National Advisory Committee for Aeronautics

Total Page:16

File Type:pdf, Size:1020Kb

National Advisory Committee for Aeronautics . .—- NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS , TECHNICAL NOTE No. 1120 , STANDARD NOMENCLATURE FOR AIRSPEEDS WITH TABLES AND CHARTS FOR USE IN CALCULATION OF AIRSPEED . By William S. Aiken, Jr. Langley hCemoriaI Aeronautical Laboratory Langley Field, Va. Washington September 1946 ,. * -.. * NA!215EAL ADVW3RY COMMITTEE FOR AERONAUTICS . .● ✌. TECHNICAL NOTE No, 1120 . .- . AND CEM?TS FOR USE IN CALCULATION W AIRSPEED -. By William S . Mbn, Jr. Symbols and definitions of various airspeed terms that have been adopted as st~dard by the NACA SubcGEP mittee on Aircraft structural Design are presented. The ● equations, charts, and tablgs required In the evaluation of true sirspeed, calibrated airspeeds equivalent air~ s-peed,im-p.actand dynamic nressures, and }:achand Reynolds nlmnbers have been cor,piled~ Tables of the standard . akmosghera to an alt?tude of 65,.200feet and a tentative extension to an altitude of 1009000 feet are given along .“ with tha basic equations and ccfistants on whi~h both the standard atmosphere and the tentative extension are based~ INTI?ODUCTION In s.nalyses of aerodynamic data very often wind- tunnel or fligb.t measurements must bs converted into air- speed and related quar.ttties that are used in engineering calculatt ons, Attsmpts to accomplish such confers!.on by use of available m.etkods have been corc~licated by the diversity of s~mbols and definitions and by the necessity of referring to equations, charts, and tables from a nwn”oer of different sources. A standard set of symbols and definitions of v.micms atrsgaad terms that were adopted by the KACA Subcommittee on Aircraft Structural Design and a cow~ilation of th~ necessary equations, charts, ‘ and tables f~r converting measured pressures and temper- atures into airs~eeds, determining Mach numbars sand Re~~~ds zi’~ber~, snd determtnir.g otker quantities such as dynamic and iwqp.ct pressures that are of interest are therefore presented Mrein. -.-— In the preparation of tha pres~nt paper results that have been included in ~reti.ous papers have been ext,?nded to includ~ higher qltitudas and quantities not . .,, ~i.ven h the ~i~~vious pa~a.=:? since recsnt raquests have indicated the need for such an extension of stani!ard- atuosphere tables. ● ● The tables and figuz-es have been arranged for ease in determination of the ~irSP6f3ds ‘Hb.fichts usually bcsed on the interpretation of measurements of’differential Fressures obtained with “some pttct-static &rranSe?nent. The Interrelation of the various airspeed quantitie= is independent Of the method used in the measurement. Instrument and installation errors have been ass-wed to have been taken into account. ST.AKDARD SYH13GZSA.liDXFIN121CNS At the ??ovem’oar191f4meeting of tileNACA Subcommittee on .Aircrai’tStructural .Wsign, reprcsent=tivsti frozUtins A??M7’ Yavy, CAA, ??AC-A,and several aircraft manufacturers ado~;ed as standard the folloring symbols and def:nttions for air,sneecls..- : -i true ai.rspoecl vq indicated airspeed (the reading of’a differer.tial- nressure airs~eed indicator, calib~-ated in ~ccordance wi>bi the accepte~ standtirdadiabattc . formula to ii~d.icatetrue &irspeed for stmdard sea-level conditions only, unccrr~cted for . instrument and installatim tirrors) . Ve equivalent airspeed (,,.1/2) . uce of’equivalent ai~s~eed in combination with various subscripts is custor.ary, particularly in stvuc- tursl desi~n, to d~si~gate various design conditions. Zt is sug~ested that the i’oregolng 8P301s tieretained Intact when furtb-er subscripts are necessary. NA.CA TN Na, 1120 3 . D ~~ostof tjhefollowing symbols, which ar”eused herein, . have already been accepted as standard and are used throughout aeronautical literature. The units given apply < to the development Of the equationsin the present report. .- v, true airspeed, feet per second . Vc calibrated airspeed, feet per second Ve equivalent airspeed, feet per second a speed of sound in ambient air, feet per second M Mach number (V/a) . P mass density of ambient air, slugs per cubic foot Po standard mass density of dry ambient air at sea ; level, 0.002578 slug per cubic foot CY density ratio (p/PO) .- q dynamic pressure, pounds per SW=’Q foot ()~pv1 2 qc impact pressure, pounds per square foot (total . pressure minus static pressure p) P static pressure ,of free stream, pounds per squsre foot static pressure of free stuesm under standard sea- ‘o Mvel conditions, pounds per s“quare foot ,. t temperature, oF or oC . At difference between free-air temperature and tem- . perature of standard atmosphere, ‘F . T absolute temperature, ‘F absolute or ‘C absolute .,9 . T star.dard-atmospb.erefree-air temperature, % absolute . S td TO standard sea-level absolute temperature, 518.4 ‘F absolute . hnrmonic mean absolute temperature, ‘F absolut~ (defined in equation (E5)) . ? .’.. compressibility factor defined in equation (11) compressibility factor d6fined in equation (1~) ratio of’specific beat at constant pressure to . specific heat at constant volume (assumed equal to l.1+for air) I , absolute altitude, feet pressure altitude, feet acceleration of gravity, 32.174.0feet per second per second modulus for common “logarithms, lo~lOe (O .k3&Th ) coefficient of viscosity, SIUGS pm foot-second kinematic viscosity, square fe6t per second (P/P) . “- ReWolds number p~ ()w Reynolds number f’orstandard s.tmospheric conditions characteristic lerigth, feet . CALCULATIOiJ OF AIRSPEED AND PLELATED QUANTITIES . ~ecause pit”ot-static arrangements are used as the basis for the determlnati.on of atrspeed, aeronautical engineering practice has develop6d to include the use of a number of’airspeed terms and quantities, each of which has a particular field of usefulness. True airspeed is :Irincipally of use to aerodynamicists, and indicated and c&librated airspeeds are principally of use to pil.ota. Equivalent airspeed is used by structural engineers, since all load specifications have long b6en based on this quantity. , s Ik5finite r61ationshi~s exist between true airspGecl, . Mach number, Reynolds number, calibrated airspeed, and Equivalent airspeed, and all these quantities may be . NJLCATN ~0, 1120 5 . , related either to the dynamic Qressure . q or to the .,. impact pre3sure qc . Some of the relations presented \ hsreln apply to the calculation of true airspeed and . Mach number from airspeed measurements obtained with an .- airspeed indicator of standard calibration, C?therrela- tions apply to the calculation of true airspeed when the impact pressure is measured directly. If it is assumed that tb.6total-head tl~beand the static-head tube measure their respective p~essures cor- rectly and that these ,tubes are connected to an a~pro- priate instrument, the impact pressure measured is given bT tb.eadiabatic equation wb.en V <, a: (1) Standard airspeed indicators usefl in Aruy and Navy airplanes since 1~25 have been calibrated according to equation (1) for standard sea-level conditions; that is, according to the equation when V < a, w-here t~ie subscript O denotes standard sea-level con- &itiorIs and VC 1s the calibrated airspeed. The c8.1i- b~ated airspeed is, therefore, equal to true airspeed only for standard sea-level cor.ditions. Determination of True Airspeed - from Calibrated Airspeed The formula that relates the true airspeed to the . calibrated airspead may be found “Qy equating the rigb.t- “ .- hand terms of equations (1) and (2) as follows: 6 NACA TN No. 1120 ● Because the exact numerical solution of equation (j) for . true airspeed is involved and requires a great deal of . .:. time, a number of charts for the determination of the \ t~ue airspeed from the cal~brated airspeed for vartous ,’ atmospheric conditions have been derived. (See refer- .- ences 1 to 3.) A typical chart (taken from reference 1) Wiiatshows the relationship between Mach number, cali- ‘orated airspeed, pressure altitude, temperature, and true airspeed is given in figure 1. ~iS chart iS Widely used.because of’its convenience. Airspeed may be obtained froii~this chart with an accuracy within 2 miles per hour wl~c:nstandard conditions hold and when values of airspeed” and pressure altitude explicitly given by the chart are ehcsen; the possible errors increaoe to within ~ miles peimhour, however, when the temperature conditions are not standard and when interpolation is required for both altitude and airspeed. For some prposes, charts such as figure 1 are not sufficiently accurate . A series of logarithmic tables that may be used to determine the true airspeed in knots from observed values of calibrated airspeed, pressure altituile, and free-air temperature is given in reference 4. LoCarithwdc tables of the type given in reference )Aare of limited usefulness since they cannot bb used conveniently to evaluato the intermediate quantities (impact pressure and ?.:achnumber) that are involved. in the computation of true airspeed. A series of tables (tables T to V) is given in the prc.sentreport to permit determination of impact pres- sure !lC in pournds per square foot, Uach number 1;, and true airspeed V in mil(ss per hour or knots for okscrved values of Vc in miles par hour or knots, press-are alti- tude h~ In f~et, and t~mperature in dcErees Fahrenheit or Centlgratie. The accuracy of the tables is far greater than that with which experimental data can normally be obtained. ~~~th ordinar;~ care in interpolation, errors should be less than 0.25 mile per hour throughout the greater part of tlieairspeed and altitude ranEes. !’able I, which gives values of impact pressure qc . in pounds per square foot for values of Vc in miles per . hour, was computed directly from equation (2]; standard . values were used for all the constants occurring in this “ equation. Table II gives values of impact pressure qc . in pounds per square foot for values of Vc in knots. * . In computing the values of’ in table II, the conve~.= .. sion from feet to nautical ni‘fes used was as follows: .
Recommended publications
  • Airspeed Indicator Calibration
    TECHNICAL GUIDANCE MATERIAL AIRSPEED INDICATOR CALIBRATION This document explains the process of calibration of the airspeed indicator to generate curves to convert indicated airspeed (IAS) to calibrated airspeed (CAS) and has been compiled as reference material only. i Technical Guidance Material BushCat NOSE-WHEEL AND TAIL-DRAGGER FITTED WITH ROTAX 912UL/ULS ENGINE APPROVED QRH PART NUMBER: BCTG-NT-001-000 AIRCRAFT TYPE: CHEETAH – BUSHCAT* DATE OF ISSUE: 18th JUNE 2018 *Refer to the POH for more information on aircraft type. ii For BushCat Nose Wheel and Tail Dragger LSA Issue Number: Date Published: Notable Changes: -001 18/09/2018 Original Section intentionally left blank. iii Table of Contents 1. BACKGROUND ..................................................................................................................... 1 2. DETERMINATION OF INSTRUMENT ERROR FOR YOUR ASI ................................................ 2 3. GENERATING THE IAS-CAS RELATIONSHIP FOR YOUR AIRCRAFT....................................... 5 4. CORRECT ALIGNMENT OF THE PITOT TUBE ....................................................................... 9 APPENDIX A – ASI INSTRUMENT ERROR SHEET ....................................................................... 11 Table of Figures Figure 1 Arrangement of instrument calibration system .......................................................... 3 Figure 2 IAS instrument error sample ........................................................................................ 7 Figure 3 Sample relationship between
    [Show full text]
  • Sept. 12, 1950 W
    Sept. 12, 1950 W. ANGST 2,522,337 MACH METER Filed Dec. 9, 1944 2 Sheets-Sheet. INVENTOR. M/2 2.7aar alwg,57. A77OAMA). Sept. 12, 1950 W. ANGST 2,522,337 MACH METER Filed Dec. 9, 1944 2. Sheets-Sheet 2 N 2 2 %/ NYSASSESSN S2,222,W N N22N \ As I, mtRumaIII-m- III It's EARAs i RNSITIE, 2 72/ INVENTOR, M247 aeawosz. "/m2.ATTORNEY. Patented Sept. 12, 1950 2,522,337 UNITED STATES ; :PATENT OFFICE 2,522,337 MACH METER Walter Angst, Manhasset, N. Y., assignor to Square D Company, Detroit, Mich., a corpora tion of Michigan Application December 9, 1944, Serial No. 567,431 3 Claims. (Cl. 73-182). is 2 This invention relates to a Mach meter for air plurality of posts 8. Upon one of the posts 8 are craft for indicating the ratio of the true airspeed mounted a pair of serially connected aneroid cap of the craft to the speed of sound in the medium sules 9 and upon another of the posts 8 is in which the aircraft is traveling and the object mounted a diaphragm capsuler it. The aneroid of the invention is the provision of an instrument s: capsules 9 are sealed and the interior of the cas-l of this type for indicating the Mach number of an . ing is placed in communication with the static aircraft in fight. opening of a Pitot static tube through an opening The maximum safe Mach number of any air in the casing, not shown. The interior of the dia craft is the value of the ratio of true airspeed to phragm capsule is connected through the tub the speed of sound at which the laminar flow of ing 2 to the Pitot or pressure opening of the Pitot air over the wings fails and shock Waves are en static tube through the opening 3 in the back countered.
    [Show full text]
  • E6bmanual2016.Pdf
    ® Electronic Flight Computer SPORTY’S E6B ELECTRONIC FLIGHT COMPUTER Sporty’s E6B Flight Computer is designed to perform 24 aviation functions and 20 standard conversions, and includes timer and clock functions. We hope that you enjoy your E6B Flight Computer. Its use has been made easy through direct path menu selection and calculation prompting. As you will soon learn, Sporty’s E6B is one of the most useful and versatile of all aviation computers. Copyright © 2016 by Sportsman’s Market, Inc. Version 13.16A page: 1 CONTENTS BEFORE USING YOUR E6B ...................................................... 3 DISPLAY SCREEN .................................................................... 4 PROMPTS AND LABELS ........................................................... 5 SPECIAL FUNCTION KEYS ....................................................... 7 FUNCTION MENU KEYS ........................................................... 8 ARITHMETIC FUNCTIONS ........................................................ 9 AVIATION FUNCTIONS ............................................................. 9 CONVERSIONS ....................................................................... 10 CLOCK FUNCTION .................................................................. 12 ADDING AND SUBTRACTING TIME ....................................... 13 TIMER FUNCTION ................................................................... 14 HEADING AND GROUND SPEED ........................................... 15 PRESSURE AND DENSITY ALTITUDE ...................................
    [Show full text]
  • Air Data Computer 8EB3AAA1 DESCRIPTION AMETEK Has Designed a Compact, Solid State Air Data Computer for Military Applications
    Air Data Computer 8EB3AAA1 DESCRIPTION AMETEK has designed a compact, solid state Air Data Computer for military applications. The Air Data Computer utilizes a digital signal processor for fast calculation and response of air data parameters. Silicon pressure transducers provide the static and Pitot pressure values and are easily replaced without calibration. The AMETEK Air Data Computer incorporates a unique power supply that allows the unit to operate through 5 second power interrupts when at any input voltage in its operating range. This ensures that critical air data parameters reach the cockpit and control systems under a FEATURES wide variety of conditions. 3 The MIL-STD-1553 interface 40 ms update rate Thirteen (13) different air data parameters are provided on the MIL-STD- 3 11-bit reported pressure 1553B interface and are calculated by the internal processor at a 40 ms rate. altitude interface 3 AOA and total temperature An 11-bit reported pressure altitude interface encoded per FAA order inputs 1010.51A is available for Identification Friend or Foe equipment. 3 Low weight: 2.29 lbs. 3 Small size: 6.81” x 6.0” x 2.5” 3 Low power: 1.5 watts 3 DO-178B level A software AEROSPACE & DEFENSE Air Data Computer 8EB3AAA1 SPECIFICATIONS PERFORMANCE CHARACTERISTICS Air Data Parameters Power: DO-160, Section 16 Cat Z or MIL-STD-704A-F • ADC Altitude Rate Output (Hpp or dHp/dt) 5 second power Interruption immunity at any • True Airspeed Output (Vt) input voltage • Calibrated Airspeed Output (Vc) Power Consumption: 1.5 watts • Indicated Airspeed Output (IAS) Operating Temperature: -55°C to +71°C; 1/2 hour at +90°C • Mach Number Output (Mt) Weight: 2.29 lbs.
    [Show full text]
  • 16.00 Introduction to Aerospace and Design Problem Set #3 AIRCRAFT
    16.00 Introduction to Aerospace and Design Problem Set #3 AIRCRAFT PERFORMANCE FLIGHT SIMULATION LAB Note: You may work with one partner while actually flying the flight simulator and collecting data. Your write-up must be done individually. You can do this problem set at home or using one of the simulator computers. There are only a few simulator computers in the lab area, so not leave this problem to the last minute. To save time, please read through this handout completely before coming to the lab to fly the simulator. Objectives At the end of this problem set, you should be able to: • Take off and fly basic maneuvers using the flight simulator, and describe the relationships between the control yoke and the control surface movements on the aircraft. • Describe pitch - airspeed - vertical speed relationships in gliding performance. • Explain the difference between indicated and true airspeed. • Record and plot airspeed and vertical speed data from steady-state flight conditions. • Derive lift and drag coefficients based on empirical aircraft performance data. Discussion In this lab exercise, you will use Microsoft Flight Simulator 2000/2002 to become more familiar with aircraft control and performance. Also, you will use the flight simulator to collect aircraft performance data just as it is done for a real aircraft. From your data you will be able to deduce performance parameters such as the parasite drag coefficient and L/D ratio. Aircraft performance depends on the interplay of several variables: airspeed, power setting from the engine, pitch angle, vertical speed, angle of attack, and flight path angle.
    [Show full text]
  • Joint Aviation Requirements JAR–FCL 1 ЛИЦЕНЗИРОВАНИЕ ЛЕТНЫХ ЭКИПАЖЕЙ (САМОЛЕТЫ)
    Joint Aviation Requirements JAR–FCL 1 ЛИЦЕНЗИРОВАНИЕ ЛЕТНЫХ ЭКИПАЖЕЙ (САМОЛЕТЫ) Joint Aviation Authorities 1 JAR-FCL 1 ЛИЦЕНЗИРОВАНИЕ ЛЕТНЫХ ЭКИПАЖЕЙ (САМОЛЕТЫ) Издано 14 февраля 1997 года ПРЕДИСЛОВИЕ ПРЕАМБУЛА ЧАСТЬ 1 - ТРЕБОВАНИЯ ПОДЧАСТЬ A – ОБЩИЕ ТРЕБОВАНИЯ JAR-FCL 1.001 Определения и Сокращения JAR-FCL 1.005 Применимость JAR-FCL 1.010 Основные полномочия членов летного экипажа JAR-FCL 1.015 Признание свидетельств, допусков, разрешений, одобрений или сер- тификатов JAR-FCL 1.016 Кредит, предоставляемый владельцу свидетельства, полученного в государстве не члене JAA JAR-FCL 1.017 Разрешения/квалификационные допуски для специальных целей JAR-FCL 1.020 Учет военной службы JAR-FCL 1.025 Действительность свидетельств и квалификационных допусков JAR-FCL 1.026 Свежий опыт для пилотов, не выполняющих полеты в соответствии с JAR-OPS 1 JAR-FCL 1.030 Порядок тестирования JAR-FCL 1.035 Годность по состоянию здоровья JAR-FCL 1.040 Ухудшение состояния здоровья JAR-FCL 1.045 Особые обстоятельства JAR-FCL 1.050 Кредитование летного времени и теоретических знаний JAR-FCL 1.055 Организации и зарегистрированные предприятия JAR-FCL 1.060 Ограничение прав владельцев свидетельств, достигших 60-летнего возраста и более JAR-FCL 1.065 Государство выдачи свидетельства 2 JAR-FCL 1.070 Место обычного проживания JAR-FCL 1.075 Формат и спецификации свидетельств членов летных экипажей JAR-FCL 1.080 Учет летного времени Приложение 1 к JAR-FCL 1.005 Минимальные требования для выдачи свиде- тельства/разрешения JAR-FCL на основе нацио- нального свидетельства/разрешения, выданного в государстве-члене JAA. Приложение 1 к JAR-FCL 1.015 Минимальные требования для признания дейст- вительности свидетельств пилотов, выданных государствами не членами JAA.
    [Show full text]
  • Digital Air Data Computer Type Ac32
    DIGITAL AIR DATA COMPUTER TYPE AC32 GENERAL THOMMEN is a leading manufacturer of Air Data Systems It also supports the Air Data for enhanced safety and aircraft instruments used worldwide on a full range infrastructure capabilities for Transponders and an ICAO aircraft types from helicopters to corporate turbine aircraft encoded altitude output is also available as an option. and commercial airliners. The AC32 measures barometric altitude, airspeed and temperature in the atmosphere with Its power supply is designed for 28 VDC. The low power integrated vibrating cylinder pressure sensors with high consumption of less than 7 Watts and its low weight of only accuracy and stability for both static and pitot ports. 2.2 Ibs (1000 grams) have been optimized for applications in state-of-the-art avionics suites. The extensive Built-in-Test The THOMMEN AC32 Digital Air Data Computer exceeds FAA capability guarantees safe operation. Technical Standard Order (TSO) and accuracy requirements. The computed air data parameters are transmitted via the The AC32 is designed to be modular which allows easy configurable ARINC 429 data bus. There are two ARINC 429 maintenance by the operator thanks to the RS232 transmit channels and two receive channels with which baro maintenance interface. The THOMMEN AC32 can be confi correction can be accomplished also. gured for different applications and has excellent hosting capabilities for supplying data to next generation equipment The AC32 meets the requirements for multiple platforms for without altering the system architecture. TAWS, ACAS/TCAS, EGPWS or FMS systems. For customized versions please contact THOMMEN AIRCRAFT EQUIPMENT AG sales department.
    [Show full text]
  • FAHRZEUGTECHNIK Studiengang Flugzeugbau
    fachhochschule hamburg FACHBEREICH FAHRZEUGTECHNIK Studiengang Flugzeugbau Berliner Tor 5 D - 20099 Hamburg in Zusammenarbeit mit: University of Limerick Department of Mechanical & Aeronautical Engineering Limerick, Ireland Diplomarbeit - Flugzeugbau - Development of an aircraft performance model for the prediction of trip fuel and trip time for a generic twin engine jet transport aircraft Verfasser: Gerold Straubinger Abgabedatum: 15.03.00 Betreuer: Trevor Young, Lecturer 1. Prüfer: Prof. Dr.-Ing. Dieter Scholz, MSME 2. Prüfer: Prof. Dr.-Ing. Hans-Jürgen Flüh Fahrzeugtechnik Abstract This report gives an overview of methods for aircraft performance calculations. After explain- ing the necessary background and the International Standard Atmosphere, it deals with a com- plete mission of a generic twin engine jet transport aircraft, including the required reserves of a diversion. Every part of the mission is considered. This includes climb, cruise, descent and hold. Equations for determining significant parameters of all parts are derived and differences between idealized calculations (based on mathematical performance models) and real ones (based on aircraft flight test data) are explained. A computer program has been written as a macro in Lotus 1-2-3, with data obtained during flights. In the main report simple flowcharts are given to illustrate the methods used. The pro- gram results show the required fuel and the time for an airliner of a certain weight performing a mission with a certain range. In the appendix all data and the flowcharts
    [Show full text]
  • Introduction
    CHAPTER 1 Introduction "For some years I have been afflicted with the belief that flight is possible to man." Wilbur Wright, May 13, 1900 1.1 ATMOSPHERIC FLIGHT MECHANICS Atmospheric flight mechanics is a broad heading that encompasses three major disciplines; namely, performance, flight dynamics, and aeroelasticity. In the past each of these subjects was treated independently of the others. However, because of the structural flexibility of modern airplanes, the interplay among the disciplines no longer can be ignored. For example, if the flight loads cause significant structural deformation of the aircraft, one can expect changes in the airplane's aerodynamic and stability characteristics that will influence its performance and dynamic behavior. Airplane performance deals with the determination of performance character- istics such as range, endurance, rate of climb, and takeoff and landing distance as well as flight path optimization. To evaluate these performance characteristics, one normally treats the airplane as a point mass acted on by gravity, lift, drag, and thrust. The accuracy of the performance calculations depends on how accurately the lift, drag, and thrust can be determined. Flight dynamics is concerned with the motion of an airplane due to internally or externally generated disturbances. We particularly are interested in the vehicle's stability and control capabilities. To describe adequately the rigid-body motion of an airplane one needs to consider the complete equations of motion with six degrees of freedom. Again, this will require accurate estimates of the aerodynamic forces and moments acting on the airplane. The final subject included under the heading of atmospheric flight mechanics is aeroelasticity.
    [Show full text]
  • Volume 2 – General Navigation (JAR Ref 061) Table of Contents
    Volume 2 – General Navigation (JAR Ref 061) Table of Contents CHAPTER 1 The Form of the Earth Shape of the Earth ........................................................................................................................................1-1 The Poles......................................................................................................................................................1-2 East and West...............................................................................................................................................1-2 North Pole and South Pole ...........................................................................................................................1-2 Cardinal Directions........................................................................................................................................1-3 Great Circle...................................................................................................................................................1-3 Vertex of a Great Circle ................................................................................................................................1-4 Small Circle...................................................................................................................................................1-5 The Equator ..................................................................................................................................................1-5 Meridians ......................................................................................................................................................1-6
    [Show full text]
  • Unusual Attitudes and the Aerodynamics of Maneuvering Flight Author’S Note to Flightlab Students
    Unusual Attitudes and the Aerodynamics of Maneuvering Flight Author’s Note to Flightlab Students The collection of documents assembled here, under the general title “Unusual Attitudes and the Aerodynamics of Maneuvering Flight,” covers a lot of ground. That’s because unusual-attitude training is the perfect occasion for aerodynamics training, and in turn depends on aerodynamics training for success. I don’t expect a pilot new to the subject to absorb everything here in one gulp. That’s not necessary; in fact, it would be beyond the call of duty for most—aspiring test pilots aside. But do give the contents a quick initial pass, if only to get the measure of what’s available and how it’s organized. Your flights will be more productive if you know where to go in the texts for additional background. Before we fly together, I suggest that you read the section called “Axes and Derivatives.” This will introduce you to the concept of the velocity vector and to the basic aircraft response modes. If you pick up a head of steam, go on to read “Two-Dimensional Aerodynamics.” This is mostly about how pressure patterns form over the surface of a wing during the generation of lift, and begins to suggest how changes in those patterns, visible to us through our wing tufts, affect control. If you catch any typos, or statements that you think are either unclear or simply preposterous, please let me know. Thanks. Bill Crawford ii Bill Crawford: WWW.FLIGHTLAB.NET Unusual Attitudes and the Aerodynamics of Maneuvering Flight © Flight Emergency & Advanced Maneuvers Training, Inc.
    [Show full text]
  • E230 Aircraft Systems
    E230 Aircraft Systems Fly fast Fly slow School Of 6th Presentation Engineering Air Speed Indicator • Airspeed indicator (ASI) is an instrument that measures speed relative to surrounding air. • The faster the aircraft the greater the dynamic air pressure. • ASI uses the difference in pitot and static pressure for measurement. • Compensation for variation in position, compression, density is necessary for true airspeed. • Shows indicated airspeed if uncorrected. School of Engineering Operation of ASI • Dy = Dynamic Pressure • S = Static Pressure • When aircraft is stationary, Dy = 0 • As pitot pressure increase, capsule expands to increase reading School of Engineering Markings on a ASI • White range: operating speed VS0 with flaps V S1 extended VNE • Green range: operating speed with flaps VFE retracted • Yellow range: May be operated in smooth air VN0 condition School of Engineering Markings on a ASI • VS0 – Stall speed with flaps/landing gear fully extended • VS1 – Stall speed with flaps/landing gear retracted • VFE – Maximum speed with flaps/landing gear fully extended • VN0 – Maximum speed with flaps/landing gear retracted • VNE – “Never Exceed” speed, beyond which structural damage may occur School of Engineering Airspeed conversion Corrected for Corrected for IAS position & CAS compressibility EAS instrument error effects Corrected for density Corrected for differences GS head/tail wind TAS • Memory aid: ICE-TG T G I C E School of Engineering Mach Number • Mach number = True Airspeed/Speed of sound • Speed of sound varies with temperature • Temperature varies with altitude • Thus Mach number varies with altitude • The same airspeed can have different Mach numbers depending on the flight altitude School of Engineering Machmeter • Knowing the airspeed alone is not enough to avoid shock waves forming at the critical Mach number • Pilot needs to know the Mach number and not the airspeed to avoid shock waves • That is why machmeter is needed.
    [Show full text]