed as preferred or advantageous over other implementations. Furthermore, there is no 15 intention to be bound by any expressed or implied theory presented in the preceding technical field, background, brief summary, or the following detailed description. [0014] Techniques and technologies may be described herein in terms of functional and/or logical block components, and with reference to symbolic representations of operations, processing tasks, and functions that may be performed by various computing components or devices. Such operations, tasks, and functions are sometimes referred to as being 20 computer-executed, computerized, software-implemented, or computer-implemented. In practice, one or more processor devices can carry out the described operations, tasks, and functions by manipulating electrical signals representing data bits at memory locations in the system memory, as well as other processing of signals. The memory locations where data bits are maintained are physical locations that have particular electrical, magnetic, optical, or organic properties corresponding to the data bits. It should be appreciated that the various block components shown in the figures may be 25 realized by any number of hardware, software, and/or firmware components configured to perform the specified functions. For example, an embodiment of a system or a component may employ various integrated circuit components, e.g., memory elements, digital signal processing elements, logic elements, look-up tables, or the like, which may carry out a variety of functions under the control of one or more microprocessors or other control devices.
Recommended publications
  • Airspeed Indicator Calibration
    TECHNICAL GUIDANCE MATERIAL AIRSPEED INDICATOR CALIBRATION This document explains the process of calibration of the airspeed indicator to generate curves to convert indicated airspeed (IAS) to calibrated airspeed (CAS) and has been compiled as reference material only. i Technical Guidance Material BushCat NOSE-WHEEL AND TAIL-DRAGGER FITTED WITH ROTAX 912UL/ULS ENGINE APPROVED QRH PART NUMBER: BCTG-NT-001-000 AIRCRAFT TYPE: CHEETAH – BUSHCAT* DATE OF ISSUE: 18th JUNE 2018 *Refer to the POH for more information on aircraft type. ii For BushCat Nose Wheel and Tail Dragger LSA Issue Number: Date Published: Notable Changes: -001 18/09/2018 Original Section intentionally left blank. iii Table of Contents 1. BACKGROUND ..................................................................................................................... 1 2. DETERMINATION OF INSTRUMENT ERROR FOR YOUR ASI ................................................ 2 3. GENERATING THE IAS-CAS RELATIONSHIP FOR YOUR AIRCRAFT....................................... 5 4. CORRECT ALIGNMENT OF THE PITOT TUBE ....................................................................... 9 APPENDIX A – ASI INSTRUMENT ERROR SHEET ....................................................................... 11 Table of Figures Figure 1 Arrangement of instrument calibration system .......................................................... 3 Figure 2 IAS instrument error sample ........................................................................................ 7 Figure 3 Sample relationship between
    [Show full text]
  • Sept. 12, 1950 W
    Sept. 12, 1950 W. ANGST 2,522,337 MACH METER Filed Dec. 9, 1944 2 Sheets-Sheet. INVENTOR. M/2 2.7aar alwg,57. A77OAMA). Sept. 12, 1950 W. ANGST 2,522,337 MACH METER Filed Dec. 9, 1944 2. Sheets-Sheet 2 N 2 2 %/ NYSASSESSN S2,222,W N N22N \ As I, mtRumaIII-m- III It's EARAs i RNSITIE, 2 72/ INVENTOR, M247 aeawosz. "/m2.ATTORNEY. Patented Sept. 12, 1950 2,522,337 UNITED STATES ; :PATENT OFFICE 2,522,337 MACH METER Walter Angst, Manhasset, N. Y., assignor to Square D Company, Detroit, Mich., a corpora tion of Michigan Application December 9, 1944, Serial No. 567,431 3 Claims. (Cl. 73-182). is 2 This invention relates to a Mach meter for air plurality of posts 8. Upon one of the posts 8 are craft for indicating the ratio of the true airspeed mounted a pair of serially connected aneroid cap of the craft to the speed of sound in the medium sules 9 and upon another of the posts 8 is in which the aircraft is traveling and the object mounted a diaphragm capsuler it. The aneroid of the invention is the provision of an instrument s: capsules 9 are sealed and the interior of the cas-l of this type for indicating the Mach number of an . ing is placed in communication with the static aircraft in fight. opening of a Pitot static tube through an opening The maximum safe Mach number of any air in the casing, not shown. The interior of the dia craft is the value of the ratio of true airspeed to phragm capsule is connected through the tub the speed of sound at which the laminar flow of ing 2 to the Pitot or pressure opening of the Pitot air over the wings fails and shock Waves are en static tube through the opening 3 in the back countered.
    [Show full text]
  • E6bmanual2016.Pdf
    ® Electronic Flight Computer SPORTY’S E6B ELECTRONIC FLIGHT COMPUTER Sporty’s E6B Flight Computer is designed to perform 24 aviation functions and 20 standard conversions, and includes timer and clock functions. We hope that you enjoy your E6B Flight Computer. Its use has been made easy through direct path menu selection and calculation prompting. As you will soon learn, Sporty’s E6B is one of the most useful and versatile of all aviation computers. Copyright © 2016 by Sportsman’s Market, Inc. Version 13.16A page: 1 CONTENTS BEFORE USING YOUR E6B ...................................................... 3 DISPLAY SCREEN .................................................................... 4 PROMPTS AND LABELS ........................................................... 5 SPECIAL FUNCTION KEYS ....................................................... 7 FUNCTION MENU KEYS ........................................................... 8 ARITHMETIC FUNCTIONS ........................................................ 9 AVIATION FUNCTIONS ............................................................. 9 CONVERSIONS ....................................................................... 10 CLOCK FUNCTION .................................................................. 12 ADDING AND SUBTRACTING TIME ....................................... 13 TIMER FUNCTION ................................................................... 14 HEADING AND GROUND SPEED ........................................... 15 PRESSURE AND DENSITY ALTITUDE ...................................
    [Show full text]
  • Inflight Data Collection N75-14745 Fob Ride Quality
    NASA CR-127492 INFLIGHT DATA COLLECTION FOR RIDE QUALITY AND ATMOSPHERIC TURBULENCE RESEARCH Paul W. Kadlec and Roger G. Buckman Continental Air Lines, Inc. Los Angeles, California 90009 (NASA-CR-127492) INFLIGHT DATA COLLECTION N75-14745 FOB RIDE QUALITY AND ATMOSPHERIC TURBULENCE RESEARCH Final Report (Continental Airlines, Inc.) 57 p HC $4.25 CSCL 01C Unclas ..- - ___G3/0 5 05079 December 1974 Prepared for NASA FLIGHT RESEARCH CENTER P.O. Box 273 Edwards, California 93523 1. Report No. 2. Government Accession No. 3. Recipient's Catalog No. NASA CR-127492 4. Title and Subtitle 5. Report Date INFLIGHT DATA COLLECTION FOR RIDE QUALITY AND December 1974 ATMOSPHERIC TURBULENCE RESEARCH 6. Performing Organization Code 7. Author(s) 8. Performing Organization Report No. Paul W. Kadlec and Roger G. Buckman 10. Work Unit No. 9. Performing Organization Name and Address 504-29-21 Continental Air Lines, Inc. 11. Contract or Grant No. Los Angeles, California 90009 NAS 4-1982 13. Type of Report and Period Covered 12. Sponsoring Agency Name and Address Contractor Report - Final National Aeronautics and Space Administration 14. Sponsoring Agency Code Washington, D. C., 20546 H-876 15. Supplementary Notes NASA Technical Monitor: Shu W. Gee 16. Abstract In 1971 Continental Air Lines and the National Center for Atmospheric Research originated a joint program to study the genesis and nature of clear air turbulence. With the support of the NASA Flight Research Center, the program was expanded to include an investigation of the effects of atmospheric turbu- lence on passenger ride quality in a large wide-body commercial aircraft.
    [Show full text]
  • Air Data Computer 8EB3AAA1 DESCRIPTION AMETEK Has Designed a Compact, Solid State Air Data Computer for Military Applications
    Air Data Computer 8EB3AAA1 DESCRIPTION AMETEK has designed a compact, solid state Air Data Computer for military applications. The Air Data Computer utilizes a digital signal processor for fast calculation and response of air data parameters. Silicon pressure transducers provide the static and Pitot pressure values and are easily replaced without calibration. The AMETEK Air Data Computer incorporates a unique power supply that allows the unit to operate through 5 second power interrupts when at any input voltage in its operating range. This ensures that critical air data parameters reach the cockpit and control systems under a FEATURES wide variety of conditions. 3 The MIL-STD-1553 interface 40 ms update rate Thirteen (13) different air data parameters are provided on the MIL-STD- 3 11-bit reported pressure 1553B interface and are calculated by the internal processor at a 40 ms rate. altitude interface 3 AOA and total temperature An 11-bit reported pressure altitude interface encoded per FAA order inputs 1010.51A is available for Identification Friend or Foe equipment. 3 Low weight: 2.29 lbs. 3 Small size: 6.81” x 6.0” x 2.5” 3 Low power: 1.5 watts 3 DO-178B level A software AEROSPACE & DEFENSE Air Data Computer 8EB3AAA1 SPECIFICATIONS PERFORMANCE CHARACTERISTICS Air Data Parameters Power: DO-160, Section 16 Cat Z or MIL-STD-704A-F • ADC Altitude Rate Output (Hpp or dHp/dt) 5 second power Interruption immunity at any • True Airspeed Output (Vt) input voltage • Calibrated Airspeed Output (Vc) Power Consumption: 1.5 watts • Indicated Airspeed Output (IAS) Operating Temperature: -55°C to +71°C; 1/2 hour at +90°C • Mach Number Output (Mt) Weight: 2.29 lbs.
    [Show full text]
  • Avidyne PFD & MFD Study Guide
    Eric Gideon Avidyne Study Guide 1 of 7 General overview 1. Because we often rely on the MFD for navigational information, we need to make sure that the database is current with the most up-to- date information. 2. Diferences between glass and ‘steam gauge’ cockpits • OAT probe is now located on the underside of the left wing • Standby instruments • Airspeed • Attitude indicator • Altimeter • System is all electric – no vacuum system 3. Data sources • AHRS – Attitude Heading Ref- erence System • This computer collects and gives information to the Attitude Indicator and HSI. • Replaces the gyroscopic vacuum system • ADC – Air Data Computer • This computer collects and gives information to the Airspeed, VSI, and Altimeter. • Replaces the pitot/static system • These 2 computers are located in the PFD and make up the ADAHRS – Air Data and Attitude Heading Reference System • System must be aligned before flight • MFD uses external GPS to receive information for the flight display and position. • Probes get engine data directly. 4. Limitations • The PFD and MFD are not interchangeable and cannot share atti- tude or air data. • Don’t shut them down in flight, or AHRS won’t come back. Eric Gideon Avidyne Study Guide 2 of 7 Primary Flight Display (PFD) The Primary Flight Display is a 10.4 inch color LCD, with one knob and four bezel keys per side. Brightness is controlled with the rocker switch at top right. Attitude and air data – the PFD’s upper half 1. % power tape or tachometer 2. Autopilot Annunciation Area – Displays the autopilot annunciations 3. Airspeed Tape – Indicated airspeed with a range of 20-300 kts.
    [Show full text]
  • 16.00 Introduction to Aerospace and Design Problem Set #3 AIRCRAFT
    16.00 Introduction to Aerospace and Design Problem Set #3 AIRCRAFT PERFORMANCE FLIGHT SIMULATION LAB Note: You may work with one partner while actually flying the flight simulator and collecting data. Your write-up must be done individually. You can do this problem set at home or using one of the simulator computers. There are only a few simulator computers in the lab area, so not leave this problem to the last minute. To save time, please read through this handout completely before coming to the lab to fly the simulator. Objectives At the end of this problem set, you should be able to: • Take off and fly basic maneuvers using the flight simulator, and describe the relationships between the control yoke and the control surface movements on the aircraft. • Describe pitch - airspeed - vertical speed relationships in gliding performance. • Explain the difference between indicated and true airspeed. • Record and plot airspeed and vertical speed data from steady-state flight conditions. • Derive lift and drag coefficients based on empirical aircraft performance data. Discussion In this lab exercise, you will use Microsoft Flight Simulator 2000/2002 to become more familiar with aircraft control and performance. Also, you will use the flight simulator to collect aircraft performance data just as it is done for a real aircraft. From your data you will be able to deduce performance parameters such as the parasite drag coefficient and L/D ratio. Aircraft performance depends on the interplay of several variables: airspeed, power setting from the engine, pitch angle, vertical speed, angle of attack, and flight path angle.
    [Show full text]
  • Digital Air Data Computer Type Ac32
    DIGITAL AIR DATA COMPUTER TYPE AC32 GENERAL THOMMEN is a leading manufacturer of Air Data Systems It also supports the Air Data for enhanced safety and aircraft instruments used worldwide on a full range infrastructure capabilities for Transponders and an ICAO aircraft types from helicopters to corporate turbine aircraft encoded altitude output is also available as an option. and commercial airliners. The AC32 measures barometric altitude, airspeed and temperature in the atmosphere with Its power supply is designed for 28 VDC. The low power integrated vibrating cylinder pressure sensors with high consumption of less than 7 Watts and its low weight of only accuracy and stability for both static and pitot ports. 2.2 Ibs (1000 grams) have been optimized for applications in state-of-the-art avionics suites. The extensive Built-in-Test The THOMMEN AC32 Digital Air Data Computer exceeds FAA capability guarantees safe operation. Technical Standard Order (TSO) and accuracy requirements. The computed air data parameters are transmitted via the The AC32 is designed to be modular which allows easy configurable ARINC 429 data bus. There are two ARINC 429 maintenance by the operator thanks to the RS232 transmit channels and two receive channels with which baro maintenance interface. The THOMMEN AC32 can be confi correction can be accomplished also. gured for different applications and has excellent hosting capabilities for supplying data to next generation equipment The AC32 meets the requirements for multiple platforms for without altering the system architecture. TAWS, ACAS/TCAS, EGPWS or FMS systems. For customized versions please contact THOMMEN AIRCRAFT EQUIPMENT AG sales department.
    [Show full text]
  • Computer Aided Diagnosis of Technical Condition of the Swpl-1 Helmet Mounted Flight Parameters Display System
    Journal of KONBiN 3(31)2014 ISSN 1895-8281 DOI 10.2478/jok-2014-0025 COMPUTER AIDED DIAGNOSIS OF TECHNICAL CONDITION OF THE SWPL-1 HELMET MOUNTED FLIGHT PARAMETERS DISPLAY SYSTEM KOMPUTEROWE DIAGNOZOWANIE STANU TECHNICZNEGO SYSTEMU NAHEŁMOWEGO WYŚWIETLANIA PARAMETRÓW LOTU SWPL-1 Sławomir Michalak, Jerzy Borowski, Andrzej Szelmanowski Air Force Institute of Technology e-mail: [email protected], [email protected], [email protected] Abstract: The paper presents selected results of the work carried out at the Air Force Institute of Technology (AFIT) in the scope of computer diagnostic tests of the SWPL-1 Cyklop helmet mounted flight parameters display system. This system has been designed in such a way that it warns the pilot of dangerous situations occurring on board the helicopter and threatening the flight safety (WARN) or faults (FAIL), which inform about a failure in given on-board equipment. The SWPL-1 system has been awarded the Prize of the President of the Republic of Poland during the 17. International Defense Industry Exhibition in Kielce. Keywords: flight parameters display systems, test methods Streszczenie: W artykule przedstawiono wybrane wyniki prac realizowanych w Instytucie Technicznym Wojsk Lotniczych (ITWL) w zakresie komputerowych badań diagnostycznych nahełmowego systemu wyświetlania parametrów lotu SWPL-1 Cyklop. System ten został zaprojektowany w taki sposób, aby alarmować pilota o wystąpieniu na pokładzie śmigłowca sytuacji niebezpiecznych, zagrażających bezpieczeństwu lotu (WARN) lub stanów awaryjnych (FAIL), informujących o niesprawności wybranych urządzeń pokładowych. Zbudowany system SWPL-1 otrzymał Nagrodę Prezydenta RP na XVII Międzynarodowym Salonie Przemysłu Obronnego MSPO’2009 w Kielcach. Słowa kluczowe: systemy wyświetlania parametrów lotu, metody badań 73 Computer aided diagnosis of technical condition of the SWPL-1 helmet mounted..
    [Show full text]
  • FAHRZEUGTECHNIK Studiengang Flugzeugbau
    fachhochschule hamburg FACHBEREICH FAHRZEUGTECHNIK Studiengang Flugzeugbau Berliner Tor 5 D - 20099 Hamburg in Zusammenarbeit mit: University of Limerick Department of Mechanical & Aeronautical Engineering Limerick, Ireland Diplomarbeit - Flugzeugbau - Development of an aircraft performance model for the prediction of trip fuel and trip time for a generic twin engine jet transport aircraft Verfasser: Gerold Straubinger Abgabedatum: 15.03.00 Betreuer: Trevor Young, Lecturer 1. Prüfer: Prof. Dr.-Ing. Dieter Scholz, MSME 2. Prüfer: Prof. Dr.-Ing. Hans-Jürgen Flüh Fahrzeugtechnik Abstract This report gives an overview of methods for aircraft performance calculations. After explain- ing the necessary background and the International Standard Atmosphere, it deals with a com- plete mission of a generic twin engine jet transport aircraft, including the required reserves of a diversion. Every part of the mission is considered. This includes climb, cruise, descent and hold. Equations for determining significant parameters of all parts are derived and differences between idealized calculations (based on mathematical performance models) and real ones (based on aircraft flight test data) are explained. A computer program has been written as a macro in Lotus 1-2-3, with data obtained during flights. In the main report simple flowcharts are given to illustrate the methods used. The pro- gram results show the required fuel and the time for an airliner of a certain weight performing a mission with a certain range. In the appendix all data and the flowcharts
    [Show full text]
  • Aviation Glossary
    AVIATION GLOSSARY 100-hour inspection – A complete inspection of an aircraft operated for hire required after every 100 hours of operation. It is identical to an annual inspection but may be performed by any certified Airframe and Powerplant mechanic. Absolute altitude – The vertical distance of an aircraft above the terrain. AD - See Airworthiness Directive. ADC – See Air Data Computer. ADF - See Automatic Direction Finder. Adverse yaw - A flight condition in which the nose of an aircraft tends to turn away from the intended direction of turn. Aeronautical Information Manual (AIM) – A primary FAA publication whose purpose is to instruct airmen about operating in the National Airspace System of the U.S. A/FD – See Airport/Facility Directory. AHRS – See Attitude Heading Reference System. Ailerons – A primary flight control surface mounted on the trailing edge of an airplane wing, near the tip. AIM – See Aeronautical Information Manual. Air data computer (ADC) – The system that receives and processes pitot pressure, static pressure, and temperature to present precise information in the cockpit such as altitude, indicated airspeed, true airspeed, vertical speed, wind direction and velocity, and air temperature. Airfoil – Any surface designed to obtain a useful reaction, or lift, from air passing over it. Airmen’s Meteorological Information (AIRMET) - Issued to advise pilots of significant weather, but describes conditions with lower intensities than SIGMETs. AIRMET – See Airmen’s Meteorological Information. Airport/Facility Directory (A/FD) – An FAA publication containing information on all airports, seaplane bases and heliports open to the public as well as communications data, navigational facilities and some procedures and special notices.
    [Show full text]
  • Unusual Attitudes and the Aerodynamics of Maneuvering Flight Author’S Note to Flightlab Students
    Unusual Attitudes and the Aerodynamics of Maneuvering Flight Author’s Note to Flightlab Students The collection of documents assembled here, under the general title “Unusual Attitudes and the Aerodynamics of Maneuvering Flight,” covers a lot of ground. That’s because unusual-attitude training is the perfect occasion for aerodynamics training, and in turn depends on aerodynamics training for success. I don’t expect a pilot new to the subject to absorb everything here in one gulp. That’s not necessary; in fact, it would be beyond the call of duty for most—aspiring test pilots aside. But do give the contents a quick initial pass, if only to get the measure of what’s available and how it’s organized. Your flights will be more productive if you know where to go in the texts for additional background. Before we fly together, I suggest that you read the section called “Axes and Derivatives.” This will introduce you to the concept of the velocity vector and to the basic aircraft response modes. If you pick up a head of steam, go on to read “Two-Dimensional Aerodynamics.” This is mostly about how pressure patterns form over the surface of a wing during the generation of lift, and begins to suggest how changes in those patterns, visible to us through our wing tufts, affect control. If you catch any typos, or statements that you think are either unclear or simply preposterous, please let me know. Thanks. Bill Crawford ii Bill Crawford: WWW.FLIGHTLAB.NET Unusual Attitudes and the Aerodynamics of Maneuvering Flight © Flight Emergency & Advanced Maneuvers Training, Inc.
    [Show full text]