(12) Patent Application Publication (10) Pub. No.: US 2009/0023706 A1 Albuquerque Et Al

Total Page:16

File Type:pdf, Size:1020Kb

(12) Patent Application Publication (10) Pub. No.: US 2009/0023706 A1 Albuquerque Et Al US 20090023706A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2009/0023706 A1 Albuquerque et al. (43) Pub. Date: Jan. 22, 2009 (54) METHOD OF TREATING Related U.S. Application Data ORGANOPHOSPHOROUS POISONING (63) Continuation-in-part of application No. 1 1/575.945, filed on May 23, 2007, filed as application No. PCT/ (75) Inventors: Edson X. Albuquerque, Baltimore, US05/33789 on Sep. 23, 2005. MD (US); Michael Adler, Bel Air, (60) Provisional application No. 60/613,121, filed on Sep. MD (US); Edna F.R. Pereira, 24, 2004. Baltimore, MD (US) Publication Classification (51) Int. Cl. Correspondence Address: A6II 3/55 2006.O1 EVANS & MOLINELLI, PLLC (52) U.S. Cl ( .01) S14/215 U.S. POST OFFICE BOX 7024 Oa - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - FAIRFAX STATION, VA 22039 (US) (57) ABSTRACT The present invention is directed to various methods for treat (73) Assignee: University of Maryland ing organophosphorus poisoning in an animal that is at risk of Baltimore, Baltimore, MD (US) exposure to an organophosphorus compound or preventing organophosphorus poisoning in an animal that has been exposed to an organophosphorus compound, by administer (21) Appl. No.: 12/199,250 ingatherapeutically effective amount of galantamine or a salt thereof, or a biologically active analog, derivative, fragment (22) Filed: Aug. 27, 2008 or variant thereof. A Soman, 1.5xLD50 B. Sarin, 1.5xLD50 C Soman, 1.5xLD50 25 Atropine, 10 mg/kg Atropine, 10 mg/kg Galantamine, 5 mg/kg O Galantamine, 8 mg/kg Y. P. ... First O. 1 10 O. 1 10 1 10 100 Galantamine, mg/kg Galantamine, mg/kg Atropine, mg/kg Patent Application Publication Jan. 22, 2009 Sheet 1 of 28 US 2009/0023706 A1 OGGITXG"|‘ueUuOS<D‘u?JeS8 0010|||0||||"00||- | 6x/6uu‘au?uequele?) ?eudonyº.Sók WAunSJO % Patent Application Publication Jan. 22, 2009 Sheet 3 of 28 US 2009/0023706 A1 S. S- O E : " : to E SH Crs is -- ar y ry m s r f . i 3 s eAnsg0% Patent Application Publication Jan. 22, 2009 Sheet 4 of 28 US 2009/0023706 A1 gefull 6. s togeq 0%) J???ES?BIT Life M pod d s ful Bloyed go 96) e M. podp. Patent Application Publication Jan. 22, 2009 Sheet 5 of 28 US 2009/0023706 A1 ||£|||No. Bu???S ov-GEGE-0801-G9-0 (Lo) 6.0L espeo Patent Application Publication Jan. 22, 2009 Sheet 6 of 28 US 2009/0023706 A1 Patent Application Publication Jan. 22, 2009 Sheet 7 of 28 US 2009/0023706 A1 FIG. 4A Post-treatment with galantamine alone effectively counteracts the acute toxicity and 24-h-survival Gallantamire m Saline 50 25 5 10 15 5 Time of treatment after soman challenge (min) No need for atropine or any additional supportive therapy Patent Application Publication Jan. 22, 2009 Sheet 8 of 28 US 2009/0023706 A1 FIG. 4B Animals challenged with 0.6 or 0.7xLD50 soman and post-treated with galantamine survived with no immediate signs of toxicit . Galantamine xh (8 mg/kg, im) H- 24-h survival or saline (im) SOman 0.6XD50 SOman 0.7xD50 (16.8 ug/kg, Sc) (19.6 ug/kg, SC) 100 75 Galantamine 50 Saline f SS 25 O 1 1 3 1 1 3 Time of treatment after soman callenge (h) Patent Application Publication Jan. 22, 2009 Sheet 9 of 28 US 2009/0023706 A1 FIG. 5 t Patent Application Publication Jan. 22, 2009 Sheet 10 of 28 US 2009/0023706 A1 FIG. 6 AN ACUTE EXPOSURE TO SOMAN LEADS TO BRAIN ATROPHY PRE-SOMAN EXPOSURE POST-SOMAN EXPOSURE Patent Application Publication Jan. 22, 2009 Sheet 11 of 28 US 2009/0023706 A1 FIG. 7 HISTOLOGICAL CONFIRMATION OF THE BRAIN DAMAGE OBSERVED IN THE MR OF SOMAN-EXPOSED GUINEA PIG BRAIN 7 HOURS POST-SOMAN EXPOSURE Patent Application Publication Jan. 22, 2009 Sheet 12 of 28 US 2009/0023706 A1 FIG. 8 HISTOLOGICAL CONFIRMATION OF THE BRAIN DAMAGE OBSERVED IN THE MR OF SOMAN-EXPOSED GUINEA PG BRAIN Patent Application Publication Jan. 22, 2009 Sheet 13 of 28 US 2009/0023706 A1 FIG. 9 EFFICACY OF GALANTAMINE IN PREVENTING BRAIN DAMAGE INDUCED BY ACUTE EXPOSURE TO 125X LD50 SOMAN. A VOXL-BASED MORPHOMETRICANALYSIS Patent Application Publication US 2009/0023706 A1 Patent Application Publication Jan. 22, 2009 Sheet 15 of 28 US 2009/0023706 A1 FIG. 11 A-B f o i o O), O iOO. 200 300 400. to also sco 450 Time (min) Tirre (fir) . after Brigg galaritainine. after 8 mg/kg galanta Tine Patent Application Publication Jan. 22, 2009 Sheet 16 of 28 US 2009/0023706 A1 FIG. 11 C-D C 1. O o do 200 360 400 10-108,064 to 2. after 8 mg/kg galantamine (Gallantantinel M. Patent Application Publication Jan. 22, 2009 Sheet 17 of 28 US 2009/0023706 A1 ¿? o o ed c 8 v (ueuos euogeq go 6) few Apo O 92 (u, va) en Ains 96 Patent Application Publication Jan. 22, 2009 Sheet 18 of 28 US 2009/0023706 A1 se ueueen ejoyed Jo 96) few Apo ||ZedaUOC] ('u') CS OO!. N (utra) emiAins % Patent Application Publication Jan. 22, 2009 Sheet 19 of 28 US 2009/0023706 A1 (sAep) eat Ains & |0|||83?12||?.99||9G c G2, utva) emains a Patent Application Publication Jan. 22, 2009 Sheet 21 of 28 US 2009/0023706 A1 d O (u va) en NunS 6 Patent Application Publication Jan. 22, 2009 Sheet 23 of 28 US 2009/0023706 A1 s6ideeuinôuiueudos £G|G| o 0 (uva) peANunS 6 Patent Application Publication Jan. 22, 2009 Sheet 25 of 28 US 2009/0023706 A1 Patent Application Publication Jan. 22, 2009 Sheet 26 of 28 US 2009/0023706 A1 Patent Application Publication Jan. 22, 2009 Sheet 28 of 28 US 2009/0023706 A1 areaE - 5 c. arE. CY) e- sK C en 9 C ls 5 ! CD E e - Fer C do El C. 5 E. ; &: t d E O O Og N D an N y (va) enl/uns 6 US 2009/0023706 A1 Jan. 22, 2009 METHOD OF TREATING erase (AChE), the enzyme that catalyzes the inactivation of ORGANOPHOSPHOROUS POSONING the neurotransmitter acetylcholine (Bajgar, J. (2004) Adv. Clin. Chem. 38, 151-216). In the periphery, acetylcholine CROSS-REFERENCE TO RELATED accumulation leads to persistent muscarinic receptor stimu APPLICATIONS lation that triggers a syndrome whose symptoms include mio 0001. This application is a continuation-in-part of U.S. sis, profuse secretions, bradycardia, bronchoconstriction, application Ser. No. 1 1/575,945, filedon Mar. 23, 2007, under hypotension, and diarrhea. OP poisoning also leads to over 35 U.S.C. S 120, which claims the benefit of U.S. Provisional stimulation followed by desensitization of nicotinic recep Patent Application No. 60/613,121 filed Sep. 24, 2004, under tors, causing severe skeletal muscle fasciculations and Sub 35 U.S.C. S 119(e). The entire contents of these applications sequent weakness. Central nervous system-related effects are hereby incorporated by reference as if fully set forth include anxiety, restlessness, confusion, ataxia, tremors, sei herein. Zures, cardiorespiratory paralysis, and coma. 0007 OPs are also known to cause an Intermediate Syn STATEMENT OF GOVERNMENT SUPPORT drome (IMS), which results in muscle weakness in the limbs, neck, and throat that develops in Some patients 24-96 hours 0002. The invention described herein was made, at least in after poisoning; long-term nerve damage sometimes devel part, with funding from the U.S. Army under Grant No. ops 2-3 weeks after poisoning. Researchers from Sri Lanka, DAAD19-02-D-001, NINDS/NIH U01NS059344-02, ARO Australia, and the UK recently showed that changes in neu contract W911NF-06-1-0098. Therefore, the government has romuscular transmission patterns often occur before a physi certain rights in the invention. cian can make an IMS diagnosis from clinical signs. About 38% of patients studied presented with muscle weakness that TECHNICAL FIELD OF THE INVENTION was not severe enough for an IMS diagnosis. Thus, IMS is a 0003. The present invention relates to a method of treating spectrum disorder. At one end of the spectrum the patients organophosphorus poisoning. demonstrate only the electrophysiological abnormalities without clinically detectable muscle weakness and at the BACKGROUND OF THE INVENTION other end, patients progress to severe muscular weakness with deterioration of electrophysiological measurements and 0004 Organophosphorus compound is (OP) are a com the risk of respiratory failure. mon class of chemicals used as pesticides, herbicides, and 0008. None of the current therapies for treating or prevent nerve agents. The nerve agents soman (3-(Fluoro-methyl ing OP poisoning and IMS have been ideal. Therefore, there phosphoryl)oxy-2,2-dimethyl-butane), Sarin (2-(Fluoro-me is still a critical need for an effective and safe method of thylphosphoryl)oxypropane), VX (S-2-diisopropylamino treating or preventing OP poisoning. This and other objects O— ethyl methylphosphonothioate), tabun (ethyl N,N- and advantages, as well as additional inventive features, will dimethylphosphoramidocyanidate) and Novichok agents are become apparent from the detailed description provided among the most lethal weapons of mass destruction ever herein. developed. Some of these nerve agents were used with cata strophic results in wars and also in terrorist attacks in Japan in DEFINITIONS the 1990s. The majority of pesticides are also OPs (such as parathion, fenthion, malathion, diazinon, dursban, chlorpyri 0009. Unless otherwise indicated, a “therapeutically fos, terbufos, acephate, phorate, methyl parathion, phosmet, effective amount of galantamine is an amount that provides azinphos-methyl, and dimethoate), and intoxication with a therapeutic benefit in the prevention, treatment or manage these compounds represents a major public-health concern ment of OP poisoning (organophosphorus poisoning), delays worldwide.
Recommended publications
  • No. Name Major Application 1 ALDICARB Pesticide/Insecticide
    Index No. Name Major application 1 ALDICARB Pesticide/Insecticide, Acaricide, Nematicide 2 AMITRAZ Pesticide/Insecticide, Acaricide 3 BIFENTHRIN Pesticide/Insecticide, Acaricide 4 BIORESMETHRIN Pesticide/Insecticide 5 BROMIDE Pesticide/Insecticide 6 CARBARYL Pesticide/Insecticide/Plant growth regulator 7 CHLORDANE Pesticide/Insecticide 8 CHLORMEQUAT Pesticide/Plant growth regulator 9 CHLORPYRIFOS Pesticide/Insecticide 10 CHLORPYRIFOS-METHYL Pesticide/Insecticide, Acaricide 11 CLETHODIM Pesticide/Herbicide 12 CYHALOTHRIN Pesticide&Veterinary Drugs/Insecticide 13 CYPERMETHRIN Pesticide&Veterinary Drugs/Insecticide 14 DELTAMETHRIN Pesticide&Veterinary Drugs/Insecticide 15 DIAZINON Pesticide&Veterinary Drugs/Insecticide, Acaricide 16 DICHLORVOS、NALED Pesticide&Veterinary Drugs/Insecticide 17 DICOFOL Pesticide/Insecticide, Acaricide 18 DIMETHIPIN Pesticide/Herbicide/Plant growth regulator 19 DIMETHOATE Pesticide/Insecticide, Acaricide 20 DIPHENYLAMINE Pesticide/Bactericide 21 DIQUAT Pesticide/Herbicide 22 ENDOSULFAN Pesticide/Insecticide, Acaricide 23 ETHEPHON Pesticide/Plant growth regulator 24 FENARIMOL Pesticide/Bactericide 25 FENBUTATIN OXIDE Pesticide/Insecticide, Acaricide 26 FENITROTHION Pesticide&Veterinary Drugs/Insecticide 27 FENPROPATHRIN Pesticide/Insecticide, Acaricide 28 FENTHION Pesticide/Insecticide 29 FENVALERATE Pesticide&Veterinary Drugs/Insecticide, Acaricide 30 FLUSILAZOLE Pesticide/Bactericide 31 GLUFOSINATE Pesticide/Herbicide 32 GLYPHOSATE(SULFOSATE) Pesticide/Herbicide 33 HEPTACHLOR Pesticide/Insecticide 34 HYDROGEN
    [Show full text]
  • Routine Multipesticide Analysis Orbitrap
    Routine Multi-Pesticide Residue Analysis by Orbitrap MS Technology Osama Abu-Nimreh CMD Sales Support Specialist MECEC , Dubai The world leader in serving science Challenges of Pesticide-Residues Analysis • Sample variability (matrix) • Different compound characteristics • Large number of samples • Hundreds of analytes monitored • Low levels controlled • Baby food (MRL for all pesticides = 0.01 mg/kg) • Fast response required 2 Former Pesticide Multi-Residue Method Setup . Extraction Acetonitrile, Ethyl Mostly replaced acetate, Methanol... by QuEChERS today . Clean-up GPC, SPE, LLE, LC . Determination GC, LC, GC-MS, LC-MS, Thermo Scientific™ QuEChERS™ GC-MS/MS, LC-MS/MS... method 3 Simplified Extraction Procedure Applied 10 g of sample is weighed into Quechers extraction tube + 20 mL of water + 10 mL of ACN shaking 10 min Centrifugation 5 min @ 5000 rpm Injection to LC-HRAM 4 Consumables Used Consumables/Chemicals Part Number Acetonitrile A/0638/17 QuEChERS extraction tube, 50 mL, 250 pack 60105-216 QuEChERS pouches, 50 pack 60105-344 Apparatus/Columns Part Number Horizontal shaker 1069-3391 Horizontal shaker plate 1053-0102 Thermo Scientific™ Barnstead™ EASYpure™II water 3125753 Thermo Scientific™ Heraeus™ Fresco™ 17 micro centrifuge 3208590 Thermo Scientific™ Accucore™ aQ column 100x2.1, 2.6 µm 17326-102130 5 Improving QuEChERS Extraction Tips & Tricks: • Dry food (cereals/dried food, < 25 % water content): • Addition of water to enable adequate partitioning and reducing interaction of pesticides with matrix • Food containing fat/wax (avocado/oil): • After extraction step add a freezing out step and transfer supernatant to clean-up tube • More clean-up might be needed of raw extract (PSA+C18) • Food containing complex matrix (tea/spices) • Additional clean-up with GCB might be necessary (potential loss of planar structure pesticides like thiabendazole) • Acidic food (citrus): • Adjust pH (5-5.5) to increase recovery (e.g.
    [Show full text]
  • Emerging Technologies for Degradation of Dichlorvos: a Review
    International Journal of Environmental Research and Public Health Review Emerging Technologies for Degradation of Dichlorvos: A Review Yuming Zhang 1,2, Wenping Zhang 1,2, Jiayi Li 1,2, Shimei Pang 1,2, Sandhya Mishra 1,2 , Pankaj Bhatt 1,2 , Daxing Zeng 3,* and Shaohua Chen 1,2,* 1 State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; [email protected] (Y.Z.); [email protected] (W.Z.); [email protected] (J.L.); [email protected] (S.P.); [email protected] (S.M.); [email protected] (P.B.) 2 Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China 3 School of Applied Chemistry and Biological Technology, Shenzhen Polytechnic, Shenzhen 518055, China * Correspondence: [email protected] (D.Z.); [email protected] (S.C.); Tel.: +86-20-8528 8229 (S.C.) Abstract: Dichlorvos (O,O-dimethyl O-(2,2-dichlorovinyl)phosphate, DDVP) is a widely acknowl- edged broad-spectrum organophosphorus insecticide and acaracide. This pesticide has been used for more than four decades and is still in strong demand in many developing countries. Extensive application of DDVP in agriculture has caused severe hazardous impacts on living systems. The International Agency for Research on Cancer of the World Health Organization considered DDVP among the list of 2B carcinogens, which means a certain extent of cancer risk. Hence, removing DDVP from the environment has attracted worldwide attention. Many studies have tested the removal of DDVP using different kinds of physicochemical methods including gas phase surface discharge plasma, physical adsorption, hydrodynamic cavitation, and nanoparticles.
    [Show full text]
  • WO 2010/128115 Al
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date 11 November 2010 (11.11.2010) WO 2010/128115 Al (51) International Patent Classification: (81) Designated States (unless otherwise indicated, for every C12N 9/16 (2006.01) kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, (21) International Application Number: CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, PCT/EP20 10/056204 DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, (22) International Filing Date: HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, 6 May 2010 (06.05.2010) KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, (25) Filing Language: English NO, NZ, OM, PE, PG, PH, PL, PT, RO, RS, RU, SC, SD, (26) Publication Language: English SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (30) Priority Data: 09159520.7 6 May 2009 (06.05.2009) EP (84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, (71) Applicant (for all designated States except US): GM, KE, LR, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, NOVOZYMES A/S [DK/DK]; Krogshoejvej 36, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, DK-2880 Bagsvaerd (DK).
    [Show full text]
  • Environmental Properties of Chemicals Volume 2
    1 t ENVIRONMENTAL 1 PROTECTION Esa Nikunen . Riitta Leinonen Birgit Kemiläinen • Arto Kultamaa Environmental properties of chemicals Volume 2 1 O O O O O O O O OO O OOOOOO Ol OIOOO FINNISH ENVIRONMENT INSTITUTE • EDITA Esa Nikunen e Riitta Leinonen Birgit Kemiläinen • Arto Kultamaa Environmental properties of chemicals Volume 2 HELSINKI 1000 OlO 00000001 00000000000000000 Th/s is a second revfsed version of Environmental Properties of Chemica/s, published by VAPK-Pub/ishing and Ministry of Environment, Environmental Protection Department as Research Report 91, 1990. The pubiication is also available as a CD ROM version: EnviChem 2.0, a PC database runniny under Windows operating systems. ISBN 951-7-2967-2 (publisher) ISBN 952-7 1-0670-0 (co-publisher) ISSN 1238-8602 Layout: Pikseri Julkaisupalvelut Cover illustration: Jussi Hirvi Edita Ltd. Helsinki 2000 Environmental properties of chemicals Volume 2 _____ _____________________________________________________ Contents . VOLUME ONE 1 Contents of the report 2 Environmental properties of chemicals 3 Abbreviations and explanations 7 3.1 Ways of exposure 7 3.2 Exposed species 7 3.3 Fffects________________________________ 7 3.4 Length of exposure 7 3.5 Odour thresholds 8 3.6 Toxicity endpoints 9 3.7 Other abbreviations 9 4 Listofexposedspecies 10 4.1 Mammais 10 4.2 Plants 13 4.3 Birds 14 4.4 Insects 17 4.5 Fishes 1$ 4.6 Mollusca 22 4.7 Crustaceans 23 4.8 Algae 24 4.9 Others 25 5 References 27 Index 1 List of chemicals in alphabetical order - 169 Index II List of chemicals in CAS-number order
    [Show full text]
  • Determination of Age-Related Differences in Activation and Detoxication of Organophosphates in Rat and Human Tissues
    Mississippi State University Scholars Junction Theses and Dissertations Theses and Dissertations 8-10-2018 Determination of Age-Related Differences in Activation and Detoxication of Organophosphates in Rat and Human Tissues Edward Caldwell Meek Follow this and additional works at: https://scholarsjunction.msstate.edu/td Recommended Citation Meek, Edward Caldwell, "Determination of Age-Related Differences in Activation and Detoxication of Organophosphates in Rat and Human Tissues" (2018). Theses and Dissertations. 1339. https://scholarsjunction.msstate.edu/td/1339 This Dissertation - Open Access is brought to you for free and open access by the Theses and Dissertations at Scholars Junction. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of Scholars Junction. For more information, please contact [email protected]. Template A v3.0 (beta): Created by J. Nail 06/2015 Determination of age-related differences in activation and detoxication of organophosphates in rat and human tissues By TITLE PAGE Edward Caldwell Meek A Dissertation Submitted to the Faculty of Mississippi State University in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in Environmental Toxicology in the College of Veterinary Medicine Mississippi State, Mississippi August 2018 Copyright by COPYRIGHT PAGE Edward Caldwell Meek 2018 Determination of age-related differences in activation and detoxication of organophosphates in rat and human tissues By APPROVAL PAGE Edward Caldwell Meek
    [Show full text]
  • Organophosphate Poisoning : a Review
    120 Sinha and Sharma Med J Indones Organophosphate poisoning : A review Parmod K. Sinha, Ashok Sharma Abstrak Pestisida organofosfat digunakan secara luas di seluruh dunia. Keracunan oleh bahan ini merupakan masalah kesehatan masyarakat, terutama di negara berkembang. Zat neurotoksik organofosfat merupakan bahan yang dianggap mengancam dalam bidang militer dan terorisme. Mekanisme toksisitas bahan ini adalah dengan cara menghambat asetilkolinesterase yang mengakibatkan menumpuknya neurotransmitor asetilkolin dan terjadi rangsangan terus-menerus pada reseptor asetilkolin pada sistem saraf sentral maupun perifer. Selain krisis kolinergik, organofosfat dapat menimbulkan berbagai sindrom neurologis, baik akut maupun kronik. Sedangkan gejala peralihan ( intermediate) terjadi 1-4 hari setelah krisis kolinergik teratasi. Pengobatan standar terdiri dari reaktivasi asetilkolinesterase dengan antidot golongan oksim (prolidoksim, oksidoksime, HI-6 dan HLo7), dan pengendalian efek biokimia asetilkolin dengan menggunakan atropin. Golongan oksim yang baru HI-6 dan Hlo7 merupakan reaktivator asetilkolinesterase yang lebih cocok dan efektif untuk keracunan akut dan berat dibandingkan dengan prolidoksim dan obidoksim. Penderita yang mendapat pengobatan segera, biasanya dapat sembuh dari toksisitas akut, namun gejala neurologis ikutan dapat saja terjadi. (Med J Indones 2003; 12: 120-6) Abstract Organophosphate pesticides are used extensively worldwide, and poisoning by these agents, particularly in developing nations is a public health problem. Organophosphorous
    [Show full text]
  • 20110628140658587.Pdf
    1210 YUE ET AL.:JOURNAL OF AOAC INTERNATIONAL VOL. 91, NO. 5, 2008 SPECIAL GUEST EDITOR SECTION High-Performance Thin-Layer Chromatographic Analysis of Selected Organophosphorous Pesticide Residues in Tea YONGDE YUE International Center for Bamboo and Rattan, 100102, Beijing, People’s Republic of China RONG ZHANG and WEI FAN Key Laboratory for Agri-Food Safety of Anhui Province, School of Resources and Environment, Anhui Agricultural University, Hefei, Anhui, 230036, People’s Republic of China FENG TANG International Center for Bamboo and Rattan, 100102, Beijing, People’s Republic of China The separation of 9 organophosphates determination procedure. In many cases, searching for a fast (monocrotophos, quinalphos, triazophos, and efficient method for enrichment and determination of parathion-methyl, isofenphos-methyl, temephos, organophosphorous residues from complex matrixes is still a parathion, phoxim-ethyl, and chlorpyrifos) by challenge for many researchers. high-performance thin-layer chromatography In many analytical situations, modern quantitative (HPTLC) with automated multiple development was high-performance thin-layer chromatography (HPTLC), studied. The HPTLC method was developed and when properly performed by well-trained analysts, has many validated for analysis of residues of phoxim-ethyl advantages over HPLC or GC. These advantages include and chlorpyrifos in tea. The sample was extracted simplicity of operation, the availability of many sensitive and with acetonitrile and cleaned up by ENVI-CARB selective reagents for detection and confirmation without solid-phase extraction. The extract was directly interference from the mobile phase, the ability to repeat applied as bands to glass-backed silica gel 60F254 detection and quantification at any time with changed HPTLC plates.
    [Show full text]
  • Guide No. 1 – October 2020 2/12 the CONCEPT and IMPLEMENTATION of CPA GUIDANCE RESIDUE LEVELS
    Cooperation Centre for Scientific Research Relative to Tobacco CORESTA GUIDE N° 1 The Concept and Implementation of CPA Guidance Residue Levels October 2020 Agro-Chemical Advisory Committee CORESTA TECHNICAL GUIDE N° 1 Title: The Concept and Implementation of CPA Guidance Residue Levels Status: Valid Note: This document will be periodically reviewed by CORESTA Document history: Date of review Information July 2003 Version 1 GRL for Pyrethrins () and Terbufos corrected. December 2003 CPA terminology corrected. June 2008 Version 2 – GRLs revised and residue definitions added Provisional GRL of 2.00 ppm for Cyfluthrin to replace previous June 2010 GRL of 0.50 ppm July 2013 Version 3 – GRLs revised October 2013 Note for Maleic Hydrazide revised Version 4 – GRLs revised + clarification that scope of GRLs July 2016 applies predominantly to the production of traditional cigarette tobaccos and GAP associated with their cultivation. June 2018 Fluopyram GRL of 5 ppm added to GRL list Version 5 – Nine new CPAs with GRL added to list. November 2019 Revision of GRLs for Chlorantraniliprole and Indoxacarb. Updated web links. October 2020 Version 6 – Flupyradifurone GRL of 21 ppm added to GRL list. CORESTA Guide No. 1 – October 2020 2/12 THE CONCEPT AND IMPLEMENTATION OF CPA GUIDANCE RESIDUE LEVELS Executive Summary • Guidance Residue Levels (GRLs) are in the remit of the Agro-Chemical Advisory Committee (ACAC) of CORESTA. Their development is a joint activity of all ACAC members, who represent the leaf production, processing and manufacturing sectors of the Tobacco Industry. The concept of GRLs and their implementation are described in this guide. • GRLs provide guidance to tobacco growers and assist with interpretation and evaluation of results from analyses of residues of Crop Protection Agents (CPAs*).
    [Show full text]
  • Nerve Agent - Lntellipedia Page 1 Of9 Doc ID : 6637155 (U) Nerve Agent
    This document is made available through the declassification efforts and research of John Greenewald, Jr., creator of: The Black Vault The Black Vault is the largest online Freedom of Information Act (FOIA) document clearinghouse in the world. The research efforts here are responsible for the declassification of MILLIONS of pages released by the U.S. Government & Military. Discover the Truth at: http://www.theblackvault.com Nerve Agent - lntellipedia Page 1 of9 Doc ID : 6637155 (U) Nerve Agent UNCLASSIFIED From lntellipedia Nerve Agents (also known as nerve gases, though these chemicals are liquid at room temperature) are a class of phosphorus-containing organic chemicals (organophosphates) that disrupt the mechanism by which nerves transfer messages to organs. The disruption is caused by blocking acetylcholinesterase, an enzyme that normally relaxes the activity of acetylcholine, a neurotransmitter. ...--------- --- -·---- - --- -·-- --- --- Contents • 1 Overview • 2 Biological Effects • 2.1 Mechanism of Action • 2.2 Antidotes • 3 Classes • 3.1 G-Series • 3.2 V-Series • 3.3 Novichok Agents • 3.4 Insecticides • 4 History • 4.1 The Discovery ofNerve Agents • 4.2 The Nazi Mass Production ofTabun • 4.3 Nerve Agents in Nazi Germany • 4.4 The Secret Gets Out • 4.5 Since World War II • 4.6 Ocean Disposal of Chemical Weapons • 5 Popular Culture • 6 References and External Links --------------- ----·-- - Overview As chemical weapons, they are classified as weapons of mass destruction by the United Nations according to UN Resolution 687, and their production and stockpiling was outlawed by the Chemical Weapons Convention of 1993; the Chemical Weapons Convention officially took effect on April 291997. Poisoning by a nerve agent leads to contraction of pupils, profuse salivation, convulsions, involuntary urination and defecation, and eventual death by asphyxiation as control is lost over respiratory muscles.
    [Show full text]
  • Chlorpyrifos (Dursban) Ddvp (Dichlorvos) Diazinon Malathion Parathion
    CHLORPYRIFOS (DURSBAN) DDVP (DICHLORVOS) DIAZINON MALATHION PARATHION Method no.: 62 Matrix: Air Procedure: Samples are collected by drawing known volumes of air through specially constructed glass sampling tubes, each containing a glass fiber filter and two sections of XAD-2 adsorbent. Samples are desorbed with toluene and analyzed by GC using a flame photometric detector (FPD). Recommended air volume and sampling rate: 480 L at 1.0 L/min except for Malathion 60 L at 1.0 L/min for Malathion Target concentrations: 1.0 mg/m3 (0.111 ppm) for Dichlorvos (PEL) 0.1 mg/m3 (0.008 ppm) for Diazinon (TLV) 0.2 mg/m3 (0.014 ppm) for Chlorpyrifos (TLV) 15.0 mg/m3 (1.11 ppm) for Malathion (PEL) 0.1 mg/m3 (0.008 ppm) for Parathion (PEL) Reliable quantitation limits: 0.0019 mg/m3 (0.21 ppb) for Dichlorvos (based on the RAV) 0.0030 mg/m3 (0.24 ppb) for Diazinon 0.0033 mg/m3 (0.23 ppb) for Chlorpyrifos 0.0303 mg/m3 (2.2 ppb) for Malathion 0.0031 mg/m3 (0.26 ppb) for Parathion Standard errors of estimate at the target concentration: 5.3% for Dichlorvos (Section 4.6.) 5.3% for Diazinon 5.3% for Chlorpyrifos 5.6% for Malathion 5.3% for Parathion Status of method: Evaluated method. This method has been subjected to the established evaluation procedures of the Organic Methods Evaluation Branch. Date: October 1986 Chemist: Donald Burright Organic Methods Evaluation Branch OSHA Analytical Laboratory Salt Lake City, Utah 1 of 27 T-62-FV-01-8610-M 1.
    [Show full text]
  • 2018 Treated Water Undetected Chemical Contaminant List
    2018 Treated Water Undetected Chemical Contaminant List ESTROGENS AND OTHER HORMONES Diethylstilbestrol (DES) Estrone 17alpha-Estradiol 17alpha-Ethynal estradiol 17beta-Estradiol Progesterone Estriol cis-Testosterone trans-Testosterone INORGANIC CHEMICALS Antimony Niobium Arsenic Osmium Beryllium Palladium Cadmium Platinum Cerium Praseodymium Cesium Rhenium Cobalt Rhodium Cyanide Ruthenium Dysprosium Samarium Erbium Selenium Europium Silver Gadolinium Tantalum Gallium Tellurium Germanium Thallium Gold Thorium Hafnium Thulium Holmium Tin Iridium Titanium Lanthanum Tungsten Lead Uranium Lutetium Vanadium Mercury Ytterbium Molybdenum Zinc Neodymium Zirconium Nickel NITROSAMINES N-Nitropyrrolidine (NPYR) N-Nitrosomorpholine (NMOR) N-Nitrosodi-N-butylamine (NDBA) N-Nitrosodiphenylamine (NDPhA) N-Nitrosodiethylamine (NDEA) N-Nitrosodi-N-propylamine (NDPA) N-Nitrosodimethylamine (NDMA) N-Nitrosomethylethylamine (NMEA) N-Nitrosopiperidine (NPIP) 1 ORGANIC CHEMICALS Acenaphthene Butylbenzylphthalate Acenaphthylene Butyraldehyde (Butanal) Acetaldehyde Carbaryl Acetochlor Carbofuran Acetone Carbon disulfide Acrylamide Carbophenothion Acrylonitrile Carbon tetrachloride Alachlor Carboxin Aldicarb (Temik) Chlordane Aldicarb sulfone Chlordane, alpha Aldicarb sulfoxide Chlordane, gamma Aldrin Chlorfenvinphos Allyl chloride Chloroacetonitrile Tert-Amyl Methyl ether Chlorobenzene Ametryn Chlorobenzilate Anilizine 2-Chlorobiphenyl Anthracene 1-Chlorobutane Aspon Chloroethane Atraton Chloromethane Atrazine Chloroneb Azinphos-ethyl Chloroprene Azinphos-methyl
    [Show full text]