Physical Examination of Respiratory Assessment

Total Page:16

File Type:pdf, Size:1020Kb

Physical Examination of Respiratory Assessment King Saud University Application of Health Assessment Nursing College NUR 225 Medical Surgical Nursing Department Module Four Physical examination of Respiratory Assessment 1 Health assessment in nursing fifth edition Janet R. Weber / Jane H. Kelley King Saud University Application of Health Assessment Nursing College NUR 225 Medical Surgical Nursing Department THORACIC CAGE: Anterior thoracic cage Posterior thoracic cage 2 Health assessment in nursing fifth edition Janet R. Weber / Jane H. Kelley King Saud University Application of Health Assessment Nursing College NUR 225 Medical Surgical Nursing Department Reference lines: Anterior vertical lines Lateral vertical line Posterior vertical lines 3 Health assessment in nursing fifth edition Janet R. Weber / Jane H. Kelley King Saud University Application of Health Assessment Nursing College NUR 225 Medical Surgical Nursing Department Position of the Lungs: (A) Anterior view of lung position (B) Posterior view of lung position (C)Lateral view of left lung position (D) Lateral view of Right lung position 4 Health assessment in nursing fifth edition Janet R. Weber / Jane H. Kelley King Saud University Application of Health Assessment Nursing College NUR 225 Medical Surgical Nursing Department Equipment: EXAMINATION GOWN AND DRAPE GLOVES STETHOSCOPE LIGHTSOURCE MASK SKIN MARKER METRIC RULER Assessment Procedure Normal finding Abnormal finding General Inspection Inspect for nasal flaring and pursed Nasal flaring is not observed. Nasal flaring is seen with lip breathing. labored respirations (especially in small children) and is indicative of hypoxia. Pursed lip breathing may be seen in asthma, emphysema, or CHF. Observe color of face, lips, and chest. The client has evenly colored skin Ruddy to purple complexion may tone, without unusual or be seen in clients with COPD or prominent discoloration. CHF as a result of polycythemia. Cyanosis may be seen if client is cold or hypoxic. Cyanosis makes white skin appear blue-tinged, especially in the perioral, nailbed, and conjunctival areas. Dark skin appears blue, dull, and lifeless in the same areas. Inspect color and shape of nails. Pink tones should be seen in the Pale or cyanotic nails may indicate nailbeds. There is normally a 160- hypoxia. Clubbing can occur from degree angle between the nail base hypoxia. and the skin. 5 Health assessment in nursing fifth edition Janet R. Weber / Jane H. Kelley King Saud University Application of Health Assessment Nursing College NUR 225 Medical Surgical Nursing Department Posterior Thorax INSPECTION Inspect configuration. While the client Scapulae are symmetric and Spinous processes that deviate sits with arms at the sides, stand behind nonprotruding. Shoulders and laterally in the thoracic area the client and observe the position of scapulae are at equal horizontal may indicate scoliosis. scapulae and the shape and positions. The ratio of configuration of the chest wall. anteroposterior to transverse diameter is 1:2. Spinous processes appear straight, and thorax appears symmetric, with ribs sloping downward at approximately a 45-degree angle in relation to the spine. OLDER ADULT Spinal configurations may CONSIDERATIONS have respiratory implication. Kyphosis (an increased curve of the Ribs appearing horizontal at thoracic spine) is common in older an angle greater than 45 It results from a loss of lung degrees with the spinal resiliency and a loss of skeletal column are frequently the muscle. It may be a normal finding. result of an increased ratio between the anteroposterior transverse diameter (barrel chest). This condition (barrel chest) is commonly the result of emphysema due to hyperinflation of the lungs. 6 Health assessment in nursing fifth edition Janet R. Weber / Jane H. Kelley King Saud University Application of Health Assessment Nursing College NUR 225 Medical Surgical Nursing Department Observe use of accessory muscles. The client does not use accessory Trapezius, or shoulder, muscles Watch as the client breathes and note (trapezius/ shoulder) muscles to are used to facilitate assist breathing. use of muscles. inspiration in cases of acute and chronic airway obstruction or atelectasis. Inspect the client’s positioning. Note Client should be sitting up and Client leans forward and uses arms the client’s posture and ability to relaxed, breathing easily with arms to support weight and lift chest to support weight while breathing at sides or in l increase breathing capacity, comfortably. referred to as the tripod position. This is often seen in COPD. PALPATION Palpate for tenderness and Client reports no tenderness, Tender or painful areas may sensation. Palpation may be pain, or unusual sensations. indicate fibrous connective performed with one or both hands, but Temperature should be equal tissue. the sequence of palpation is bilaterally. established. Use your fingers to Pain over the intercostal spaces palpate for tenderness, warmth, pain, may be from inflamed pleurae. or other sensations. Start toward the Pain over the ribs is a symptom of midline at the level of the left scapula fractured ribs. (over the apex of the left lung) and move your hand left to right, Muscle soreness from exercise comparing findings bilaterally. Move or the excessive work of systematically downward and out to breathing (as in COPD) may be cover the lateral portions of the lungs palpated as tenderness. at the bases. Increased warmth may be related to local infection. 7 Health assessment in nursing fifth edition Janet R. Weber / Jane H. Kelley King Saud University Application of Health Assessment Nursing College NUR 225 Medical Surgical Nursing Department Palpate for crepitus. Crepitus, also The examiner finds no palpable Crepitus can be occurs after called subcutaneous emphysema, is crepitus. an open thoracic injury, a crackling sensation (like bones or around a chest tube or hairs rubbing against each other) tracheostomy. It also may be that occurs when air passes through palpated in areas of extreme fluid or exudate. Use your fingers and congestion or consolidation. follow the sequence when palpating. In such situations, mark margins and monitor to note any decrease or increase in the crepitant area. Palpate for fremitus. Following the Fremitus is symmetric and easily Unequal fremitus is usually sequence described previously, use identified in the upper regions of the result of consolidation the ball or ulnar edge of one hand the lungs. If fremitus is not palpable (which increases fremitus) to assess for fremitus (vibrations of on either side, the client may need Bronchial obstruction, air air in the bronchial tubes to speak louder. A decrease in the transmitted to the chest wall). As trapping in emphysema, intensity of fremitus is normal as the you move your hand to each area, pleural effusion, or examiner moves toward the base of ask the client to say “ninety-nine.” pneumothorax (which all the lungs. However, fremitus should Assess all areas for symmetry and decrease fremitus). intensity of vibration. remain symmetric for bilateral positions. Diminished fremitus even with a loud spoken voice may indicate an obstruction of CLINICAL TIP the tracheobronchial tree. The ball of the hand is best for assessing tactile fremitus because the area is especially sensitive to vibratory sensation 8 Health assessment in nursing fifth edition Janet R. Weber / Jane H. Kelley King Saud University Application of Health Assessment Nursing College NUR 225 Medical Surgical Nursing Department When the client takes a deep Unequal chest expansion can breath, the examiner’s thumbs occur with severe atelectasis Assess chest expansion. Place your should move 5 to 10 cm apart (collapse or incomplete hands on the posterior chest wall with symmetrically. expansion), pneumonia, chest your thumbs at the level of T9 or T10 and trauma, or pneumothorax (air in pressing together a small skin fold. As OLDER ADULT the pleural space). the client takes a deep breath, observe CONSIDERATIONS the movement of your thumbs. Decreased chest excursion at the Because of calcification of the base of the lungs is characteristic costal cartilages and loss of the of COPD. This is due to decreased accessory musculature, the older diaphragmatic function. client’s thoracic expansion may be decreased, although it should still be symmetric. PERCUSSION Percuss for tone. Start at the apices of Resonance is the percussion tone Hyperresonance is elicited in cases the scapulae and percuss across the elicited over normal lung tissue. of trapped air such as in Percussion elicits flat tones over the emphysema or pneumothorax. tops of both shoulders. Then percuss the scapula. intercostal spaces across and down, comparing sides. Percuss to the lateral aspects at the bases of the lungs, comparing sides. 9 Health assessment in nursing fifth edition Janet R. Weber / Jane H. Kelley King Saud University Application of Health Assessment Nursing College NUR 225 Medical Surgical Nursing Department Percuss for diaphragmatic excursion. Excursion should be equal Dullness is present when fluid Ask the client to exhale forcefully and bilaterally and measure 3–5 cm in or solid tissue replaces air in hold the breath. Beginning at the adults. the lung or occupies the scapular line (T7), percuss the pleural space, such as in lobar intercostal spaces of the right posterior The level of the diaphragm may be pneumonia, pleural effusion, chest wall. Percuss downward until the higher on the right because of the or tumor. tone changes from resonance to position of the liver. dullness. Mark
Recommended publications
  • The Structure and Function of Breathing
    CHAPTERCONTENTS The structure-function continuum 1 Multiple Influences: biomechanical, biochemical and psychological 1 The structure and Homeostasis and heterostasis 2 OBJECTIVE AND METHODS 4 function of breathing NORMAL BREATHING 5 Respiratory benefits 5 Leon Chaitow The upper airway 5 Dinah Bradley Thenose 5 The oropharynx 13 The larynx 13 Pathological states affecting the airways 13 Normal posture and other structural THE STRUCTURE-FUNCTION considerations 14 Further structural considerations 15 CONTINUUM Kapandji's model 16 Nowhere in the body is the axiom of structure Structural features of breathing 16 governing function more apparent than in its Lung volumes and capacities 19 relation to respiration. This is also a region in Fascla and resplrstory function 20 which prolonged modifications of function - Thoracic spine and ribs 21 Discs 22 such as the inappropriate breathing pattern dis- Structural features of the ribs 22 played during hyperventilation - inevitably intercostal musculature 23 induce structural changes, for example involving Structural features of the sternum 23 Posterior thorax 23 accessory breathing muscles as well as the tho- Palpation landmarks 23 racic articulations. Ultimately, the self-perpetuat- NEURAL REGULATION OF BREATHING 24 ing cycle of functional change creating structural Chemical control of breathing 25 modification leading to reinforced dysfunctional Voluntary control of breathing 25 tendencies can become complete, from The autonomic nervous system 26 whichever direction dysfunction arrives, for Sympathetic division 27 Parasympathetic division 27 example: structural adaptations can prevent NANC system 28 normal breathing function, and abnormal breath- THE MUSCLES OF RESPIRATION 30 ing function ensures continued structural adap- Additional soft tissue influences and tational stresses leading to decompensation.
    [Show full text]
  • Vertebral Column and Thorax
    Introduction to Human Osteology Chapter 4: Vertebral Column and Thorax Roberta Hall Kenneth Beals Holm Neumann Georg Neumann Gwyn Madden Revised in 1978, 1984, and 2008 The Vertebral Column and Thorax Sternum Manubrium – bone that is trapezoidal in shape, makes up the superior aspect of the sternum. Jugular notch – concave notches on either side of the superior aspect of the manubrium, for articulation with the clavicles. Corpus or body – flat, rectangular bone making up the major portion of the sternum. The lateral aspects contain the notches for the true ribs, called the costal notches. Xiphoid process – variably shaped bone found at the inferior aspect of the corpus. Process may fuse late in life to the corpus. Clavicle Sternal end – rounded end, articulates with manubrium. Acromial end – flat end, articulates with scapula. Conoid tuberosity – muscle attachment located on the inferior aspect of the shaft, pointing posteriorly. Ribs Scapulae Head Ventral surface Neck Dorsal surface Tubercle Spine Shaft Coracoid process Costal groove Acromion Glenoid fossa Axillary margin Medial angle Vertebral margin Manubrium. Left anterior aspect, right posterior aspect. Sternum and Xyphoid Process. Left anterior aspect, right posterior aspect. Clavicle. Left side. Top superior and bottom inferior. First Rib. Left superior and right inferior. Second Rib. Left inferior and right superior. Typical Rib. Left inferior and right superior. Eleventh Rib. Left posterior view and left superior view. Twelfth Rib. Top shows anterior view and bottom shows posterior view. Scapula. Left side. Top anterior and bottom posterior. Scapula. Top lateral and bottom superior. Clavicle Sternum Scapula Ribs Vertebrae Body - Development of the vertebrae can be used in aging of individuals.
    [Show full text]
  • Study Guide Medical Terminology by Thea Liza Batan About the Author
    Study Guide Medical Terminology By Thea Liza Batan About the Author Thea Liza Batan earned a Master of Science in Nursing Administration in 2007 from Xavier University in Cincinnati, Ohio. She has worked as a staff nurse, nurse instructor, and level department head. She currently works as a simulation coordinator and a free- lance writer specializing in nursing and healthcare. All terms mentioned in this text that are known to be trademarks or service marks have been appropriately capitalized. Use of a term in this text shouldn’t be regarded as affecting the validity of any trademark or service mark. Copyright © 2017 by Penn Foster, Inc. All rights reserved. No part of the material protected by this copyright may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, or by any information storage and retrieval system, without permission in writing from the copyright owner. Requests for permission to make copies of any part of the work should be mailed to Copyright Permissions, Penn Foster, 925 Oak Street, Scranton, Pennsylvania 18515. Printed in the United States of America CONTENTS INSTRUCTIONS 1 READING ASSIGNMENTS 3 LESSON 1: THE FUNDAMENTALS OF MEDICAL TERMINOLOGY 5 LESSON 2: DIAGNOSIS, INTERVENTION, AND HUMAN BODY TERMS 28 LESSON 3: MUSCULOSKELETAL, CIRCULATORY, AND RESPIRATORY SYSTEM TERMS 44 LESSON 4: DIGESTIVE, URINARY, AND REPRODUCTIVE SYSTEM TERMS 69 LESSON 5: INTEGUMENTARY, NERVOUS, AND ENDOCRINE S YSTEM TERMS 96 SELF-CHECK ANSWERS 134 © PENN FOSTER, INC. 2017 MEDICAL TERMINOLOGY PAGE III Contents INSTRUCTIONS INTRODUCTION Welcome to your course on medical terminology. You’re taking this course because you’re most likely interested in pursuing a health and science career, which entails ­proficiency­in­communicating­with­healthcare­professionals­such­as­physicians,­nurses,­ or dentists.
    [Show full text]
  • Order Ephemeroptera
    Glossary 1. Abdomen: the third main division of the body; behind the head and thorax 2. Accessory flagellum: a small fingerlike projection or sub-antenna of the antenna, especially of amphipods 3. Anterior: in front; before 4. Apical: near or pertaining to the end of any structure, part of the structure that is farthest from the body; distal 5. Apicolateral: located apical and to the side 6. Basal: pertaining to the end of any structure that is nearest to the body; proximal 7. Bilobed: divided into two rounded parts (lobes) 8. Calcareous: resembling chalk or bone in texture; containing calcium 9. Carapace: the hardened part of some arthropods that spreads like a shield over several segments of the head and thorax 10. Carinae: elevated ridges or keels, often on a shell or exoskeleton 11. Caudal filament: threadlike projection at the end of the abdomen; like a tail 12. Cercus (pl. cerci): a paired appendage of the last abdominal segment 13. Concentric: a growth pattern on the opercula of some gastropods, marked by a series of circles that lie entirely within each other; compare multi-spiral and pauci-spiral 14. Corneus: resembling horn in texture, slightly hardened but still pliable 15. Coxa: the basal segment of an arthropod leg 16. Creeping welt: a slightly raised, often darkened structure on dipteran larvae 17. Crochet: a small hook-like organ 18. Cupule: a cup shaped organ, as on the antennae of some beetles (Coleoptera) 19. Detritus: disintegrated or broken up mineral or organic material 20. Dextral: the curvature of a gastropod shell where the opening is visible on the right when the spire is pointed up 21.
    [Show full text]
  • Biomechanics of the Thoracic Spine - Development of a Method to Measure the Influence of the Rib Cage on Thoracic Spine Movement
    Universität Ulm Zentrum für Chirurgie Institut für Unfallchirurgische Forschung und Biomechanik Direktor: Prof. Dr. A. Ignatius Biomechanics of the Thoracic Spine - Development of a Method to Measure the Influence of the Rib Cage on Thoracic Spine Movement Dissertation zur Erlangung des Doktorgrades der Medizin der Medizinischen Fakultät der Universität Ulm vorgelegt von: Konrad Appelt geboren in: Pforzheim 2012 Amtierender Dekan: Prof. Dr. Thomas Wirth 1. Berichterstatter: Prof. Dr. H.-J. Wilke 2. Berichterstatter: Prof. Dr. Tobias Böckers Tag der Promotion: 06.06.2013 Index List of abbreviations ......................................................................................IV 1 Introduction .............................................................................................. 1 1.1 Background ............................................................................................................. 1 1.2 State of Research .................................................................................................... 4 1.3 Objectives ............................................................................................................... 6 2 Material and methods .............................................................................. 7 2.1 Testing machines and devices ................................................................................. 7 2.1.1 Spine loading simulator ................................................................................... 7 2.1.2 Vicon – MX Motion Capture System
    [Show full text]
  • Variations in Dimensions and Shape of Thoracic Cage with Aging: an Anatomical Review
    REVIEW ARTICLE Anatomy Journal of Africa, 2014; 3 (2): 346 – 355 VARIATIONS IN DIMENSIONS AND SHAPE OF THORACIC CAGE WITH AGING: AN ANATOMICAL REVIEW ALLWYN JOSHUA, LATHIKA SHETTY, VIDYASHAMBHAVA PARE Correspondence author: S.Allwyn Joshua, Department of Anatomy, KVG Medical College, Sullia- 574327 DK, Karnataka,India. Email: [email protected]. Phone number; 09986380713. Fax number – 08257233408 ABSTRACT The thoracic cage variations in dimensions and proportions are influenced by age, sex and race. The objective of the present review was to describe the age related changes occurring in thoracic wall and its influence on the pattern of respiration in infants, adult and elderly. We had systematically reviewed, compared and analysed many original and review articles related to aging changes in chest wall images and with the aid of radiological findings recorded in a span of four years. We have concluded that alterations in the geometric dimensions of thoracic wall, change in the pattern and mechanism of respiration are influenced not only due to change in the inclination of the rib, curvature of the vertebral column even the position of the sternum plays a pivotal role. Awareness of basic anatomical changes in thoracic wall and respiratory physiology with aging would help clinicians in better understanding, interpretation and to differentiate between normal aging and chest wall deformation. Key words: Thoracic wall; Respiration; Ribs; Sternum; vertebral column INTRODUCTION The thoracic skeleton is an osteocartilaginous cage movement to the volume displacement of the frame around the principal organs of respiration lungs was evaluated by (Agostoni et al,m 1965; and circulation. It is narrow above and broad Grimby et al., 1968; Loring, 1982) for various below, flattened antero-posteriorly and longer human body postures.
    [Show full text]
  • Human Anatomy and Physiology
    LECTURE NOTES For Nursing Students Human Anatomy and Physiology Nega Assefa Alemaya University Yosief Tsige Jimma University In collaboration with the Ethiopia Public Health Training Initiative, The Carter Center, the Ethiopia Ministry of Health, and the Ethiopia Ministry of Education 2003 Funded under USAID Cooperative Agreement No. 663-A-00-00-0358-00. Produced in collaboration with the Ethiopia Public Health Training Initiative, The Carter Center, the Ethiopia Ministry of Health, and the Ethiopia Ministry of Education. Important Guidelines for Printing and Photocopying Limited permission is granted free of charge to print or photocopy all pages of this publication for educational, not-for-profit use by health care workers, students or faculty. All copies must retain all author credits and copyright notices included in the original document. Under no circumstances is it permissible to sell or distribute on a commercial basis, or to claim authorship of, copies of material reproduced from this publication. ©2003 by Nega Assefa and Yosief Tsige All rights reserved. Except as expressly provided above, no part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or by any information storage and retrieval system, without written permission of the author or authors. This material is intended for educational use only by practicing health care workers or students and faculty in a health care field. Human Anatomy and Physiology Preface There is a shortage in Ethiopia of teaching / learning material in the area of anatomy and physicalogy for nurses. The Carter Center EPHTI appreciating the problem and promoted the development of this lecture note that could help both the teachers and students.
    [Show full text]
  • Anatomy and Physiology in Relation to Compression of the Upper Limb and Thorax
    Clinical REVIEW anatomy and physiology in relation to compression of the upper limb and thorax Colin Carati, Bren Gannon, Neil Piller An understanding of arterial, venous and lymphatic flow in the upper body in normal limbs and those at risk of, or with lymphoedema will greatly improve patient outcomes. However, there is much we do not know in this area, including the effects of compression upon lymphatic flow and drainage. Imaging and measuring capabilities are improving in this respect, but are often expensive and time-consuming. This, coupled with the unknown effects of individual, diurnal and seasonal variances on compression efficacy, means that future research should focus upon ways to monitor the pressure delivered by a garment, and its effects upon the fluids we are trying to control. More is known about the possible This paper will describe the vascular Key words effects of compression on the anatomy of the upper limb and axilla, pathophysiology of lymphoedema when and will outline current understanding of Anatomy used on the lower limbs (Partsch and normal and abnormal lymph drainage. It Physiology Junger, 2006). While some of these will also explain the mechanism of action Lymphatics principles can be applied to guide the use of compression garments and will detail Compression of compression on the upper body, it is the effects of compression on fluid important that the practitioner is movement. knowledgeable about the anatomy and physiology of the upper limb, axilla and Vascular drainage of the upper limb thorax, and of the anatomical and vascular It is helpful to have an understanding of Little evidence exists to support the differences that exist between the upper the vascular drainage of the upper limb, use of compression garments in the and lower limb, so that the effects of these since the lymphatic drainage follows a treatment of lymphoedema, particularly differences can be considered when using similar course (Figure 1).
    [Show full text]
  • The Muscles That Act on the Upper Limb Fall Into Four Groups
    MUSCLES OF THE APPENDICULAR SKELETON UPPER LIMB The muscles that act on the upper limb fall into four groups: those that stabilize the pectoral girdle, those that move the arm, those that move the forearm, and those that move the wrist, hand, and fingers. Muscles Stabilizing Pectoral Girdle (Marieb / Hoehn – Chapter 10; Pgs. 346 – 349; Figure 1) MUSCLE: ORIGIN: INSERTION: INNERVATION: ACTION: ANTERIOR THORAX: anterior surface coracoid process protracts & depresses Pectoralis minor* pectoral nerves of ribs 3 – 5 of scapula scapula medial border rotates scapula Serratus anterior* ribs 1 – 8 long thoracic nerve of scapula laterally inferior surface stabilizes / depresses Subclavius* rib 1 --------------- of clavicle pectoral girdle POSTERIOR THORAX: occipital bone / acromion / spine of stabilizes / elevates / accessory nerve Trapezius* spinous processes scapula; lateral third retracts / rotates (cranial nerve XI) of C7 – T12 of clavicle scapula transverse processes upper medial border elevates / adducts Levator scapulae* dorsal scapular nerve of C1 – C4 of scapula scapula Rhomboids* spinous processes medial border adducts / rotates dorsal scapular nerve (major / minor) of C7 – T5 of scapula scapula * Need to be familiar with on both ADAM and the human cadaver Figure 1: Muscles stabilizing pectoral girdle, posterior and anterior views 2 BI 334 – Advanced Human Anatomy and Physiology Western Oregon University Muscles Moving Arm (Marieb / Hoehn – Chapter 10; Pgs. 350 – 352; Figure 2) MUSCLE: ORIGIN: INSERTION: INNERVATION: ACTION: intertubercular
    [Show full text]
  • Technical Error of Measurement in Anthropometry*
    ORIGINAL ARTICLE ENGLISH VERSION Technical error of measurement in anthropometry* Talita Adão Perini1, Glauber Lameira de Oliveira1, Juliana dos Santos Ornellas1 and Fátima Palha de Oliveira2 ABSTRACT Key words: Precision. Anthropometrical measurements. Intra-evaluators. Inter- evaluators. The anthropometrical measurements have been widely utilized to follow children’s development, in the verification of the adapta- tions to the physical training in the athletes’ selection, in studies of ethnic characterization, among others. The control of the precision patients’ physical characteristics. Researches in Bioengineering and accuracy of the measurements will result in more reliable data. have used anthropometrical measurements in the optimization and The objective of the present study was to diffuse the strategies to manufacturing of orthopedic prostheses and in equipments to test compute the technical error of measurement (TEM) according to the product developed. Kevin Norton’s and Tim Olds methodology (2000) and to analyze In clothing and shoes industries, the knowledge of the anthro- the laboratory’ trainees performance. Three beginner observers pometrical characteristics is required, so that products fulfill the (anthropometrists) of the Exercise Physiology Laboratory (Labo- different physical characteristics of the population. Anthropometri- fise) of the University of Brazil were analyzed. They accomplished cal studies with regard to future users of projected products be- measures of skin folds thickness (Cescorf, 0.1 mm) in nine differ- come, therefore, necessary. ent anthropometric points in 35 volunteers (25.45 ± 9.96 years). To Despite the anthropometry applications in the daily life of indi- accomplish the measures the International Society for Advance- viduals being so many and diverse, it is known that there is an ment in Kinanthropometry (ISAK) was adopted.
    [Show full text]
  • Gas Exchange and Respiratory Function
    LWBK330-4183G-c21_p484-516.qxd 23/07/2009 02:09 PM Page 484 Aptara Gas Exchange and 5 Respiratory Function Applying Concepts From NANDA, NIC, • Case Study and NOC A Patient With Impaired Cough Reflex Mrs. Lewis, age 77 years, is admitted to the hospital for left lower lobe pneumonia. Her vital signs are: Temp 100.6°F; HR 90 and regular; B/P: 142/74; Resp. 28. She has a weak cough, diminished breath sounds over the lower left lung field, and coarse rhonchi over the midtracheal area. She can expectorate some sputum, which is thick and grayish green. She has a history of stroke. Secondary to the stroke she has impaired gag and cough reflexes and mild weakness of her left side. She is allowed food and fluids because she can swallow safely if she uses the chin-tuck maneuver. Visit thePoint to view a concept map that illustrates the relationships that exist between the nursing diagnoses, interventions, and outcomes for the patient’s clinical problems. LWBK330-4183G-c21_p484-516.qxd 23/07/2009 02:09 PM Page 485 Aptara Nursing Classifications and Languages NANDA NIC NOC NURSING DIAGNOSES NURSING INTERVENTIONS NURSING OUTCOMES INEFFECTIVE AIRWAY CLEARANCE— RESPIRATORY MONITORING— Return to functional baseline sta- Inability to clear secretions or ob- Collection and analysis of patient tus, stabilization of, or structions from the respiratory data to ensure airway patency improvement in: tract to maintain a clear airway and adequate gas exchange RESPIRATORY STATUS: AIRWAY PATENCY—Extent to which the tracheobronchial passages remain open IMPAIRED GAS
    [Show full text]
  • Chest Auscultation: Presence/Absence and Equality of Normal/Abnormal and Adventitious Breath Sounds and Heart Sounds A
    Northwest Community EMS System Continuing Education: January 2012 RESPIRATORY ASSESSMENT Independent Study Materials Connie J. Mattera, M.S., R.N., EMT-P COGNITIVE OBJECTIVES Upon completion of the class, independent study materials and post-test question bank, each participant will independently do the following with a degree of accuracy that meets or exceeds the standards established for their scope of practice: 1. Integrate complex knowledge of pulmonary anatomy, physiology, & pathophysiology to sequence the steps of an organized physical exam using four maneuvers of assessment (inspection, palpation, percussion, and auscultation) and appropriate technique for patients of all ages. (National EMS Education Standards) 2. Integrate assessment findings in pts who present w/ respiratory distress to form an accurate field impression. This includes developing a list of differential diagnoses using higher order thinking and critical reasoning. (National EMS Education Standards) 3. Describe the signs and symptoms of compromised ventilations/inadequate gas exchange. 4. Recognize the three immediate life-threatening thoracic injuries that must be detected and resuscitated during the “B” portion of the primary assessment. 5. Explain the difference between pulse oximetry and capnography monitoring and the type of information that can be obtained from each of them. 6. Compare and contrast those patients who need supplemental oxygen and those that would be harmed by hyperoxia, giving an explanation of the risks associated with each. 7. Select the correct oxygen delivery device and liter flow to support ventilations and oxygenation in a patient with ventilatory distress, impaired gas exchange or ineffective breathing patterns including those patients who benefit from CPAP. 8. Explain the components to obtain when assessing a patient history using SAMPLE and OPQRST.
    [Show full text]