ODQN 17-4, October 2013
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Annual Compendium of Commercial Space Transportation: 2013
Federal Aviation Administration The Annual Compendium of Commercial Space Transportation: 2013 February 2014 About FAA \ NOTICE ###i# £\£\ ###ii# Table of Contents TABLE OF CONTENTS INTRODUCTION. 1 YEAR AT A GLANCE ..............................................2 COMMERCIAL SPACE TRANSPORTATION 2013 YEAR IN REVIEW ........5 7 ORBITAL LAUNCH VEHICLES .....................................21 3 SUBORBITAL REUSABLE VEHICLES ...............................47 33 ON-ORBIT VEHICLES AND PLATFORMS ............................57 LAUNCH SITES .................................................65 COMMERCIAL VENTURES BEYOND EARTH ORBIT ...................79 44 REGULATION AND POLICY .......................................83 3 5 3 53 3 8599: : : ;55: 9 < 5; < 2013 COMMERCIAL SPACE TRANSPORTATION FORECASTS ..........89 4 3 4 : ACRONYMS AND ABBREVIATIONS ...............................186 2013 WORLDWIDE ORBITAL LAUNCH EVENTS .....................192 DEFINITIONS ..................................................196 ###iii# £\£\ LIST OF FIGURES COMMERCIAL SPACE TRANSPORTATION YEAR IN REVIEW = =999 =99 = =3> =:9;> LAUNCH SITES = :< 2013 COMMERCIAL SPACE TRANSPORTATION FORECASTS =944 =4 =?4;9 =99493 =3 =:5= =< =;=9 =95;@3 =A =;=9 A 3 =994?: =9999 ? =54 =359 =:5 3 =<999= ? =99=5 ?3 =;>>99: =99 ? 3 ==9 ? 3: =3 =>3 =?: =3?: =:? : ###iv# LIST OF TABLES COMMERCIAL SPACE TRANSPORTATION YEAR IN REVIEW 99 : 3< :9=99< <99 ORBITAL LAUNCH VEHICLES 99 99 59595 593 SUBORBITAL REUSABLE VEHICLES 3 :5933 ON-ORBIT VEHICLES -
PDF (03Ragozzine Exo-Interiors.Pdf)
20 Chapter 2 Probing the Interiors of Very Hot Jupiters Using Transit Light Curves This chapter will be published in its entirety under the same title by authors D. Ragozzine and A. S. Wolf in the Astrophysical Journal, 2009. Reproduced by permission of the American Astro- nomical Society. 21 Abstract Accurately understanding the interior structure of extra-solar planets is critical for inferring their formation and evolution. The internal density distribution of a planet has a direct effect on the star-planet orbit through the gravitational quadrupole field created by the rotational and tidal bulges. These quadrupoles induce apsidal precession that is proportional to the planetary Love number (k2p, twice the apsidal motion constant), a bulk physical characteristic of the planet that depends on the internal density distribution, including the presence or absence of a massive solid core. We find that the quadrupole of the planetary tidal bulge is the dominant source of apsidal precession for very hot Jupiters (a . 0:025 AU), exceeding the effects of general relativity and the stellar quadrupole by more than an order of magnitude. For the shortest-period planets, the planetary interior induces precession of a few degrees per year. By investigating the full photometric signal of apsidal precession, we find that changes in transit shapes are much more important than transit timing variations. With its long baseline of ultra-precise photometry, the space-based Kepler mission can realistically detect apsidal precession with the accuracy necessary to infer the presence or absence of a massive core in very hot Jupiters with orbital eccentricities as low as e ' 0:003. -
Orbital Lifetime Predictions
Orbital LIFETIME PREDICTIONS An ASSESSMENT OF model-based BALLISTIC COEFfiCIENT ESTIMATIONS AND ADJUSTMENT FOR TEMPORAL DRAG co- EFfiCIENT VARIATIONS M.R. HaneVEER MSc Thesis Aerospace Engineering Orbital lifetime predictions An assessment of model-based ballistic coecient estimations and adjustment for temporal drag coecient variations by M.R. Haneveer to obtain the degree of Master of Science at the Delft University of Technology, to be defended publicly on Thursday June 1, 2017 at 14:00 PM. Student number: 4077334 Project duration: September 1, 2016 – June 1, 2017 Thesis committee: Dr. ir. E. N. Doornbos, TU Delft, supervisor Dr. ir. E. J. O. Schrama, TU Delft ir. K. J. Cowan MBA TU Delft An electronic version of this thesis is available at http://repository.tudelft.nl/. Summary Objects in Low Earth Orbit (LEO) experience low levels of drag due to the interaction with the outer layers of Earth’s atmosphere. The atmospheric drag reduces the velocity of the object, resulting in a gradual decrease in altitude. With each decayed kilometer the object enters denser portions of the atmosphere accelerating the orbit decay until eventually the object cannot sustain a stable orbit anymore and either crashes onto Earth’s surface or burns up in its atmosphere. The capability of predicting the time an object stays in orbit, whether that object is space junk or a satellite, allows for an estimate of its orbital lifetime - an estimate satellite op- erators work with to schedule science missions and commercial services, as well as use to prove compliance with international agreements stating no passively controlled object is to orbit in LEO longer than 25 years. -
From Strength to Strength Worldreginfo - 24C738cf-4419-4596-B904-D98a652df72b 2011 SES Astra and SES World Skies Become SES
SES Annual report 2013 Annual Annual report 2013 From strength to strength WorldReginfo - 24c738cf-4419-4596-b904-d98a652df72b 2011 SES Astra and SES World Skies become SES 2010 2009 3rd orbital position Investment in O3b Networks over Europe 2008 2006 SES combines Americom & Coverage of 99% of New Skies into SES World Skies the world’s population 2005 2004 SES acquires New Skies Satellites Launch of HDTV 2001 Acquisition of GE Americom 1999 First Ka-Band payload in orbit 1998 Astra reaches 70m households in Europe Second orbital slot: 28.2° East 1996 SES lists on Luxembourg Stock Exchange First SES launch on Proton: ASTRA 1F Digital TV launch 1995 ASTRA 1E launch 1994 ASTRA 1D launch 1993 ASTRA 1C launch 1991 ASTRA 1B launch 1990 World’s first satellite co-location Astra reach: 16.6 million households in Europe 1989 Start of operations @ 19.2° East 1988 ASTRA 1A launches on board Ariane 4 1st satellite optimised for DTH 1987 Satellite control facility (SCF) operational 1985 SES establishes in Luxembourg Europe’s first private satellite operator WorldReginfo - 24c738cf-4419-4596-b904-d98a652df72b 2012 First emergency.lu deployment SES unveils Sat>IP 2013 SES reach: 291 million TV households worldwide SES maiden launch with SpaceX More than 6,200 TV channels 1,800 in HD 2010 First Ultra HD demo channel in HEVC 3rd orbital position over Europe 25 years in space With the very first SES satellite, ASTRA 1A, launched on December 11 1988, SES celebrated 25 years in space in 2013. Since then, the company has grown from a single satellite/one product/one-market business (direct-to-home satellite television in Europe) into a truly global operation. -
NASA Process for Limiting Orbital Debris
NASA-HANDBOOK NASA HANDBOOK 8719.14 National Aeronautics and Space Administration Approved: 2008-07-30 Washington, DC 20546 Expiration Date: 2013-07-30 HANDBOOK FOR LIMITING ORBITAL DEBRIS Measurement System Identification: Metric APPROVED FOR PUBLIC RELEASE – DISTRIBUTION IS UNLIMITED NASA-Handbook 8719.14 This page intentionally left blank. Page 2 of 174 NASA-Handbook 8719.14 DOCUMENT HISTORY LOG Status Document Approval Date Description Revision Baseline 2008-07-30 Initial Release Page 3 of 174 NASA-Handbook 8719.14 This page intentionally left blank. Page 4 of 174 NASA-Handbook 8719.14 This page intentionally left blank. Page 6 of 174 NASA-Handbook 8719.14 TABLE OF CONTENTS 1 SCOPE...........................................................................................................................13 1.1 Purpose................................................................................................................................ 13 1.2 Applicability ....................................................................................................................... 13 2 APPLICABLE AND REFERENCE DOCUMENTS................................................14 3 ACRONYMS AND DEFINITIONS ...........................................................................15 3.1 Acronyms............................................................................................................................ 15 3.2 Definitions ......................................................................................................................... -
NEAR of the 21 Lunar Landings, 19—All of the U.S
Copyrights Prof Marko Popovic 2021 NEAR Of the 21 lunar landings, 19—all of the U.S. and Russian landings—occurred between 1966 and 1976. Then humanity took a 37-year break from landing on the moon before China achieved its first lunar touchdown in 2013. Take a look at the first 21 successful lunar landings on this interactive map https://www.smithsonianmag.com/science-nature/interactive-map-shows-all-21-successful-moon-landings-180972687/ Moon 1 The near side of the Moon with the major maria (singular mare, vocalized mar-ray) and lunar craters identified. Maria means "seas" in Latin. The maria are basaltic lava plains: i.e., the frozen seas of lava from lava flows. The maria cover ∼ 16% (30%) of the lunar surface (near side). Light areas are Lunar Highlands exhibiting more impact craters than Maria. The far side is pocked by ancient craters, mountains and rugged terrain, largely devoid of the smooth maria we see on the near side. The Lunar Reconnaissance Orbiter Moon 2 is a NASA robotic spacecraft currently orbiting the Moon in an eccentric polar mapping orbit. LRO data is essential for planning NASA's future human and robotic missions to the Moon. Launch date: June 18, 2009 Orbital period: 2 hours Orbit height: 31 mi Speed on orbit: 0.9942 miles/s Cost: 504 million USD (2009) The Moon is covered with a gently rolling layer of powdery soil with scattered rocks called the regolith; it is made from debris blasted out of the Lunar craters by the meteor impacts that created them. -
Study of Extraterrestrial Disposal of Radioactive Wastes
NASA TECHNICAL NASA TM X-71557 MEMORANDUM N--- XI NASA-TM-X-71557) STUDY OF N74-22776 EXTRATERRESTRIAL DISPOSAL OF READIOACTIVE WASTES. PART 1: SPACE TRANSPORTATION. AN.. DESTINATION CONSIDERATIONS. FOR, (NASA) Unclas 64 p HC $6.25 CSCL 18G G3/05 38494 STUDY OF EXTRATERRESTRIAL DISPOSAL OF RADIOACTIVE WASTES by R. L. Thompson, J. R. Ramler, and S. M. Stevenson Lewis Research Center Cleveland, Ohio 44135 May 1974 This information is being published in prelimi- nary form in order to expedite its early release. I STUDY OF EXTRATERRESTRIAL DISPOSAL OF RADIOACTIVE WASTES Part I Space Transportation and Destination Considerations for Extraterrestrial Disposal of Radioactive W4astes by R. L. Thompson, J. R. Ramler, and S. M. Stevenson Lewis Research Center CT% CSUMMARY I NASA has been requested by the AEC to conduct a feasibility study of extraterrestrial (space) disposal of radioactive waste. This report covers the initial work done on only one part of the NASA study, the evaluation and comparison of possible space destinations and space transportation systems. Only current or planned space transportation systems have been considered thus far. The currently planned Space Shuttle was found to be more cost-effective than current expendable launch vehicles by about a factor of 2. The Space Shuttle requires a third stage to perform the waste disposal missions. Depending on the particular mission, this third stage could be either a reusable space tug or an expendable stage such as a Centaur. Of the destinations considered, high Earth orbits (between geostationary and lunar orbit altitudes), solar orbits (such as a 0.90 AU circular solar orbit) or a direct injection to solar system escape appear to be the best candidates. -
Mission Overview — 30 December 2002
THE VEHICLE THE SATELLITE PROTON HISTORY PROTON DESCRIPTION Lead designer was Vladimir Chelomei, who designed it TOTAL HEIGHT with the intention of creating both a powerful rocket for 58.2 m (191 ft) military payloads and a high-performance ICBM. The program was changed, and the rocket was developed GRoss LIFT-OFF exclusively for launching spacecraft. WEIGHT 705,000 kg First named UR-500, but adopted the name (1,554,000 lb) “Proton,” which also was the name of the first PROPELLANT three payloads launched. UDMH and NTO Proton launched Russian interplanetary mis- INITIAL LAUNCH sions to the Moon, Venus, Mars, and Hal- 16 July 1965 ley’s Comet. Proton-1 Spacecraft Proton launched the Salyut space sta- PAYLOAD FAIRINGS tions, the Mir core segment and both There are multiple payload fairing designs presently SATELLITE OPERATOR the Zarya (Dawn) and Zvezda (Star) mod- qualified for flight, including ules for today’s International Space Station. SES standard commercial payload www.ses.com fairings developed specifically to First commercial Proton launch, Astra 1F — meet the needs of our customers. 9 April 1996. SATELLITE MANUFACTURER BREEZE M UPPER STAGE Astrium First commercial Proton M Breeze M launch The Breeze M is powered by one pump-fed www.astrium.eads.net Mission Overview — 30 December 2002. gimbaled main engine that develops thrust of 20 kN (4,500 lbf). It is composed of a central core and PLATFORM an auxilliary propellant tank which is jettisoned in flight Eurostar E3000 following depletion. The Breeze M control system includes an on-board computer, a three-axis gyro stabilized platform, and a SEPARATED MAss navigation system. -
PRFP-11) & Interconnectivity Workshop 26-30 November 2019, Apia, SAMOA
11th APT Policy and Regulation Forum for Pacific (PRFP-11) & Interconnectivity Workshop 26-30 November 2019, Apia, SAMOA Workshop Topic ENABLERS FOR A BETTER CONNECTED PACIFIC - New Satellite Technologies and Services (MSS, ESIM and LEOs) Dr Bob Horton Consultant Satellite Industry ENABLERS FOR A BETTER CONNECTED PACIFIC - New Satellite Technologies and Services (MSS and LEOs) CONTENTS • Examples of progress : MSS, ESIM – Inmarsat LEOs – OneWeb • Pacific Needs - understanding and participating in the regional/global environment - the Pacific : a “Collection of Islands” or an “Island Collective”? - opportunities overdue in APAC Inmarsat use of spectrum L band Ka band User links: 1626.5-1660.5 MHz ↑, 1525-1559 Feeder link ↑ : 27.5 – 30.0 GHz MHz↓ Feeder link↓ : 17.7 – 20.2 GHz Extended L-band: User link ↑ : 29.0 – 30.0 GHz User link↓ : 19.2 – 20.2 GHz User links: 1668-1675 MHz ↑, 1518 MHz-1525 MHz ↓ Used by Inmarsat Global Express satellites S band Used by Inmarsat-4 satellites and Alphasat Feeder link ↑ : 27.5 – 29.5 GHz Feeder link↓ : 17.7 – 19.7 GHz User link ↑ 1980-2010MHz Q/V band User link↓ : 2170-2200MHz C band 37.5-42.5 GHz ↓ Used by Europasat Feeder links for L-band satellites operate in 47.2-50.2 GHz + 50.4-51.4 GHz ↑ the bands 3550 – 3700 MHz and 6425 – - Planned for future satellites to free 6575 MHz through more than 20 Land Earth Stations up Ka-band for user terminals TT&C operated in standard C-band on most - Developmental payload on Alphasat Inmarsat satellites Inmarsat and Extended L-band Extended L-band will be available -
EXTRAORDINARY AMAZING EVERYWHERE ANNUAL REPORT 2019 2 SES ANNUAL REPORT 2019 COMPANY OUR 1 for Allourstakeholders
EXTRAORDINARY AMAZING EVERYWHERE ANNUAL REPORT 2019 1 2 3 4 5 OUR OPERATIONAL CONSOLIDATED SES S.A. ANNUAL ADDITIONAL COMPANY AND STRATEGIC FINANCIAL ACCOUNTS INFORMATION REPORT STATEMENTS OUR PURPOSE OUR AMBITIONS We believe in content and WE DO THE connectivity everywhere We provide Cloud-enabled, EXTRAORDINARY satellite-based intelligent IN SPACE connectivity We are future-proof, powered by TO DELIVER sustained growth and innovation AMAZING We are passionate about customer experience and focused on customer EXPERIENCES success EVERYWHERE SES is a great place to work We are here to make a ON EARTH difference We are part of something bigger and what we do makes a difference. Our purpose and ambitions reflect what we at SES want to achieve and the value that we seek to create for all our stakeholders. ANNUAL REPORT 2019 REPORT ANNUAL SES 2 1 2 3 4 5 OUR OPERATIONAL CONSOLIDATED SES S.A. ANNUAL ADDITIONAL COMPANY AND STRATEGIC FINANCIAL ACCOUNTS INFORMATION REPORT STATEMENTS 1 OUR COMPANY 4 Leader in global content connectivity solutions 6 Significant demand for global content connectivity solutions 8 Doing the extraordinary in space 10 Delivering amazing experiences everywhere on Earth 12 Making a difference to billions all around the world 14 Our talented people are at the heart of everything we do 16 Generating sustained growth 18 A long history of innovation ANNUAL REPORT 2019 REPORT ANNUAL SES 3 1 2 3 4 5 OUR OPERATIONAL CONSOLIDATED SES S.A. ANNUAL ADDITIONAL COMPANY AND STRATEGIC FINANCIAL ACCOUNTS INFORMATION REPORT STATEMENTS LEADER IN GLOBAL CONTENT CONNECTIVITY SOLUTIONS “ At SES, we believe you should have the freedom to take your story wherever you want it to go—unlimited by geography, technology, or even gravity.” Steve Collar, SES CEO ANNUAL REPORT 2019 REPORT ANNUAL SES 4 1 2 3 4 5 OUR OPERATIONAL CONSOLIDATED SES S.A. -
Analysis of Orbital Decay Time for the Classical Hydrogen Atom Interacting with Circularly Polarized Electromagnetic Radiation
Analysis of Orbital Decay Time for the Classical Hydrogen Atom Interacting with Circularly Polarized Electromagnetic Radiation Daniel C. Cole and Yi Zou Dept. of Manufacturing Engineering, 15 St. Mary’s Street, Boston University, Brookline, MA 02446 Abstract Here we show that a wide range of states of phases and amplitudes exist for a circularly polarized (CP) plane wave to act on a classical hydrogen model to achieve infinite times of stability (i.e., no orbital decay due to radiation reaction effects). An analytic solution is first deduced to show this effect for circular orbits in the nonrelativistic approximation. We then use this analytic result to help provide insight into detailed simulation investigations of deviations from these idealistic conditions. By changing the phase of the CP wave, the time td when orbital decay sets in can be made to vary enormously. The patterns of this behavior are examined here and analyzed in physical terms for the underlying but rather unintuitive reasons for these nonlinear effects. We speculate that most of these effects can be generalized to analogous elliptical orbital conditions with a specific infinite set of CP waves present. The article ends by briefly considering multiple CP plane waves acting on the classical hydrogen atom in an initial circular orbital state, resulting in “jump- and diffusion-like” orbital motions for this highly nonlinear system. These simple examples reveal the possibility of very rich and complex patterns that occur when a wide spectrum of radiation acts on this classical hydrogen system. 1 I. INTRODUCTION The hydrogen atom has received renewed attention in the past decade or so, due to studies involved with Rydberg analysis, chaos, and scarring [1], [2], [3], [4]. -
Collisions & Encounters I
Collisions & Encounters I A rAS ¡ r r AB b 0 rBS B Let A encounter B with an initial velocity v and an impact parameter b. 1 A star S (red dot) in A gains energy wrt the center of A due to the fact that the center of A and S feel a different gravitational force due to B. Let ~v be the velocity of S wrt A then dES = ~v ~g[~r (t)] ~v ~ Φ [~r (t)] ~ Φ [~r (t)] dt · BS ≡ · −r B AB − r B BS We define ~r0 as the position vector ~rAB of closest approach, which occurs at time t0. Collisions & Encounters II If we increase v then ~r0 b and the energy increase 1 j j ! t0 ∆ES(t0) ~v ~g[~rBS(t)] dt ≡ 0 · R dimishes, simply because t0 becomes smaller. Thus, for a larger impact velocity v the star S withdraws less energy from the relative orbit between 1 A and B. This implies that we can define a critical velocity vcrit, such that for v > vcrit galaxy A reaches ~r0 with sufficient energy to escape to infinity. 1 If, on the other hand, v < vcrit then systems A and B will merge. 1 If v vcrit then we can use the impulse approximation to analytically 1 calculate the effect of the encounter. < In most cases of astrophysical interest, however, v vcrit and we have 1 to resort to numerical simulations to compute the outcome∼ of the encounter. However, in the special case where MA MB or MA MB we can describe the evolution with dynamical friction , for which analytical estimates are available.