2N3819

N-Channel JFET

Product Summary

VGS(off) (V) V(BR)GSS Min (V) gfs Min (mS) IDSS Min (mA)

v –8 –25 2 2

Features Benefits Applications D Excellent High-Frequency : D Wideband High Gain D High-Frequency /Mixer Gps 11 dB @ 400 MHz D Very High System Sensitivity D Oscillator D Very Low Noise: 3 dB @ 400 MHz D High Quality of Amplification D Sample-and-Hold D Very Low Distortion D High-Speed Switching Capability D Very Low Capacitance Switches D High ac/dc Switch Off-Isolation D High Low-Level Signal Amplification D High Gain: AV = 60 @ 100 mA

Description

The 2N3819 is a low-cost, all-purpose JFET which offers good Its TO-226AA (TO-92) package is compatible with various performance at mid-to-high frequencies. It features low noise tape-and-reel options for automated assembly (see Packaging and leakage and guarantees high gain at 100 MHz. Information). For similar products in TO-206AF (TO-72) and TO-236 (SOT-23) packages, see the 2N4416/2N4416A/SST4416 data sheet.

TO-226AA (TO-92)

S 1

G 2

D 3

Top View

Absolute Maximum Ratings

1 _ Gate-Source/Gate-Drain ...... –25 V Lead Temperature ( /16” from case for 10 sec.)...... 300 C a Forward Gate Current...... 10 mA Power Dissipation ...... 350 mW Storage Temperature...... –55 to 150_C Notes Operating Junction Temperature...... –55 to 150_C a. Derate 2.8 mW/_C above 25_C

Updates to this data sheet may be obtained via facsimile by calling Siliconix FaxBack, 1-408-970-5600. Please request FaxBack document #70238.

Siliconix 1 S-52424—Rev. C, 14-Apr-97 2N3819

Specificationsa Limits Parameter Symbol Test Conditions Min Typb Max Unit Static

Gate-Source Breakdown Voltage V(BR)GSS IG = –1 mA , VDS = 0 V –25 –35 V Gate-Source Cutoff Voltage VGS(off) VDS = 15 V, ID = 2 nA –3 –8 c Saturation Drain Current IDSS VDS = 15 V, VGS = 0 V 2 10 20 mA

VGS = –15 V, VDS = 0 V –0.002 –2 nA GateGate R Reverseeverse C Currenturrent IGSS _ TA = 100 C –0.002 –2 mA d Gate Operating Current IG VDG = 10 V, ID = 1 mA –20 ppAA Drain Cutoff Current ID(off) VDS = 10 V, VGS = –8 V 2

Drain-Source On-Resistance rDS(on) VGS = 0 V, ID = 1 mA 150 W

Gate-Source Voltage VGS VDS = 15 V, ID = 200 mA –0.5 –2.5 –7.5 V Gate-Source Forward Voltage VGS(F) IG = 1 mA , VDS = 0 V 0.7 Dynamic

f = 1 kHz 2 5.5 6.5 d Common-Source Forward Transconductance gfs V =15V= 15 V mS DS f = 100 MHz 1.6 5.5 VGS = 0 V d Common-Source Output Conductance gos f = 1 kHz 25 50 mS

Common-Source Input Capacitance Ciss 2.2 8 VDS =15VV= 15 V, VGS ==0Vf=1MHz 0 V, f = 1 MHz ppFF Common-Source Reverse Transfer Capacitance Crss 0.7 4 nV⁄ Equivalent Input Noise Voltaged e V = 10 V, V = 0 V, f = 100 Hz 6 n DS GS √Hz

Notes _ a. TA = 25 C unless otherwise noted. NH b. Typical values are for DESIGN AID ONLY, not guaranteed nor subject to production testing. c. Pulse test: PW v300 ms, duty cycle v2%. d. This parameter not registered with JEDEC.

Typical Characteristics

Drain Current and Transconductance On-Resistance and Output Conductance vs. Gate-Source Cutoff Voltage vs. Gate-Source Cutoff Voltage 20 10 500 100

g rDS @ ID = 1 mA, VGS = 0 V W fs g @ V = 10 V, V = 0 V

– Forward Transconductance(mS) os DS GS IDSS g 16 8 400 f = 1 kHz 80 os – Output Conductance (

rDS 12 gfs 6 300 60 gos

8 4 200 40 m – Saturation Drain Current (mA) S) 4 IDSS @ VDS = 15 V, VGS = 0 V 2 – Drain-Source On-Resistance (100 ) 20 g @ V = 15 V, V = 0 V DSS fs DS GS I f = 1 kHz DS(on) r 0 0 0 0 0–2 –4–6 –8 –10 0–2 –4–6 –8 –10

VGS(off) – Gate-Source Cutoff Voltage (V) VGS(off) – Gate-Source Cutoff Voltage (V)

2 Siliconix S-52424—Rev. C, 14-Apr-97 2N3819

Typical Characteristics (Cont’d) Common-Source Forward Transconductance Gate Leakage Current vs. Drain Current 100 nA 10 5 mA VGS(off) = –3 V VDS = 10 V 1 mA f = 1 kHz 10 nA 8 0.1 mA _ 1 nA TA = 125 C _ TA = –55 C 6 I @ 100 pA GSS 25_C 125_C 5 mA

– Gate Leakage 4

G 10 pA 1 mA I 125_C 0.1 mA _ TA = 25 C – Forward Transconductance (mS) Transconductance – Forward 2 1 pA _ IGSS @ 25 C fs g

0.1 pA 0 010200.1 1 10

VDG – Drain-Gate Voltage (V) ID – Drain Current (mA)

Output Characteristics Output Characteristics 10 15

VGS(off) = –2 V VGS(off) = –3 V 8 12

VGS = 0 V VGS = 0 V

6 –0.2 V 9 –0.3 V

–0.4 V –0.6 V 4 6 –0.9 V –0.6 V

– Drain Current (mA) – Drain Current (mA) –1.2 V

D –0.8 V D I I –1.5 V 2 –1.0 V 3 –1.2 V –1.8 V 0 –1.4 V 0 04268 10 010268 4

VDS – Drain-Source Voltage (V) VDS – Drain-Source Voltage (V)

Transfer Characteristics Transfer Characteristics 10 10 VGS(off) = –2 V VDS = 10 V VGS(off) = –3 V VDS = 10 V

8 8 T = –55_C _ A TA = –55 C 25_C 6 25_C 6 125_C

_ 4 125 C 4 – Drain Current (mA) – Drain Current (mA) D D I I 2 2

0 0 0–0.4 –0.8 –1.2 –1.6 –2 0–0.6 –1.2 –1.8 –2.4 –3

VGS – Gate-Source Voltage (V) VGS – Gate-Source Voltage (V)

Siliconix 3 S-52424—Rev. C, 14-Apr-97 2N3819

Typical Characteristics (Cont’d) Transconductance vs. Gate-Source Voltage Transconductance vs. Gate-Source Voltgage 10 10 VGS(off) = –2 V VDS = 10 V VGS(off) = –3 V VDS = 10 V f = 1 kHz f = 1 kHz 8 8

T = –55_C _ A TA = –55 C 6 6 25_C 25_C

4 _ 4 125 C 125_C

2 2 – Forward Transconductance (mS) Transconductance – Forward – Forward Transconductance (mS) Transconductance – Forward fs fs g g

0 0 0–0.4 –0.8–1.2 –1.6 –2 0 –0.6 –1.2 –1.8 –2.4 –3

VGS – Gate-Source Voltage (V) VGS – Gate-Source Voltage (V)

On-Resistance vs. Drain Current Circuit Voltage Gain vs. Drain Current 300 100 _ g R W TA = –55 C fs L A + V 1 ) R gos 240 80 L Assume VDD = 15 V, VDS = 5 V 10 V VGS(off) = –2 V + RL I 180 60 D

–3 V VGS(off) = –2 V 120 Gain – Voltage 40 V A

– Drain-Source On-Resistance ( ) 60 20

DS(on) –3 V r 0 0 0.1 1 10 0.1 1 10

ID – Drain Current (mA) ID – Drain Current (mA) Common-Source Input Capacitance Common-Source Reverse Feedback vs. Gate-Source Voltage Capacitance vs. Gate-Source Voltage 5 3.0 f = 1 MHz f = 1 MHz

4 2.4

3 VDS = 0 V 1.8

V = 0 V 2 1.2 DS – Input Capacitance (pF)

iss VDS = 10 V VDS = 10 V C 1 0.6 – Reverse Feedback Capacitance (pF) rss C 0 0 0–4 –8 –12 –16 –20 0 –4 –8 –12 –16 –20

VGS – Gate-Source Voltage (V) VGS – Gate-Source Voltage (V)

4 Siliconix S-52424—Rev. C, 14-Apr-97 2N3819

Typical Characteristics (Cont’d) Input Admittance Forward Admittance 100 100 _ _ TA = 25 C TA = 25 C VDS = 15 V VDS = 15 V VGS = 0 V VGS = 0 V Common Source bis Common Source 10 10 gis gfs (mS) (mS) –bis

1 1

0.1 0.1 100200 500 1000 100 200 500 1000 f – Frequency (MHz) f – Frequency (MHz)

Reverse Admittance Output Admittance 10 _ 10 _ TA = 25 C TA = 25 C VDS = 15 V VDS = 15 V bos VGS = 0 V –brs VGS = 0 V Common Source Common Source

1 1

gos (mS) (mS)

–grs 0.1 0.1

0.01 0.01 100200 500 1000 100 200 500 1000

f – Frequency (MHz) f – Frequency (MHz)

Equivalent Input Noise Voltage vs. Frequency Output Conductance vs. Drain Current 20 20 VGS(off) = –3 V VDS = 10 V VGS(off) = –3 V VDS = 10 V f = 1 kHz )

16 S) 16 Hz m √

/ _ TA = –55 C nV ( 12 12

25_C 8 8 125_C – Output Conductance (

– Noise Voltage – Noise ID = 5 mA os n 4 g 4 e ID = IDSS

0 0 10 100 1 k10 k 100 k 0.1 1 10

f – Frequency (Hz) ID – Drain Current (mA)

Siliconix 5 S-52424—Rev. C, 14-Apr-97