H-J-B Dtd4.0 Xmlin Bdi069 1..8

Total Page:16

File Type:pdf, Size:1020Kb

H-J-B Dtd4.0 Xmlin Bdi069 1..8 Copyright ª Blackwell Munksgaard 2003 Bipolar Disorders 2003: 5: 1–7 BIPOLAR DISORDERS ISSN 1398-5647 Hypothesis Paper F Mood-stabilizers: the archeology of the concept O Harris M, Chandran S, Chakraborty N, Healy D. Mood-stabilizers: the Margaret Harris, SummitO Chandran, archeology of the concept. Nabonita Chakraborty and David Bipolar Disord 2003: 5: 1–7. ª Blackwell Munksgaard, 2003 Healy R North Wales Department of Psychological Objective: To review the history of Ômood-stabilizingÕ treatments. Medicine, Hergest Unit, Bangor, UK Method: We have reviewed primary source data on the origin of the P use of current mood-stabilizers. Results: This historical record on the origins of the mood-stabilizers 2 points to a more ambiguous picture as regards pharmacotherapeutic Key words: specificity to bipolar disorders than is commonly conceded. DReceived 28 October 2002, revised and accepted Conclusions: This review suggests a need for alternative formulations for publication 13 February 2003 of the concept of a mood-stabilizer. An alternative to the currentlyE Corresponding author: David Healy, North Wales dominant paradigm is that these agents have treatment effects, which Department of Psychological Medicine, Hergest need to be matched more precisely with patientsÕ constitutional types in Unit, Bangor, UK LL57 2PW. order to optimize outcomes. T 1 e-mail: [email protected] C In recent years the treatment of bipolar mood drug is a mood-stabilizer? Will defining a drug as a disorders has changed dramatically with sodium mood-stabilizer then lead to people who respond valproate, carbamazepine, lamotrigine, and otherE to that drug being diagnosed as bipolar patients? anticonvulsants now used regularly in addition to Would this be appropriate? or in lieu of lithium. There is a general acknow- This paper attempts to shed light on these ledgement that pharmaceutical company interestR in questions by charting aspects of the development the area of bipolar disorders has played some part of anticonvulsants for mood disorders. An accom- in sustaining a wider interest. But this wider panying paper will provide comparative data on interest has also led to the emergenceR of conceptual the incidence and prevalence of service utilization models challenging traditional notions in this for patients diagnosed as having bipolar mood therapeutic domain. For example antidepressants disorders and other data such as inter-illness are routinely used in the depressed phase of a intervals from the pre- and postlithium periods. bipolar disorder, but there isO in fact very little evidence to support this practice (1) and some The archeology of mood-stabilization reason to believe that antidepressants paradoxic- ally may make the problemC worse (2, 3). There are The initial use of lithium for mania created an clear implications of such perspectives for the impression that the manic pole of manic-depressive theoretical models that underpin clinical practice. illness might almost involve a lithium deficiency A great deal hingesN on the concept of a mood- state. The possibility of what would now be termed stabilizer. For three decades, lithium stood as what mood-stabilizing effects arose in the late 1960s. would now be called a mood-stabilizer in contrast Two studies by Schou and Baastrup laid the basis to the ÔantidepressantsU Õ. The answer to the question for claims that lithium was prophylactic for manic- what is a mood-stabilizer was simple – it was depressive episodes (4–6). But the response to these lithium. The emergence of other compounds forces claims was vigorous with critics of the concept us to go further. What does it now take to show a arguing that the results of the naturalistic studies 1 BDI 069 Dispatch: 21.10.03 Journal: BDI CE: Svalli Journal Name Manuscript No. B Author Received: No. of pages: 7 PE: Sri Harris et al. that formed the basis for claims for lithium’s patients – from 10 to 20%. This gave a ready prophylactic effects might simply reflect a regres- population in which to try out a new anticonvul- sion to the mean, or the effects of a withdrawal sant. Borselli and Lambert initially found valpro- syndrome. A Ômirror-imageÕ service utilization mide intensely sedative, particularly when added to study of patients before and after lithium by other anticonvulsants such as phenobarbitone. Angst, Weiss, Grof, Baastrup and Schou in 1970 When valpromide was finally administered onF its (7), and a randomized controlled trial (8) appeared own, it became clear that it had psychotropic in to settle the issue – lithium was what would now be addition to neurotropic effects. This has been termed a mood-stabilizer. described by Lambert as follows ÔpatientsO felt more However, the data on service utilization from the themselves, the mental stickiness, viscosity that had study by Angst et al., which did so much to lay sometimes been there on older agents, was less. We the basis for the concept of a mood-stabilizer in the saw the disappearance of tendenciesO to depression, 1970s, from the perspective of the present look less sometimes even a mild euphoriaÕ (13). clear-cut than standard interpretations of the study Epilepsy was then thought to predispose to both suggest. In part, this is because by 1970, the Ômood- schizophreniform developments,R and an epileptic stabilizingÕ properties of valpromide had already personality disorder. Epileptic patients were seen been discovered, and reports were just about to as importunate, manipulative and viscous in emerge of lithium’s benefits in conditions other their personalities. TheseP patients were frequently than manic-depressive illness. detained in hospital not because of their convul- sions but because of the social disturbances they caused. They were thought to have impulse control The origins of valproate/valpromide disorders, which underlay their inability to adapt The origins of valproate and valpromide lie in the to normal socialD life. The other feature of their Second World War and efforts by German scien- personalities was a certain obsessionality. On tists to produce butter substitutes (9). These efforts valpromide, these social disturbances and the led to the synthesis of valproic acid. After the war characteristicE importunate behavior of hospitalized valproic acid was used as a common diluent for epileptics appeared to change. Female patients in other drugs. In 1963 George Carraz of the Labo- particularT were less likely to end up in conflicts, less ratoire Berthier at Grenoble, when asked to test likely to provoke others in their surroundings, and out a new product for possible anticonvulsant less likely to self-harm. This led Lambert and properties dissolved the new compound in valproic CBorselli to ask whether valpromide reduced self- acid. Testing failed to show any correlation harm tendencies; was it anti-masochistic? between different doses of the experimental com- These issues return in the case of the discovery of pound and anticonvulsant activity but yet theE carbamazepine and pose a real question. The mixture was anticonvulsant. Carraz realized that degree of control of convulsions is not significantly the anticonvulsant properties stemmed from valp- better now compared with before but it is clear that roic acid and titrating the dose of this demonstra-R epileptic patients do not end up in mental hospitals ted the issue conclusively. in a way that they did before. Is this because of Carraz synthesized valproate (Depakine) and a beneficial effect of these drugs on personality valpromide (Depamide) derivativesR of valproic and general integration that has been all but acid. The conventional wisdom of the time had it un-investigated? Is this beneficial effect what that an azote moiety would enhance the psycho- underpins mood-stabilization? tropic properties of a compound, and it was this At this time, lithium was unavailable in France that led to the synthesis of valpromide.O Valpromide or was more generally thought of as being ineffec- in fact protects animals from epileptic convulsions tive. There was a premium therefore on finding triggered by strychnine where valproate does not. effective treatments for manic-depressive disorder. Valpromide also crossesC the blood brain barrier The standard maintenance regimes at the time more readily leading to higher CNS concentrations involved the use of antipsychotics such as chlor- than valproate. promazine or levomepromazine. The sedative Carraz had a linkN with Sergio Borselli a psychi- properties of valpromide led to its use in combi- atric trainee with Pierre Lambert at Bassens Hospi- nation with chlorpromazine for agitated and manic tal in Rhoˆ ne-Alpe. This led to the primary tests of patients, just as phenobarbitone had been used. On the anticonvulsantU properties of both valproate and recovery, patients left on valpromide alone showed valpromide in Bassens Hospital (10–12). an enhanced compliance compared with patients At that point in time most large asylums in on chlorpromazine. Altogether Lambert et al. Europe had significant populations of epileptic studied the drug in approximately 250 patients 2 Mood-stabilizers: the archeology of the concept and concluded that valpromide had distinct psych- that therefore there was no evidence of efficacy for otropic effects that were of benefit in the treatment carbamazepine (19). This was during a period of both acute manic states and in the maintenance when megadose regimes of neuroleptic agents were treatment of manic depressive illness (14). This led used in the West against which a 250 mg dose of to a study looking more closely at 32 patients and chlorpromazine may well have looked indistin- at the impact of valpromide on rates of hospita- guishable to placebo as a comparator. The proto-F lization before and after exposure to this agent. In col used however was exactly the same protocol line with the earlier findings of Angst et al. for used to investigate lithium and these results were lithium, there appeared on valpromide to be a fall not contested. The results of carbamazepineO and in the number of manic episodes by 50% and a lithium indeed appeared to be comparable (24, 25).
Recommended publications
  • Classification of Medicinal Drugs and Driving: Co-Ordination and Synthesis Report
    Project No. TREN-05-FP6TR-S07.61320-518404-DRUID DRUID Driving under the Influence of Drugs, Alcohol and Medicines Integrated Project 1.6. Sustainable Development, Global Change and Ecosystem 1.6.2: Sustainable Surface Transport 6th Framework Programme Deliverable 4.4.1 Classification of medicinal drugs and driving: Co-ordination and synthesis report. Due date of deliverable: 21.07.2011 Actual submission date: 21.07.2011 Revision date: 21.07.2011 Start date of project: 15.10.2006 Duration: 48 months Organisation name of lead contractor for this deliverable: UVA Revision 0.0 Project co-funded by the European Commission within the Sixth Framework Programme (2002-2006) Dissemination Level PU Public PP Restricted to other programme participants (including the Commission x Services) RE Restricted to a group specified by the consortium (including the Commission Services) CO Confidential, only for members of the consortium (including the Commission Services) DRUID 6th Framework Programme Deliverable D.4.4.1 Classification of medicinal drugs and driving: Co-ordination and synthesis report. Page 1 of 243 Classification of medicinal drugs and driving: Co-ordination and synthesis report. Authors Trinidad Gómez-Talegón, Inmaculada Fierro, M. Carmen Del Río, F. Javier Álvarez (UVa, University of Valladolid, Spain) Partners - Silvia Ravera, Susana Monteiro, Han de Gier (RUGPha, University of Groningen, the Netherlands) - Gertrude Van der Linden, Sara-Ann Legrand, Kristof Pil, Alain Verstraete (UGent, Ghent University, Belgium) - Michel Mallaret, Charles Mercier-Guyon, Isabelle Mercier-Guyon (UGren, University of Grenoble, Centre Regional de Pharmacovigilance, France) - Katerina Touliou (CERT-HIT, Centre for Research and Technology Hellas, Greece) - Michael Hei βing (BASt, Bundesanstalt für Straßenwesen, Germany).
    [Show full text]
  • 1-(4-Amino-Cyclohexyl)
    (19) & (11) EP 1 598 339 B1 (12) EUROPEAN PATENT SPECIFICATION (45) Date of publication and mention (51) Int Cl.: of the grant of the patent: C07D 211/04 (2006.01) C07D 211/06 (2006.01) 24.06.2009 Bulletin 2009/26 C07D 235/24 (2006.01) C07D 413/04 (2006.01) C07D 235/26 (2006.01) C07D 401/04 (2006.01) (2006.01) (2006.01) (21) Application number: 05014116.7 C07D 401/06 C07D 403/04 C07D 403/06 (2006.01) A61K 31/44 (2006.01) A61K 31/48 (2006.01) A61K 31/415 (2006.01) (22) Date of filing: 18.04.2002 A61K 31/445 (2006.01) A61P 25/04 (2006.01) (54) 1-(4-AMINO-CYCLOHEXYL)-1,3-DIHYDRO-2H-BENZIMIDAZOLE-2-ONE DERIVATIVES AND RELATED COMPOUNDS AS NOCICEPTIN ANALOGS AND ORL1 LIGANDS FOR THE TREATMENT OF PAIN 1-(4-AMINO-CYCLOHEXYL)-1,3-DIHYDRO-2H-BENZIMIDAZOLE-2-ON DERIVATE UND VERWANDTE VERBINDUNGEN ALS NOCICEPTIN ANALOGE UND ORL1 LIGANDEN ZUR BEHANDLUNG VON SCHMERZ DERIVÉS DE LA 1-(4-AMINO-CYCLOHEXYL)-1,3-DIHYDRO-2H-BENZIMIDAZOLE-2-ONE ET COMPOSÉS SIMILAIRES POUR L’UTILISATION COMME ANALOGUES DU NOCICEPTIN ET LIGANDES DU ORL1 POUR LE TRAITEMENT DE LA DOULEUR (84) Designated Contracting States: • Victory, Sam AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU Oak Ridge, NC 27310 (US) MC NL PT SE TR • Whitehead, John Designated Extension States: Newtown, PA 18940 (US) AL LT LV MK RO SI (74) Representative: Maiwald, Walter (30) Priority: 18.04.2001 US 284666 P Maiwald Patentanwalts GmbH 18.04.2001 US 284667 P Elisenhof 18.04.2001 US 284668 P Elisenstrasse 3 18.04.2001 US 284669 P 80335 München (DE) (43) Date of publication of application: (56) References cited: 23.11.2005 Bulletin 2005/47 EP-A- 0 636 614 EP-A- 0 990 653 EP-A- 1 142 587 WO-A-00/06545 (62) Document number(s) of the earlier application(s) in WO-A-00/08013 WO-A-01/05770 accordance with Art.
    [Show full text]
  • Valproic Acid and Its Amidic Derivatives As New Antivirals Against Alphaherpesviruses
    viruses Review Valproic Acid and Its Amidic Derivatives as New Antivirals against Alphaherpesviruses Sabina Andreu 1,2,* , Inés Ripa 1,2, Raquel Bello-Morales 1,2 and José Antonio López-Guerrero 1,2 1 Departamento de Biología Molecular, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain; [email protected] (I.R.); [email protected] (R.B.-M.); [email protected] (J.A.L.-G.) 2 Centro de Biología Molecular Severo Ochoa, Spanish National Research Council—Universidad Autónoma de Madrid (CSIC-UAM), Cantoblanco, 28049 Madrid, Spain * Correspondence: [email protected] Academic Editor: Maria Kalamvoki Received: 14 November 2020; Accepted: 25 November 2020; Published: 26 November 2020 Abstract: Herpes simplex viruses (HSVs) are neurotropic viruses with broad host range whose infections cause considerable health problems in both animals and humans. In fact, 67% of the global population under the age of 50 are infected with HSV-1 and 13% have clinically recurrent HSV-2 infections. The most prescribed antiherpetics are nucleoside analogues such as acyclovir, but the emergence of mutants resistant to these drugs and the lack of available vaccines against human HSVs has led to an imminent need for new antivirals. Valproic acid (VPA) is a branched short-chain fatty acid clinically used as a broad-spectrum antiepileptic drug in the treatment of neurological disorders, which has shown promising antiviral activity against some herpesviruses. Moreover, its amidic derivatives valpromide and valnoctamide also share this antiherpetic activity. This review summarizes the current research on the use of VPA and its amidic derivatives as alternatives to traditional antiherpetics in the fight against HSV infections.
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2010/014.3507 A1 Gant Et Al
    US 2010.0143507A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2010/014.3507 A1 Gant et al. (43) Pub. Date: Jun. 10, 2010 (54) CARBOXYLIC ACID INHIBITORS OF Publication Classification HISTONE DEACETYLASE, GABA (51) Int. Cl. TRANSAMINASE AND SODIUM CHANNEL A633/00 (2006.01) A 6LX 3/553 (2006.01) A 6LX 3/553 (2006.01) (75) Inventors: Thomas G. Gant, Carlsbad, CA A63L/352 (2006.01) (US); Sepehr Sarshar, Cardiff by A6II 3/19 (2006.01) the Sea, CA (US) C07C 53/128 (2006.01) A6IP 25/06 (2006.01) A6IP 25/08 (2006.01) Correspondence Address: A6IP 25/18 (2006.01) GLOBAL PATENT GROUP - APX (52) U.S. Cl. .................... 424/722:514/211.13: 514/221; 10411 Clayton Road, Suite 304 514/456; 514/557; 562/512 ST. LOUIS, MO 63131 (US) (57) ABSTRACT Assignee: AUSPEX The present invention relates to new carboxylic acid inhibi (73) tors of histone deacetylase, GABA transaminase, and/or PHARMACEUTICALS, INC., Sodium channel activity, pharmaceutical compositions Vista, CA (US) thereof, and methods of use thereof. (21) Appl. No.: 12/632,507 Formula I (22) Filed: Dec. 7, 2009 Related U.S. Application Data (60) Provisional application No. 61/121,024, filed on Dec. 9, 2008. US 2010/014.3507 A1 Jun. 10, 2010 CARBOXYLIC ACID INHIBITORS OF HISTONE DEACETYLASE, GABA TRANSAMNASE AND SODIUM CHANNEL 0001. This application claims the benefit of priority of Valproic acid U.S. provisional application No. 61/121,024, filed Dec. 9, 2008, the disclosure of which is hereby incorporated by ref 0004 Valproic acid is extensively metabolised via erence as if written herein in its entirety.
    [Show full text]
  • IJBCP International Journal of Basic & Clinical Pharmacology Antiepileptic
    Print ISSN: 2319-2003 | Online ISSN: 2279-0780 IJBCP International Journal of Basic & Clinical Pharmacology DOI: http://dx.doi.org/10.18203/2319-2003.ijbcp20161495 Review Article Antiepileptic drugs: newer targets and new drugs Vihang S. Chawan, Abhishek M. Phatak*, Kalpesh V. Gawand, Sagar V. Badwane, Sagar S. Panchal Department of Pharmacology, TNMC and BYL Nair Ch. Hospital Mumbai, Maharashtra, India ABSTRACT Received: 10 March 2016 Epilepsy is a common neurological disorder affecting 0.5-1% of the population Accepted: 15 April 2016 in India. Majority of patients respond to currently available antiepileptic drugs (AEDs), but a small percentage of patients have shown poor and inadequate *Correspondence to: response to AEDs in addition to various side effects and drug interactions while Dr. Abhishek Madan Phatak, on therapy. Thus there is a need to develop more effective AEDs in drug Email: abhishekphatak9288 resistant epilepsy which have a better safety profile with minimal adverse @gmail.com effects. The United States food and drug administration (USFDA) has approved eslicarbazepine acetate, ezogabine, perampanel and brivaracetam which have Copyright: © the author(s), shown a promising future as better AEDs and drugs like ganaxolone, intranasal publisher and licensee Medip diazepam, ICA- 105665, valnoctamide, VX-765, naluzotan are in the pipeline. Academy. This is an open- access article distributed under Keywords: Epilepsy, Newer antiepileptic drugs, Eslicarbazepine Acetate, the terms of the Creative Ezogabine (Retigabine), Perampanel, Brivaracetam, Naluzotan Commons Attribution Non- Commercial License, which permits unrestricted non- commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. INTRODUCTION to AEDs or those patient who have suffered from recurrent seizures, may require surgery.
    [Show full text]
  • Therapeutic Drug Monitoring of Antiepileptic Drugs by Use of Saliva
    REVIEW ARTICLE Therapeutic Drug Monitoring of Antiepileptic Drugs by Use of Saliva Philip N. Patsalos, FRCPath, PhD*† and Dave J. Berry, FRCPath, PhD† INTRODUCTION Abstract: Blood (serum/plasma) antiepileptic drug (AED) therapeu- Measuring antiepileptic drugs (AEDs) in serum or tic drug monitoring (TDM) has proven to be an invaluable surrogate plasma as an aid to personalizing drug therapy is now a well- marker for individualizing and optimizing the drug management of established practice in the treatment of epilepsy, and guidelines patients with epilepsy. Since 1989, there has been an exponential are published that indicate the particular features of epilepsy and increase in AEDs with 23 currently licensed for clinical use, and the properties of AEDs that make the practice so beneficial.1 recently, there has been renewed and extensive interest in the use of The goal of AED therapeutic drug monitoring (TDM) is to saliva as an alternative matrix for AED TDM. The advantages of saliva ’ fl optimize a patient s clinical outcome by supporting the man- include the fact that for many AEDs it re ects the free (pharmacolog- agement of their medication regimen with the assistance of ically active) concentration in serum; it is readily sampled, can be measured drug concentrations/levels. The reason why TDM sampled repetitively, and sampling is noninvasive; does not require the has emerged as an important adjunct to treatment with the expertise of a phlebotomist; and is preferred by many patients, AEDs arises from the fact that for an individual patient
    [Show full text]
  • Ehealth DSI [Ehdsi V2.2.2-OR] Ehealth DSI – Master Value Set
    MTC eHealth DSI [eHDSI v2.2.2-OR] eHealth DSI – Master Value Set Catalogue Responsible : eHDSI Solution Provider PublishDate : Wed Nov 08 16:16:10 CET 2017 © eHealth DSI eHDSI Solution Provider v2.2.2-OR Wed Nov 08 16:16:10 CET 2017 Page 1 of 490 MTC Table of Contents epSOSActiveIngredient 4 epSOSAdministrativeGender 148 epSOSAdverseEventType 149 epSOSAllergenNoDrugs 150 epSOSBloodGroup 155 epSOSBloodPressure 156 epSOSCodeNoMedication 157 epSOSCodeProb 158 epSOSConfidentiality 159 epSOSCountry 160 epSOSDisplayLabel 167 epSOSDocumentCode 170 epSOSDoseForm 171 epSOSHealthcareProfessionalRoles 184 epSOSIllnessesandDisorders 186 epSOSLanguage 448 epSOSMedicalDevices 458 epSOSNullFavor 461 epSOSPackage 462 © eHealth DSI eHDSI Solution Provider v2.2.2-OR Wed Nov 08 16:16:10 CET 2017 Page 2 of 490 MTC epSOSPersonalRelationship 464 epSOSPregnancyInformation 466 epSOSProcedures 467 epSOSReactionAllergy 470 epSOSResolutionOutcome 472 epSOSRoleClass 473 epSOSRouteofAdministration 474 epSOSSections 477 epSOSSeverity 478 epSOSSocialHistory 479 epSOSStatusCode 480 epSOSSubstitutionCode 481 epSOSTelecomAddress 482 epSOSTimingEvent 483 epSOSUnits 484 epSOSUnknownInformation 487 epSOSVaccine 488 © eHealth DSI eHDSI Solution Provider v2.2.2-OR Wed Nov 08 16:16:10 CET 2017 Page 3 of 490 MTC epSOSActiveIngredient epSOSActiveIngredient Value Set ID 1.3.6.1.4.1.12559.11.10.1.3.1.42.24 TRANSLATIONS Code System ID Code System Version Concept Code Description (FSN) 2.16.840.1.113883.6.73 2017-01 A ALIMENTARY TRACT AND METABOLISM 2.16.840.1.113883.6.73 2017-01
    [Show full text]
  • Pharmacokinetic and Pharmacodynamic Interactions Between Antiepileptics and Antidepressants Domenico Italiano University of Messina, Italy
    University of Kentucky UKnowledge Psychiatry Faculty Publications Psychiatry 11-2014 Pharmacokinetic and Pharmacodynamic Interactions between Antiepileptics and Antidepressants Domenico Italiano University of Messina, Italy Edoardo Spina University of Messina, Italy Jose de Leon University of Kentucky, [email protected] Right click to open a feedback form in a new tab to let us know how this document benefits oy u. Follow this and additional works at: https://uknowledge.uky.edu/psychiatry_facpub Part of the Psychiatry and Psychology Commons Repository Citation Italiano, Domenico; Spina, Edoardo; and de Leon, Jose, "Pharmacokinetic and Pharmacodynamic Interactions between Antiepileptics and Antidepressants" (2014). Psychiatry Faculty Publications. 40. https://uknowledge.uky.edu/psychiatry_facpub/40 This Article is brought to you for free and open access by the Psychiatry at UKnowledge. It has been accepted for inclusion in Psychiatry Faculty Publications by an authorized administrator of UKnowledge. For more information, please contact [email protected]. Pharmacokinetic and Pharmacodynamic Interactions between Antiepileptics and Antidepressants Notes/Citation Information Published in Expert Opinion on Drug Metabolism & Toxicology, v. 10, Issue 11, p. 1457-1489. © 2014 Taylor & Francis Group This is an Accepted Manuscript of an article published by Taylor & Francis Group in Expert Opinion on Drug Metabolism & Toxicology in Nov. 2014, available online: http://www.tandfonline.com/10.1517/ 17425255.2014.956081 Digital Object Identifier (DOI) http://dx.doi.org/10.1517/17425255.2014.956081 This article is available at UKnowledge: https://uknowledge.uky.edu/psychiatry_facpub/40 1 This is an Accepted Manuscript of an article published by Taylor & Francis Group in Expert Opinion on Drug Metabolism & Toxicology in Nov.
    [Show full text]
  • Pharmaceutical Appendix to the Tariff Schedule 2
    Harmonized Tariff Schedule of the United States (2007) (Rev. 2) Annotated for Statistical Reporting Purposes PHARMACEUTICAL APPENDIX TO THE HARMONIZED TARIFF SCHEDULE Harmonized Tariff Schedule of the United States (2007) (Rev. 2) Annotated for Statistical Reporting Purposes PHARMACEUTICAL APPENDIX TO THE TARIFF SCHEDULE 2 Table 1. This table enumerates products described by International Non-proprietary Names (INN) which shall be entered free of duty under general note 13 to the tariff schedule. The Chemical Abstracts Service (CAS) registry numbers also set forth in this table are included to assist in the identification of the products concerned. For purposes of the tariff schedule, any references to a product enumerated in this table includes such product by whatever name known. ABACAVIR 136470-78-5 ACIDUM LIDADRONICUM 63132-38-7 ABAFUNGIN 129639-79-8 ACIDUM SALCAPROZICUM 183990-46-7 ABAMECTIN 65195-55-3 ACIDUM SALCLOBUZICUM 387825-03-8 ABANOQUIL 90402-40-7 ACIFRAN 72420-38-3 ABAPERIDONUM 183849-43-6 ACIPIMOX 51037-30-0 ABARELIX 183552-38-7 ACITAZANOLAST 114607-46-4 ABATACEPTUM 332348-12-6 ACITEMATE 101197-99-3 ABCIXIMAB 143653-53-6 ACITRETIN 55079-83-9 ABECARNIL 111841-85-1 ACIVICIN 42228-92-2 ABETIMUSUM 167362-48-3 ACLANTATE 39633-62-0 ABIRATERONE 154229-19-3 ACLARUBICIN 57576-44-0 ABITESARTAN 137882-98-5 ACLATONIUM NAPADISILATE 55077-30-0 ABLUKAST 96566-25-5 ACODAZOLE 79152-85-5 ABRINEURINUM 178535-93-8 ACOLBIFENUM 182167-02-8 ABUNIDAZOLE 91017-58-2 ACONIAZIDE 13410-86-1 ACADESINE 2627-69-2 ACOTIAMIDUM 185106-16-5 ACAMPROSATE 77337-76-9
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2015/0202317 A1 Rau Et Al
    US 20150202317A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2015/0202317 A1 Rau et al. (43) Pub. Date: Jul. 23, 2015 (54) DIPEPTDE-BASED PRODRUG LINKERS Publication Classification FOR ALPHATIC AMNE-CONTAINING DRUGS (51) Int. Cl. A647/48 (2006.01) (71) Applicant: Ascendis Pharma A/S, Hellerup (DK) A638/26 (2006.01) A6M5/9 (2006.01) (72) Inventors: Harald Rau, Heidelberg (DE); Torben A 6LX3/553 (2006.01) Le?mann, Neustadt an der Weinstrasse (52) U.S. Cl. (DE) CPC ......... A61K 47/48338 (2013.01); A61 K3I/553 (2013.01); A61 K38/26 (2013.01); A61 K (21) Appl. No.: 14/674,928 47/48215 (2013.01); A61M 5/19 (2013.01) (22) Filed: Mar. 31, 2015 (57) ABSTRACT The present invention relates to a prodrug or a pharmaceuti Related U.S. Application Data cally acceptable salt thereof, comprising a drug linker conju (63) Continuation of application No. 13/574,092, filed on gate D-L, wherein D being a biologically active moiety con Oct. 15, 2012, filed as application No. PCT/EP2011/ taining an aliphatic amine group is conjugated to one or more 050821 on Jan. 21, 2011. polymeric carriers via dipeptide-containing linkers L. Such carrier-linked prodrugs achieve drug releases with therapeu (30) Foreign Application Priority Data tically useful half-lives. The invention also relates to pharma ceutical compositions comprising said prodrugs and their use Jan. 22, 2010 (EP) ................................ 10 151564.1 as medicaments. US 2015/0202317 A1 Jul. 23, 2015 DIPEPTDE-BASED PRODRUG LINKERS 0007 Alternatively, the drugs may be conjugated to a car FOR ALPHATIC AMNE-CONTAINING rier through permanent covalent bonds.
    [Show full text]
  • FINAL STUDY PROTOCOL Utilisation of Antiepileptic Medicines in Girls
    FINAL STUDY PROTOCOL Utilisation of antiepileptic medicines in girls and women of childbearing potential - a study in three European countries Prepared for the European Medicines Agency May 2017 Version 2.0 Approved 15th May 2017 EUROmediSAFE Consortium 1 TABLE OF CONTENTS Page 1. Background 3 2. Aims 4 3. Data sources 5 4. Methods 6 5. Statistical analyses 12 6. Sample size 15 7. Strengths and limitations 15 8. Study report and manuscript 17 9. Communication of study results 17 10. Ethical and data access approvals 17 11. Milestones 18 12. Quality control 18 13. Data access, storage and sharing 18 14. Protocol authors 20 15. Amendments and deviations from the protocol 20 Appendix I 21 2 1. BACKGROUND In October 2013, the Medicines and Healthcare Regulatory Authority issued a referral into the use of sodium valproate in girls and women of childbearing potential, following new evidence in the literature relating to an increased risk of neurodevelopmental disorders in children exposed to sodium valproate in-utero. The review was carried out by the Pharmacovigilance Risk Assessment Committee (PRAC) and in October 2014 the PRAC adopted its recommendation. Following completion of the review, a letter was sent to healthcare professionals in January 2015 informing them of the changes in the recommendations for valproate prescribing. The recommendations resulting from the review included that Valproate and related substances should not be used in female children, women of childbearing potential and pregnant women unless alternative treatments are ineffective or not tolerated. Valproate and related substances should be contraindicated in prophylaxis of migraine attacks in pregnancy and women of childbearing potential who are not using effective methods of contraception during treatment with valproate.
    [Show full text]
  • A History of the Pharmacological Treatment of Bipolar Disorder
    International Journal of Molecular Sciences Review A History of the Pharmacological Treatment of Bipolar Disorder Francisco López-Muñoz 1,2,3,4,* ID , Winston W. Shen 5, Pilar D’Ocon 6, Alejandro Romero 7 ID and Cecilio Álamo 8 1 Faculty of Health Sciences, University Camilo José Cela, C/Castillo de Alarcón 49, 28692 Villanueva de la Cañada, Madrid, Spain 2 Neuropsychopharmacology Unit, Hospital 12 de Octubre Research Institute (i+12), Avda. Córdoba, s/n, 28041 Madrid, Spain 3 Portucalense Institute of Neuropsychology and Cognitive and Behavioural Neurosciences (INPP), Portucalense University, R. Dr. António Bernardino de Almeida 541, 4200-072 Porto, Portugal 4 Thematic Network for Cooperative Health Research (RETICS), Addictive Disorders Network, Health Institute Carlos III, MICINN and FEDER, 28029 Madrid, Spain 5 Departments of Psychiatry, Wan Fang Medical Center and School of Medicine, Taipei Medical University, 111 Hsin Long Road Section 3, Taipei 116, Taiwan; [email protected] 6 Department of Pharmacology, Faculty of Pharmacy, University of Valencia, Avda. Vicente Andrés, s/n, 46100 Burjassot, Valencia, Spain; [email protected] 7 Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Complutense University, Avda. Puerta de Hierro, s/n, 28040 Madrid, Spain; [email protected] 8 Department of Biomedical Sciences (Pharmacology Area), Faculty of Medicine and Health Sciences, University of Alcalá, Crta. de Madrid-Barcelona, Km. 33,600, 28871 Alcalá de Henares, Madrid, Spain; [email protected] * Correspondence: fl[email protected] or [email protected] Received: 4 June 2018; Accepted: 13 July 2018; Published: 23 July 2018 Abstract: In this paper, the authors review the history of the pharmacological treatment of bipolar disorder, from the first nonspecific sedative agents introduced in the 19th and early 20th century, such as solanaceae alkaloids, bromides and barbiturates, to John Cade’s experiments with lithium and the beginning of the so-called “Psychopharmacological Revolution” in the 1950s.
    [Show full text]