Inorganic Carbon

Total Page:16

File Type:pdf, Size:1020Kb

Inorganic Carbon OCB Workshop, Rutgers University 3-6th March 2019 “TowarDs a better understanding oF Fish contribution to carbon flux” FORMS OF CARBON - INORGANIC CARBON Gut production and excretion of calcium carbonate by marine fish Prof. Rod W. Wilson Biosciences, College of Life & Environmental Sciences [email protected] Marine Calcifiers (calcite or aragonite skeletons) coral reefs coralline algae …and now Fish BUT… coccolithophores Fish CaCO3 is not skeletal Pteropods Echinoderms(Bone is calcium phosphate) Photo by Peter Mumby, Exeter University foraminifera Modified from Dr. Toby Tyrell (NOC, Southampton) 1) Teleost Osmoregulation Physiology Seawater Ions (mM): (Why and How they do it…) Na+ ~ 470 Cl- ~ 550 2+ 2- Mg ~ 53 SO4 ~ 28 2+ Sea Water ~1050 mOsm/kg Ca ~ 10 K+ ~ 10 Salts H2O Blood ~330 mOsm/kg Compensatory Drinking (1-5 ml/kg/h) How? - Alkaline precipitation of ingested Ca2+ in the intestine - HCO3 secretion (intestinal cells) Ingestion of Ca2+ - rich seawater 2+ - Ca + 2HCO3 à CO2 + H2O + CaCO3 (and Mg2+) Excreted Intestinal Fluid Seawater CaCO3 pH 8.3-9.2 8.0-8.2 crystals - [HCO3 ] 30 to >100 mM 2 mM (and MgCO3) Pellets break down à high Mg calcite crystals (Perry et al., 2011 – PNAS; Salter et al., 2012,2014 – Sedimentology) Ellipsoidal Straw-bundle Dumbbell Semi-spheres Spheres < 1 µm 10-20 µm Great barracuda (Sphyraena barracuda) Body mass 13 kg ; 26 °C 50 ml tube Produced in 1 day Size-based Conservative estimate of fish CaCO3 production Macroecological = 40-110 million tonnes / year Model (Simon Jennings) (0.04-0.11 Pg CaCO3-C / year) = 3 to 15% of global CaCO3 production Less conservatively, but realistically = 3 x greater (9 to 45 %) Large Marine Ecosystems (LMEs) Model o In a warmer, higher CO2 future ocean (+ 4 C / 1000 µatm CO2) CaCO3 (Villy Christensen) Production (g m-2 year-1) Predict Fish CaCO3 Production will be > 70 % higher (Reardon, Cole, Stephens, Statton Taplin, & Wilson - in prep.) Wilson et al. (2009) Science 323: 359-362. Rapid dissolution of fish carbonates – may explain surface ocean chemistry phenomenon 0 (­ Total Alkalinity) 1 Fish Carbonates (High Mg calcites soluble at shallow depths?) 2 (Woosley et al (2012). J. Geophysical Sciences 117: C1048) Depth (km) Depth 3 CaCO + CO + H O è Ca2+ + 2HCO - Lysocline 3 2 2 3 (­ Total Alkalinity) (­ CaCO solubility) 4 3 Dissolution of carbonates at high Sedimentation pressure & low temperature 5 Wilson et al. (2009) Science 323: 359-362. BUT … Also evidence of fish carbonate preservation in sediments Cape Eleuthera Island The Bahamas - Warm - Shallow - Lots of fish ! Prof. Chris Perry (Geography, UoE) Ellipsoidal Fish carbonates in sediments of all 7 Bahamian habitats Dumbbells Bahamas Fish: 14 % of total CaCO3 mud production Splayed ellipsoidal Semi-spheres 70% contribution in some habitats (e.g. Mangroves) Perry et al. (2011) P.N.A.S. 108: 3865- Effect of Feeding on CaCO3 excretion rate: 1) Proportional to individual feeding rates 2) Mean rate is 10-fold higher than when starved 3) Substantial incorporation of precipitated phosphate 600 Juvenile sea bass 500 /kg/h) eq 400 300 (Sam Newbatt - PhD) 200 Excretion (µ Excretion 3 R² = 0.5917 100 CaCO 0 0 500 1000 1500 Food Consumption Rate (mg/kg/h) (Christine Stephens - PhD) Why does it matter? CaCO3 Dissolution ­ Alkalinity (Depth this occurs at important) Faecal CaCO3 content Phosphate Dissolution Sinking rate of faecal pellet ­ Nutrients (i.e. Organic C - POC) (Role in primary productivity?) Mesopelagic fish – Potential “Upward Alkalinity Pump” (­ Surface Alkalinity) Gut carbonates excreted near surface: 2+ - Ca + 2HCO3 ç CaCO3 + CO2 + H2O Production of gut carbonates at depth: (¯ Alkalinity at Depth) Diel Vertical Migration 2+ - Ca + 2HCO3 è CaCO3 + CO2 + H2O Roberts, C.M. et al. (2017). Marine reserves can Mitigate and proMote adaptation to cliMate change. P.N.A.S. doi: 10.1073/pnas.1701262114 20 species of mid-Atlantic mesopelagic teleost fish caught at 55 and 450 m Samples c/o Prof. Santiago Hernández León (Gran Canaria) & Dr. Stephanie Czudaj (Hamburg) Barbelled dragonfishes (Chauliodus sp.) All species had intestinal CaCO3 pellets Dr. Erin Reardon (Exeter) Giant hatchetfish, Argyropelecus gigas Acknowledgements EXETER: OUTSIDE EXETER: Prof. Chris Perry Martin Grosell (RSMAS, Miami, USA) Erin Reardon (PDRA) Frank Millero (RSMAS, Miami, USA) Jon Whittamore (PDRA) Simon Jennings (Cefas, UK) Chris Cooper (PDRA) Villy Christensen (UBC, Canada) Mike Salter (PDRA) Pat Walsh (Ottawa, Canada) NiCk Rogers (PhD student) Annabelle Oronti (CEI, Bahamas) Sam Newbatt (PhD student) Howard Jelks (US GeologiCal Survey, Gainesville, USA) Christine Stephens (PhD student) Stephen Crowley (Liverpool, UK) Louisa Taplin (MRes) Paul Halloran (UK Met OffiCe – now Exeter Geography) Chris Cobb (MSC) Ian Totterdell (UK Met OffiCe) JaCob Bill (MSc) Ben Booth (UK Met OffiCe) Jenna CorCoran (BSC) Jonathan Wilson (CIIMAR Porto & Wilfred Laurier, Canada) RebeCCa Crosta (BSC) Katie Statton (BSC) FUNDING: Jan Shears (TeCh) Grega Paull (ARC Manager) Jo Rabineau (TeCh) Kirsty Bolt (Tech) Eliane deBastos (TeCh) Karen Knapp (PhysiCs, X-Ray) Strategic Development Fund End Global Variation in Ocean Salinity http://aquarius.umaine.edu/cgi/gallery.htm Global Ocean Mean (35 psu) Effect of salinity on CaCO3 excretion Shanny Lipophrys pholis /kg/h) excretion 3 eq µ ( CaCO Measured: 30 35 40 Goldsinny wrasse Ctenolabrus rupestris 1.6 to 3.0 x ­ CaCO3 /kg/h) excretion excretion 3 eq µ (35 v. 40 psu) ( CaCO 30 35 40 Turbot Scopthalmus maximus /kg/h) excretion 3 eq µ ( CaCO (Christine Stephens – PhD work) 17 Two Ocean Carbon Cycles Organic Inorganic Carbon Pump Calcium Carbonate Pump CO2 CO2 Atmosphere 2+ - CO2 + H2O ® CH2O + O2 Ca + 2HCO3 ® CaCO3 + CO2 + H2O Surface OceanNet calcification reaction: 2+ - Ca + 2 HCO3 « CaCO3 + CO2 + H2O Confusion – Carbon sinK AND CO2 source! Calcite Soft & Aragonite Tissues Shells Deep Ocean 14,000 x 1018 g C 60,000 x 1018 g C (e.g. oil, coal etc.) (e.g. limestone, chalKs) Redrawn after Toby Tyrell (National Oceanography Centre, Southampton) 17 18 Two Ocean Carbon Cycles Organic Carbon Pump Inorganic Calcium Carbonate Pump CO2 CO2 Atmosphere 2+ - CO2 + H2O ® CH2O + O2 Ca + 2HCO3 ® CaCO3 + CO2 + H2O Surface Ocean 500-1000 years Calcite Soft & Aragonite Tissues Shells Deep Ocean 14,000 x 1018 g C 60,000 x 1018 g C (e.g. oil, coal etc.) (e.g. limestone, chalKs) Redrawn after Toby Tyrell (National Oceanography Centre, Southampton) 18 1) CaCO3 production rates by individual fish in laboratory: • increases exponentially with temperature • scales inversely with body size 3000 ) 1 - So smaller fish at warmer h 1 - 2500 temperatures produce the ) -1 most CaCO3 h -1 2000 mol C kg mol C µ mol C kg µ 1500 30 1000 25 20 Carbonate production production Carbonate ( 500 15 10 Carbonate Production ( 5 0 0 -2 0 2 4 log10 W (g) Log10 Body Mass (g) Normalized Total Alkalinity (µmol kg-1) 2280 2300 2320 2340 2360 0 Total alkalinity increases at much 500 shallower depths than predicted in Atlantic and Pacific oceans 1000 1500 Depth (m) 2000 Normalized total alkalinity of seawater as a function of depth for North Atlantic Waters (30 N and 23 E) 2500 Aragonite Saturation c/o Frank Millero, RSMAS, Miami, USA Expected Feely et al., Global Biogeochem. Cycles, 16, 1144 - (2002). 3000 Chung et al., Global Biogeochem. Cycles, 17, 1093 - (2003). doi: 10.1073/pnas.1701262114 21 Biogeochemical consequences of DSL depth variability Mesopelagic animals – Continuous Mesopelagic fish – Potential source of a novel ammonia excretion = novel role in N cycle “Upward Alkalinity Pump” (­ Surface Alkalinity) Gut carbonates excreted near surface (dissolution will enhance surface alkalinity): 2+ - Ca + 2HCO3 ç CaCO3 + CO2 + H2O (Wilson et al. 2009 – Science) + NH4 input from Diel Vertical Migrators Production of gut carbonates at depth: (¯ Alkalinity at Depth) Ammonia excretion (via gills) from diel vertical animal migration – previously overlooked role in anaerobic Migration Vertical Diel ammonium oxidation (Anammox) in deep ocean 2+ - Ca + 2HCO3 è CaCO3 + CO2 + H2O (Bianchi et al. 2014 – PNAS) High Pressures – Mesopelagic teleosts (0 to 1,000 m) Prof. Santiago Hernández León Dr. Stephanie Czudaj Instituto de Oceanografía y Cambio Global Institute of Sea Fisheries Universidad de Las Palmas de Gran Canaria Hamburg Spain Germany BIO Hesperides Cruise 2015 "Migrants and Active Flux In the Atlantic ocean" Fluid extracted from muscle of mesopelagic fish at 2 depths Epipelagic Zone Mesopelagic Zone (55 m depth) (450 m depth) (N = 8) (N = 38) [Na+] (mM) 91.7 ± 13.0 137.4 ± 9.0 P=0.032* [Cl-] (mM) 103.2 ± 14.1 159.7 ± 10.8 P=0.027* 3-4 individuals sampled from each of 10 species (order in parenthesis): Chauliodus cf. schmidti (Stomiiformes), Diaphus fragilis (Myctophiformes), Electron risso (Myctophiformes), Howella sherboni (Perciformes), Diretmus argenteus (Beryciformes), Ichthyococcus ovatus (Stomiiformes), Argyropelecus cf. sladeni (Stomiiformes), Argyropelecus affinis (Stomiiformes), Astronesthes cf. cyclophotus (Stomiiformes), cf. Bathylagus greyae (Clupeiformes) Effect of Temperature on CaCO3 excretion rate in marine fish Average Q10 for metabolic rate in fish = 1.83 (across 69 species, 0-30 °C) ClarKe & Johnson (1999) J. Anim. Ecol. 68, 893- Sheepshead Minnow Q10 = 6.40 (Cyprinodon variegatus) Common Goby Q10 = 4.49 (Pomatoschistus microps) Sea bass Q10 = 3.40 (Dicentrarchus labrax) European Flounder Q10 = 2.94 (Platichthys flesus) Turbot Q10 = 2.67 Scophthalmus maximus Shanny Q10 = 1.96 (Lipophrys pholis) (Reardon, Cole, Stephens, Statton Taplin, & Wilson - in prep.) Mean Q10 = 3.64 Elevated seawater CO2 increases gut CaCO3 excretion rate In a warmer and higher CO2 future ocean o (+ 4 C & 1000 µatm CO2) Predict gut CaCO3 to be > 70 % higher 2.50 (Reardon,3 Cole, Stephens, Statton Taplin, & Wilson - in prep.) 2.00 1.50 Mean reference (1.00-fold change) 1.00 = 47.1 ± 3.4 (µeq/kg/h) change in CaCO in change - Excretion Rate Rate Excretion 0.50 Fold 0.00 0 1000 2000 3000 4000 5000 Present Day Seawater CO2 (µatm) (400 µatm) (Cobb, Whittamore, Reardon, Rogers & Wilson - in prep.) Do all fish carbonates dissolve rapidly? 0 ? Sedimentation (­ Total Alkalinity) 1 Fish Carbonates (High Mg calcites soluble at shallow depths?) 2 (Woosley et al (2012).
Recommended publications
  • CHECKLIST and BIOGEOGRAPHY of FISHES from GUADALUPE ISLAND, WESTERN MEXICO Héctor Reyes-Bonilla, Arturo Ayala-Bocos, Luis E
    ReyeS-BONIllA eT Al: CheCklIST AND BIOgeOgRAphy Of fISheS fROm gUADAlUpe ISlAND CalCOfI Rep., Vol. 51, 2010 CHECKLIST AND BIOGEOGRAPHY OF FISHES FROM GUADALUPE ISLAND, WESTERN MEXICO Héctor REyES-BONILLA, Arturo AyALA-BOCOS, LUIS E. Calderon-AGUILERA SAúL GONzáLEz-Romero, ISRAEL SáNCHEz-ALCántara Centro de Investigación Científica y de Educación Superior de Ensenada AND MARIANA Walther MENDOzA Carretera Tijuana - Ensenada # 3918, zona Playitas, C.P. 22860 Universidad Autónoma de Baja California Sur Ensenada, B.C., México Departamento de Biología Marina Tel: +52 646 1750500, ext. 25257; Fax: +52 646 Apartado postal 19-B, CP 23080 [email protected] La Paz, B.C.S., México. Tel: (612) 123-8800, ext. 4160; Fax: (612) 123-8819 NADIA C. Olivares-BAñUELOS [email protected] Reserva de la Biosfera Isla Guadalupe Comisión Nacional de áreas Naturales Protegidas yULIANA R. BEDOLLA-GUzMáN AND Avenida del Puerto 375, local 30 Arturo RAMíREz-VALDEz Fraccionamiento Playas de Ensenada, C.P. 22880 Universidad Autónoma de Baja California Ensenada, B.C., México Facultad de Ciencias Marinas, Instituto de Investigaciones Oceanológicas Universidad Autónoma de Baja California, Carr. Tijuana-Ensenada km. 107, Apartado postal 453, C.P. 22890 Ensenada, B.C., México ABSTRACT recognized the biological and ecological significance of Guadalupe Island, off Baja California, México, is Guadalupe Island, and declared it a Biosphere Reserve an important fishing area which also harbors high (SEMARNAT 2005). marine biodiversity. Based on field data, literature Guadalupe Island is isolated, far away from the main- reviews, and scientific collection records, we pres- land and has limited logistic facilities to conduct scien- ent a comprehensive checklist of the local fish fauna, tific studies.
    [Show full text]
  • Updated Checklist of Marine Fishes (Chordata: Craniata) from Portugal and the Proposed Extension of the Portuguese Continental Shelf
    European Journal of Taxonomy 73: 1-73 ISSN 2118-9773 http://dx.doi.org/10.5852/ejt.2014.73 www.europeanjournaloftaxonomy.eu 2014 · Carneiro M. et al. This work is licensed under a Creative Commons Attribution 3.0 License. Monograph urn:lsid:zoobank.org:pub:9A5F217D-8E7B-448A-9CAB-2CCC9CC6F857 Updated checklist of marine fishes (Chordata: Craniata) from Portugal and the proposed extension of the Portuguese continental shelf Miguel CARNEIRO1,5, Rogélia MARTINS2,6, Monica LANDI*,3,7 & Filipe O. COSTA4,8 1,2 DIV-RP (Modelling and Management Fishery Resources Division), Instituto Português do Mar e da Atmosfera, Av. Brasilia 1449-006 Lisboa, Portugal. E-mail: [email protected], [email protected] 3,4 CBMA (Centre of Molecular and Environmental Biology), Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal. E-mail: [email protected], [email protected] * corresponding author: [email protected] 5 urn:lsid:zoobank.org:author:90A98A50-327E-4648-9DCE-75709C7A2472 6 urn:lsid:zoobank.org:author:1EB6DE00-9E91-407C-B7C4-34F31F29FD88 7 urn:lsid:zoobank.org:author:6D3AC760-77F2-4CFA-B5C7-665CB07F4CEB 8 urn:lsid:zoobank.org:author:48E53CF3-71C8-403C-BECD-10B20B3C15B4 Abstract. The study of the Portuguese marine ichthyofauna has a long historical tradition, rooted back in the 18th Century. Here we present an annotated checklist of the marine fishes from Portuguese waters, including the area encompassed by the proposed extension of the Portuguese continental shelf and the Economic Exclusive Zone (EEZ). The list is based on historical literature records and taxon occurrence data obtained from natural history collections, together with new revisions and occurrences.
    [Show full text]
  • New Zealand Fishes a Field Guide to Common Species Caught by Bottom, Midwater, and Surface Fishing Cover Photos: Top – Kingfish (Seriola Lalandi), Malcolm Francis
    New Zealand fishes A field guide to common species caught by bottom, midwater, and surface fishing Cover photos: Top – Kingfish (Seriola lalandi), Malcolm Francis. Top left – Snapper (Chrysophrys auratus), Malcolm Francis. Centre – Catch of hoki (Macruronus novaezelandiae), Neil Bagley (NIWA). Bottom left – Jack mackerel (Trachurus sp.), Malcolm Francis. Bottom – Orange roughy (Hoplostethus atlanticus), NIWA. New Zealand fishes A field guide to common species caught by bottom, midwater, and surface fishing New Zealand Aquatic Environment and Biodiversity Report No: 208 Prepared for Fisheries New Zealand by P. J. McMillan M. P. Francis G. D. James L. J. Paul P. Marriott E. J. Mackay B. A. Wood D. W. Stevens L. H. Griggs S. J. Baird C. D. Roberts‡ A. L. Stewart‡ C. D. Struthers‡ J. E. Robbins NIWA, Private Bag 14901, Wellington 6241 ‡ Museum of New Zealand Te Papa Tongarewa, PO Box 467, Wellington, 6011Wellington ISSN 1176-9440 (print) ISSN 1179-6480 (online) ISBN 978-1-98-859425-5 (print) ISBN 978-1-98-859426-2 (online) 2019 Disclaimer While every effort was made to ensure the information in this publication is accurate, Fisheries New Zealand does not accept any responsibility or liability for error of fact, omission, interpretation or opinion that may be present, nor for the consequences of any decisions based on this information. Requests for further copies should be directed to: Publications Logistics Officer Ministry for Primary Industries PO Box 2526 WELLINGTON 6140 Email: [email protected] Telephone: 0800 00 83 33 Facsimile: 04-894 0300 This publication is also available on the Ministry for Primary Industries website at http://www.mpi.govt.nz/news-and-resources/publications/ A higher resolution (larger) PDF of this guide is also available by application to: [email protected] Citation: McMillan, P.J.; Francis, M.P.; James, G.D.; Paul, L.J.; Marriott, P.; Mackay, E.; Wood, B.A.; Stevens, D.W.; Griggs, L.H.; Baird, S.J.; Roberts, C.D.; Stewart, A.L.; Struthers, C.D.; Robbins, J.E.
    [Show full text]
  • Inventory and Atlas of Corals and Coral Reefs, with Emphasis on Deep-Water Coral Reefs from the U
    Inventory and Atlas of Corals and Coral Reefs, with Emphasis on Deep-Water Coral Reefs from the U. S. Caribbean EEZ Jorge R. García Sais SEDAR26-RD-02 FINAL REPORT Inventory and Atlas of Corals and Coral Reefs, with Emphasis on Deep-Water Coral Reefs from the U. S. Caribbean EEZ Submitted to the: Caribbean Fishery Management Council San Juan, Puerto Rico By: Dr. Jorge R. García Sais dba Reef Surveys P. O. Box 3015;Lajas, P. R. 00667 [email protected] December, 2005 i Table of Contents Page I. Executive Summary 1 II. Introduction 4 III. Study Objectives 7 IV. Methods 8 A. Recuperation of Historical Data 8 B. Atlas map of deep reefs of PR and the USVI 11 C. Field Study at Isla Desecheo, PR 12 1. Sessile-Benthic Communities 12 2. Fishes and Motile Megabenthic Invertebrates 13 3. Statistical Analyses 15 V. Results and Discussion 15 A. Literature Review 15 1. Historical Overview 15 2. Recent Investigations 22 B. Geographical Distribution and Physical Characteristics 36 of Deep Reef Systems of Puerto Rico and the U. S. Virgin Islands C. Taxonomic Characterization of Sessile-Benthic 49 Communities Associated With Deep Sea Habitats of Puerto Rico and the U. S. Virgin Islands 1. Benthic Algae 49 2. Sponges (Phylum Porifera) 53 3. Corals (Phylum Cnidaria: Scleractinia 57 and Antipatharia) 4. Gorgonians (Sub-Class Octocorallia 65 D. Taxonomic Characterization of Sessile-Benthic Communities 68 Associated with Deep Sea Habitats of Puerto Rico and the U. S. Virgin Islands 1. Echinoderms 68 2. Decapod Crustaceans 72 3. Mollusks 78 E.
    [Show full text]
  • Ichthyococcus Ovatus (Cocco, 1838)
    Ichthyococcus ovatus (Cocco, 1838) AphiaID: 127298 LIGHTFISH Animalia (Reino) > Chordata (Filo) > Vertebrata (Subfilo) > Gnathostomata (Infrafilo) > Pisces (Superclasse) > Pisces (Superclasse-2) > Actinopterygii (Classe) > Stomiiformes (Ordem) Sinónimos Coccia ovata (Cocco, 1838) Gonostomus ovatus Cocco, 1838 Scopelus ovatus (Cocco, 1838) Referências additional source Froese, R. & D. Pauly (Editors). (2018). FishBase. World Wide Web electronic publication. , available online at http://www.fishbase.org [details] basis of record van der Land, J.; Costello, M.J.; Zavodnik, D.; Santos, R.S.; Porteiro, F.M.; Bailly, N.; Eschmeyer, W.N.; Froese, R. (2001). Pisces, in: Costello, M.J. et al. (Ed.) (2001). European register of marine species: a check-list of the marine species in Europe and a bibliography of guides to their identification. Collection Patrimoines Naturels, 50: pp. 357-374 [details] additional source Welshman, D., S. Kohler, J. Black and L. Van Guelpen. 2003. An atlas of distributions of Canadian Atlantic fishes. , available online at http://epe.lac-bac.gc.ca/100/205/301/ic/cdc/FishAtlas/default.htm [details] additional source King, C.M.; Roberts, C.D.; Bell, B.D.; Fordyce, R.E.; Nicoll, R.S.; Worthy, T.H.; Paulin, C.D.; Hitchmough, R.A.; Keyes, I.W.; Baker, A.N.; Stewart, A.L.; Hiller, N.; McDowall, R.M.; Holdaway, R.N.; McPhee, R.P.; Schwarzhans, W.W.; Tennyson, A.J.D.; Rust, S.; Macadie, I. (2009). Phylum Chordata: lancelets, fishes, amphibians, reptiles, birds, mammals, in: Gordon, D.P. (Ed.) (2009). New Zealand inventory of biodiversity: 1. Kingdom Animalia: Radiata, Lophotrochozoa, Deuterostomia. pp. 431-554. [details] additional source McEachran, J. D. (2009). Fishes (Vertebrata: Pisces) of the Gulf of Mexico, Pp.
    [Show full text]
  • Phylogenetic Interrelationships of the Stomiid Fishes (Teleostei: Stomiiformes)
    MISCELLANEOUS PUBLICATIONS MUSEUM OF ZOOLOGY, THE UNIVERSITY OF MICHIGAN NO. 171 Phylogenetic Interrelationships of the Stomiid Fishes (Teleostei: Stomiiformes) by William L. Fink Division of Biological Sciences and Museum of Zoology The University of Michigan Ann Arbor, Michigan 48 109-1079 Ann Arbor MUSEUM OF ZOOLOGY, THE UNIVERSITY OF MICHIGAN December 3 1, 1985 MISCELLANEOUS PUBLICATIONS MUSEUM OF ZOOLOGY, UNIVERSITY OF MICHIGAN NO. 171 The publications of the Museum of Zoology, The University of Michigan, consist of two series-the Occasional Papers and the Miscellaneous Publications. Both series were founded by Dr. Bryant Walker, Mr. Bradshaw H. Swales, and Dr. W. W. Newcomb. The Occasional Papers, initiated in 1913, serve as a medium for original studies based principally upon the collections in the Museum. They are issued separately. When a sufficient number of pages has been printed to form a volume, the Museum will supply a title page, table of contents, and an index to libraries and individuals on the mailing list for the series. The Miscellaneous Publications, which include papers on field and museum techniques, monographic studies, and other contributions not within the scope of the Occasional Papers, were established in 1916 and are published separately. It is not intended that they be grouped into volumes. Each number has a title page and, when necessary, a table of contents. A complete list of publications on Birds, Fishes, Insects, Mammals, Mollusks, and Reptiles and Amphibians is available. Address inquiries to the Director, Museum of Zoology, Ann Arbor, Michigan 48109-1079. MISCELLANEOUS PUBLICATIONS MUSEUM OF ZOOI,OGY, THE UNIVERSITY OF MICHIGAN NO.
    [Show full text]
  • 61661147.Pdf
    Resource Inventory of Marine and Estuarine Fishes of the West Coast and Alaska: A Checklist of North Pacific and Arctic Ocean Species from Baja California to the Alaska–Yukon Border OCS Study MMS 2005-030 and USGS/NBII 2005-001 Project Cooperation This research addressed an information need identified Milton S. Love by the USGS Western Fisheries Research Center and the Marine Science Institute University of California, Santa Barbara to the Department University of California of the Interior’s Minerals Management Service, Pacific Santa Barbara, CA 93106 OCS Region, Camarillo, California. The resource inventory [email protected] information was further supported by the USGS’s National www.id.ucsb.edu/lovelab Biological Information Infrastructure as part of its ongoing aquatic GAP project in Puget Sound, Washington. Catherine W. Mecklenburg T. Anthony Mecklenburg Report Availability Pt. Stephens Research Available for viewing and in PDF at: P. O. Box 210307 http://wfrc.usgs.gov Auke Bay, AK 99821 http://far.nbii.gov [email protected] http://www.id.ucsb.edu/lovelab Lyman K. Thorsteinson Printed copies available from: Western Fisheries Research Center Milton Love U. S. Geological Survey Marine Science Institute 6505 NE 65th St. University of California, Santa Barbara Seattle, WA 98115 Santa Barbara, CA 93106 [email protected] (805) 893-2935 June 2005 Lyman Thorsteinson Western Fisheries Research Center Much of the research was performed under a coopera- U. S. Geological Survey tive agreement between the USGS’s Western Fisheries
    [Show full text]
  • Of Combined Demersal Fish and Megabenthic Invertebrate Recurrent Groups on the Southern California Shelf and Upper Slope, July-October, 2003
    Southern California Bight 2003 Regional Monitoring Program: IV. Demersal Fishes and Megabenthic Invertebrates March 2007 M.J. Allen1, T. Mikel 2, D. Cadien3, J.E. Kalman4, E.T. Jarvis1, K.C. Schiff1, D.W. Diehl1, S.L. Moore1, S. Walther3, G. Deets5, C. Cash5, S. Watts6, D.J. Pondella II7, V. Raco-Rands1, C. Thomas4, R. Gartman8, L. Sabin1, W. Power3, A.K. Groce8 and J.L. Armstrong4 1Southern California Coastal Water Research Project 2Aquatic Bioassay and Consulting Laboratory 3County Sanitation Districts of Los Angeles County 4Orange County Sanitation District 5City of Los Angeles, Environmental Monitoring Division 6 Weston Solutions, Inc. 7Occidental College, Vantuna Research Group 8City of San Diego, Metropolitan Wastewater Department THE BIGHT '03 TRAWL WORKING GROUP MEMBERS Member Affiliation Chair - Dr. M. James Allen Southern California Coastal Water Research Project Co-Chair - Tim Mikel Aquatic Bioassay and Consulting Laboratories Dr. Jeff L. Armstrong Orange County Sanitation District Don Cadien County Sanitation Districts of Los Angeles County Curtis Cash City of Los Angeles, Environmental Monitoring Division Dr. Gregory Deets City of Los Angeles, Environmental Monitoring Division Dario W. Diehl Southern California Coastal Water Research Project Sarah Fangman Channel Islands National Marine Sanctuary Robin Gartman City of San Diego, Metropolitan Wastewater Department Ami K. Groce City of San Diego, Metropolitan Wastewater Department Erica T. Jarvis Southern California Coastal Water Research Project Dr. Julianne E. Kalman Orange County Sanitation District/University of California, Los Angeles/ currently California State University, Long Beach Shelly L. Moore Southern California Coastal Water Research Project Dr. Daniel J. Pondella, II Occidental College, Vantuna Research Group William Power County Sanitation Districts of Los Angeles County Valerie Raco-Rands Southern California Coastal Water Research Project Dr.
    [Show full text]
  • Order STOMIIFORMES GONOSTOMATIDAE Bristlemouths by A.S
    click for previous page Stomiiformes: Gonostomatidae 881 Order STOMIIFORMES GONOSTOMATIDAE Bristlemouths by A.S. Harold, Grice Marine Biological Laboratory, South Carolina, USA iagnostic characters: Maximum size about 36 cm. Body moderately elongate; head and body com- Dpressed. Relative size of head highly variable. Eye very small to moderately large. Nostrils high on snout, prominent in dorsal view.Mouth large, angle of jaw well posterior to eye.Premaxillary teeth uniserial (except in Triplophos); dentary teeth biserial near symphysis. Chin barbel absent. Gill openings very wide. Branchiostegals 12 to 16 (4 to 6 on posterior ceratohyal). Gill rakers well developed. Pseudobranchiae usu- ally absent (present in Diplophos and Margrethia).Dorsal fin at or slightly posterior to middle of body (ex- cept in Triplophos in which it is anterior).Anal-fin base moderately to very long.Dorsal fin with 10 to 20 rays; anal fin with 16 to 68 rays; caudal fin forked; pectoral fin rays 8 to 16; pelvic fin rays 5 to 9. Dorsal adipose fin present or absent; ventral adipose fin absent. Scales deciduous. One or more rows of discrete photophores on body; isthmus photophores (IP) present or absent; postorbital photophore (ORB 2) absent. Parietals well developed; epioccipitals separated by supraoccipital. Four pectoral-fin radials (except Cyclothone, which has 1). Colour: skin varying from colourless through brown to black; black and silvery pig- mentation associated with photophores. ORB2 absent OA ORB1 OP IP PV VAV AC Diplophos IV Bonapartia AC - ventral series posterior to anal-fin origin OP - opercular photophores BR - series on the branchiostegal membranes ORB - anterior (ORB1) and posterior (ORB2) to eye IP - ventral series anterior to pectoral-fin base PV - ventral series between bases of pectoral and pelvic fins IV - ventral series anterior to pelvic-fin base VAV - ventral series between pelvic-fin base and origin of anal fin OA - lateral series Habitat, biology, and fisheries: Mesopelagic and bathypelagic, oceanic.
    [Show full text]
  • EN615 Cruise Report
    ADEON Recovery/Deployment Cruise Report #EN615 - RV Endeavor 06 – 25 June 2018 San Juan, Puerto Rico to Narragansett, RI Chief Scientist Joseph Warren, Jennifer Miksis-Olds, Carmen Lawrence, Brandyn Lucca, Hannah Blair, Sebastian Velez, Cassandra Fries, Peter Larios, Madison Alstede, Stephen Ell, 1 Jennifer Conyers, Andrew Heaney, Lindsay Olson, and Katharine Coykendall Cruise Summary The objectives for this cruise were to recover bottom landers at seven sites (Figure 1) along the shelfbreak (depths ranging from 200 – 900 m roughly), redeploy a bottom lander at each site after downloading its data, collect CTD profiles to characterize hydrographic conditions at the sites, conduct net sampling to collect biological specimens at each site, and conduct fine-scale (roughly 8 km by 8 km) multi-frequency acoustic surveys at each site (Figure 2). All cruise objectives were completed safely. In addition, we collected animal specimens from net tows for collaborators associated with the DEEP SEARCH project as well as collecting water samples for eDNA analysis for DEEP SEARCH and other collaborators. Water samples were also collected by a UNH undergraduate in support of her capstone paper. We were fortunate to have good weather for much of the cruise which allowed us to complete additional net tows, CTD, and fine-scale acoustic surveys at some sites (Table 1). We appreciate the excellent work of the ship’s Captain and crew (in all aspects on the boat) in helping us to accomplish our cruise objectives. Table 1. Summary of sampling that occurred at each site location during the EN615 research cruise. We were able to accomplish additional sampling at the VAC and HAT sites.
    [Show full text]
  • Phosichthyidae
    FAMILY Phosichthyidae Weitzman, 1974 - lightfishes [=Cocciina, Photichthyidae] GENUS Ichthyococcus Bonaparte, 1840 - lightfishes [=Coccia] Species Ichthyococcus australis Mukhacheva, 1980 - Southern lightfish Species Ichthyococcus elongatus Imai, 1941 - slim lightfish Species Ichthyococcus intermedius Mukhacheva, 1980 - intermediate lightfish Species Ichthyococcus irregularis Rechnitzer & Bohlke, 1958 - bulldog lightfish Species Ichthyococcus ovatus (Cocco, 1838) - lightfish Species Ichthyococcus parini Mukhacheva, 1980 - Indian lightfish Species Ichthyococcus polli Blache, 1964 - Poll's lightfish GENUS Phosichthys Hutton, 1872 - lightfishes Species Phosichthys argenteus Hutton, 1872 - silver lightfish GENUS Pollichthys Grey, 1959 - lightfishes Species Pollichthys mauli (Poll, 1953) - stareye lightfish GENUS Polymetme McCulloch, 1926 - lightfishes Species Polymetme andriashevi Parin & Borodulina, 1990 - Andriashev's lightfish Species Polymetme corythaeola (Alcock, 1898) - rendezvous fish [=africana] Species Polymetme elongata (Matsubara, 1938) - Japanese lightfish Species Polymetme illustris McCulloch, 1926 - brilliant lightfish Species Polymetme surugaensis (Matsubara, 1943) - Suruga lightfish Species Polymetme thaeocoryla Parin & Borodulina, 1990 - Atlantic lightfish GENUS Vinciguerria Jordan & Evermann, in Goode & Bean, 1896 - bristlemouths, lightfishes [=Narooma, Poweria, Zalarges] Species Vinciguerria attenuata (Cocco, 1838) - slender lightfish [=tenorei] Species Vinciguerria lucetia (Garman, 1899) - Panama lightfish Species Vinciguerria
    [Show full text]
  • Phosichthyidae, Chauliodontidae, Stomiidae, Astronesthidae
    306 Ichthyococcus ovatus (Cocco, 1838) Phosichthyidae No common name Range: Subtropical waters of the Atlantic Ocean and Mediterranean Sea; in the western North Atlantic from Flemish Cap to Gulf of Mexico and Caribbean Sea Habitat: Mesopelagic in depths of 200–500 m Meristic Characters Myomeres: 38–42 Spawning: Year-round with peak late spring into summer Vertebrae: 38–42 Eggs: – Pelagic, spherical Dorsal fin rays: 11–12 – Chorion: smooth, orange Anal fin rays: 15–17 – Diameter: 0.80 mm Pectoral fin rays: 8 – Yolk: segmented Pelvic fin rays: 7 – Oil globule: single, 0.24 mm in diameter Caudal fin rays: 10+9 (PrC) – Perivitelline space: narrow Larvae: – Body slender, elongate and round in cross section; snout pointed and depressed; eye oval – Trailing gut; preanal length about 70% SL; preanal myomeres 32, decrease to 26 in later larvae – Sequence of fin ray formation: C – D, A – P1 – P2 – Elongate lower pectoral fin rays in early stages – Adipose fin present – Anal fin origin well posterior to dorsal fin origin; pelvic fin forms under dorsal fin – Photophores Sequence of development: IV VAV Ac ORB OP BR OA SO (Total IV–VAV–AC) Definitive #( adult) in group: 24–25 10 12–14 2 3 11 24–25 None 46–49 – Photophores complete at 15–17 mmSL – Pigment distributed on myomeres below midline; also few spots on snout, opercle, on trailing portion of gut and on caudal peduncle – Transformation begins at about 28 mm with marked shrinkage and deepening stage; smallest juveniles 11–14 mm Early Juvenile: D. 20.0 mmSL Figures: Adult: Janet Wright (Grey, 1964); Egg: Sanzo, 1930a; A, C–D: Jespersen and Tåning, 1926; B: Jack Javech (Ahlstrom et al., 1984c) References: Jespersen and Tåning, 1926; Ahlstrom et al., 1984c Early Stages of Fishes in the Western North Atlantic Ocean 307 Ichthyococcus ovatus A.
    [Show full text]