The Silent Period Induced by Transcranial Cranial Nerves

Total Page:16

File Type:pdf, Size:1020Kb

The Silent Period Induced by Transcranial Cranial Nerves 5865tournal ofNeurology, Neurosurgery, and Psychiatry 1995;59:586-596 J Neurol Neurosurg Psychiatry: first published as 10.1136/jnnp.59.6.586 on 1 December 1995. Downloaded from The silent period induced by transcranial magnetic stimulation in muscles supplied by cranial nerves: normal data and changes in patients K J Werhahn, J Classen, R Benecke Abstract magnetic stimulation in limb muscles a period The silent period induced by transcranial of electromyographic (EMG) silence (silent magnetic stimulation of the sensorimotor period) lasting some 200 ms in small hand cortex (Magstim 200, figure of eight coil, muscles can be found if the target muscle is loop diameter 7 cm) in active muscles tonically active.'--8 The duration of the silent supplied by cranial nerves (mentalis, period follows a proximodistal gradient in the sternocleidomastoid, and genioglossus) upper limb muscles, being longer in small was studied in 14 control subjects and hand muscles than in proximal arm muscles. nine patients with localised lesions of the As to precisely what structures are involved sensorimotor cortex. In the patients, in the generation of the silent period there measurements of the silent period were is an increasing amount of data suggesting that also made in the first dorsal interosseus it is not due to changes in a motoneuron and tibialis anterior muscles. In the con- activity but to changes in pyramidal cell trols, there was a silent period in con- excitability.' 68-11 tralateral as weil as ipsilateral cranial Apart from the study of distal limb muscles, muscles and the duration of the silent several reports exist on activation of cortico- period increased with increasing stimulus nuclear fibres supplying cranial nerve intensities. The mean duration of the motoneurons using transcranial magnetic silent period was around 140 ms in con- stimulation.'2 13 With bilateral recordings two tralateral mentalis muscle and around types of responses can be seen in muscles sup- 90 ms in contralateral sternocleidomas- plied by cranial nerves: purely ipsilateral short toid muscle at 1-2 x threshold stimula- latency responses and bilateral responses of tion strengths. Whereas the duration of longer latency. On the basis of latency, ampli- the silent period in ipsilateral mentalis tude, configuration, and reaction to facilitatory muscle was shorter than on the contralat- manoeuvres, these two types were considered eral side it was similar on both sides in to originate from unilateral direct excitation of sternocleidomastoid muscle. In patients cranial nerves at proximal sites and the corti- with focal lesions of the face associated conuclear system respectively.'2 13 The bilateral primary motor cortex and corresponding (corticonuclear) long latency responses reflect http://jnnp.bmj.com/ central facial paresis, the silent period in the bilateral cortical input to the brainstem mentalis muscle was shortened whereas it nuclei of cranial nerves. was unchanged or prolonged in limb mus- The first aim of the present study was to cles (first dorsal interosseus, tibialis ante- describe the characteristics of the silent period rior) with stimulation over the affected induced by transcranial magnetic stimulation hemisphere. By contrast, in a patient with in facial, neck, and tongue muscles in normal a lesion within the parietal cortex, the subjects. If it is assumed that the silent period on September 23, 2021 by guest. Protected copyright. silent period in mentalis muscle was pro- in these muscles is also generated cortically, a longed with stimulation of the affected silent period should also exist in cranial mus- side. cles ipsilateral to the site of stimulation, given the bilateral corticonuclear projection. (3 Neurol Neurosurg Psychiatry 1995;59:586-596) Secondly, we wanted to examine changes in the duration of the silent period in muscles supplied by cranial nerves in patients with uni- Department of Keywords: transcranial magnetic stimulation, cranial lateral cortical lesions. Alterations of the silent Neurology, Heinrich- nerves, sensorimotor cortex, silent period period in distal limb muscles of Heine Universitat patients with Dusseldorf, Germany cortical and subcortical or thalamic lesions K J Werhahn Transcranial magnetic stimulation has been have been described.45 " In patients with J Classe widely used to study the function of the cor- lesions of the primary motor cortex itself the R Benecke ticospinal pathways in humans.' The silent period was shortened'4 or abolished'0 in Correspondence to: Professor Dr R Benecke, responses it evokes are thought to be gener- muscles contralateral to the hemispheric Department of Neurology, ated by excitation of corticomotoneuronal lesions. In patients with lesions in other motor Universitat Rostock, Gehlsheimer Strasse 20, pathways at the cortical or just subcortical competent cortical areas which are afferent to 18055 Rostock, Germany. level in the motor cortex and to be mediated the primary motor cortex a prolongation of the Received 7 October 1994 by fast conducting corticospinal pathways. 2 silent period occurred.14 and in final revised form 16 June 1995 After the early compound muscle action Some of the data from the present investiga- Accepted 18 August 1995 potential (CMAP) evoked by transcranial tion have appeared in abstract form .15 The silent period induced by transcranial magnetic stimulation in muscles supplied by cranial nerves: normal data and changes in patients 587 J Neurol Neurosurg Psychiatry: first published as 10.1136/jnnp.59.6.586 on 1 December 1995. Downloaded from Methods was established by MRI and CT performed Experiments were performed in 14 control during the stay in hospital. subjects and nine patients. All gave their informed consent for the study and the project STIMULATION PROCEDURE AND RECORDINGS IN was approved by the local ethics committee. MUSCLES SUPPLIED BY CRANIAL NERVES IN CONTROLS AND PATIENTS CONTROLS Subjects and patients were seated in a comfort- Fourteen control subjects (11 men, three able chair. Transcranial magnetic stimulation women, mean age 34-2 (range 19-52) years) was performed with a conventional Nova- were chosen from among the authors and metrix 200 stimulator (Fa Madaus, Magstim other members of the department. Subjects Company UK) with a maximum output of 2-0 with a history of hypertension, headache, a Tesla, connected to a figure of eight magnetic cerebrovascular event, or subjects over the age coil, each loop having a diameter of 7 cm. of 60 were excluded. This last criterion was Technical information about the stimulator used to reduce the possibility of subclinical can be found elsewhere.'1 16 cerebrovascular abnormalities. The coil was held over the skull with the maximum current in the coil flowing in an PATIENTS anteroposterior direction. The centre of the Table 1 lists the clinical details of the patients. coil was placed consecutively over both hemi- Patients (five men, four women, mean age spheres about 9 cm lateral and 3 cm anterior 59-1 (range 41-75) years were selected among to a line connecting the vertex and the external consecutive patients seen as inpatients in our auditory meatus. The precise coil position was department, who had a unilateral hemispheric then adjusted to give a response of maximum lesion due to vascular accident or tumour. size in the contralateral cranial muscle at a Patients unable to cooperate or confined to given stimulus intensity. The optimal position bed were excluded. Clinical data and results of of the coil was marked on the skull for better investigations were obtained from the patients' retrieval. Before each recording session the records. Two patients (3 and 5) reported pre- threshold for evoking cortical muscle vious cerebrovascular events. Patient 3 had responses was determined for each muscle had a left hemispheric infarct with global dys- with the subject or patient at rest and the coil phasia and right facial weakness one year held over the optimal spot. Threshold was before the study and patient 5 had had a left defined as the lowest stimulus intensity (as a hemispheric infarct with right sided hemipare- percentage of the maximal output of the sis, including the face, with complete remis- device) with which a defined cortically evoked sion after a few weeks, four years previously. response of at least 100 ,uV peak to peak The localisation of the lesions in the patients amplitude could be obtained on three consecu- Table 1 Clinical datafor patients CMCTIAmplitude Patient Age (y) Sex Localisation Type Interval Clinicalfindings Hand Leg http://jnnp.bmj.com/ 1 49 F Right parietal TU* 33 months CN normal, mild Normal Normal sensory deficits left arm, no dysphasia 2 61 M PMC Infarct 4 months Initially mild lower T CMCT Normal facial weakness, mono- left paresis left lower arm, no dysphasia 3 75 F Left fronto- Infarct 5 days CN normal, in 1992 4 Amp Normal parietal dysphasia and right facial right weakness, sensorimotor on September 23, 2021 by guest. Protected copyright. dysphasia, paresis right arm 4 65 F Right fronto- Infarct 4 years Minor hemiparesis left Normal Normal parietal arm > leg, predominant left facial weakness, no dysphasia, left hemi- neglect and sensory deficits 5 64 M Left postcentral Infarct 1 year CN normal, no dysphasia, 4 Amp Normal gyrus spastic monoparesis right right arm, transient right hemi- paresis (including face) in 1989 6 54 M Left PMC and Infarct 2 8 months Right facial weakness and No response 4 Amp striatocapsular minor motor aphasia, right t CMCT spastic hemiparesis right
Recommended publications
  • The Muscular System Views
    1 PRE-LAB EXERCISES Before coming to lab, get familiar with a few muscle groups we’ll be exploring during lab. Using Visible Body’s Human Anatomy Atlas, go to the Views section. Under Systems, scroll down to the Muscular System views. Select the view Expression and find the following muscles. When you select a muscle, note the book icon in the content box. Selecting this icon allows you to read the muscle’s definition. 1. Occipitofrontalis (epicranius) 2. Orbicularis oculi 3. Orbicularis oris 4. Nasalis 5. Zygomaticus major Return to Muscular System views, select the view Head Rotation and find the following muscles. 1. Sternocleidomastoid 2. Scalene group (anterior, middle, posterior) 2 IN-LAB EXERCISES Use the following modules to guide your exploration of the head and neck region of the muscular system. As you explore the modules, locate the muscles on any charts, models, or specimen available. Please note that these muscles act on the head and neck – those that are located in the neck but act on the back are in a separate section. When reviewing the action of a muscle, it will be helpful to think about where the muscle is located and where the insertion is. Muscle physiology requires that a muscle will “pull” instead of “push” during contraction, and the insertion is the part that will move. Imagine that the muscle is “pulling” on the bone or tissue it is attached to at the insertion. Access 3D views and animated muscle actions in Visible Body’s Human Anatomy Atlas, which will be especially helpful to visualize muscle actions.
    [Show full text]
  • The Articulatory System Chapter 6 Speech Science/ COMD 6305 UTD/ Callier Center William F. Katz, Ph.D
    The articulatory system Chapter 6 Speech Science/ COMD 6305 UTD/ Callier Center William F. Katz, Ph.D. STRUCTURE/FUNCTION VOCAL TRACT CLASSIFICATION OF CONSONANTS AND VOWELS MORE ON RESONANCE ACOUSTIC ANALYSIS/ SPECTROGRAMS SUPRSEGMENTALS, COARTICULATION 1 Midsagittal dissection From Kent, 1997 2 Oral Cavity 3 Oral Structures – continued • Moistened by saliva • Lined by mucosa • Saliva affected by meds 4 Tonsils • PALATINE* (laterally – seen in oral periph • LINGUAL (inf.- root of tongue) • ADENOIDS (sup.) [= pharyngeal] • Palatine, lingual tonsils are larger in children • *removed in tonsillectomy 5 Adenoid Facies • Enlargement from infection may cause problems (adenoid facies) • Can cause problems with nasal sounds or voicing • Adenoidectomy; also tonsillectomy (for palatine tonsils) 6 Adenoid faces (example) 7 Oral structures - frenulum Important component of oral periphery exam Lingual frenomy – for ankyloglossia “tongue-tie” Some doctors will snip for infants, but often will loosen by itself 8 Hard Palate Much variability in palate shape and height Very high vault 9 Teeth 10 Dentition - details Primary (deciduous, milk teeth) Secondary (permanent) n=20: n=32: ◦ 2 incisor ◦ 4 incisor ◦ 1 canine ◦ 2 canine ◦ 2 molar ◦ 4 premolar (bicuspid) Just for “fun” – baby ◦ 6 molar teeth pushing in! NOTE: x 2 for upper and lower 11 Types of malocclusion • Angle’s classification: • I, II, III • Also, individual teeth can be misaligned (e.g. labioversion) Also “Neutrocclusion/ distocclusion/mesiocclusion” 12 Dental Occlusion –continued Other terminology 13 Mandible Action • Primary movements are elevation and depression • Also…. protrusion/retraction • Lateral grinding motion 14 Muscles of Jaw Elevation Like alligators, we are much stronger at jaw elevation (closing to head) than depression 15 Jaw Muscles ELEVATORS DEPRESSORS •Temporalis ✓ •Mylohyoid ✓ •Masseter ✓ •Geniohyoid✓ •Internal (medial) Pterygoid ✓ •Anterior belly of the digastric (- Kent) •Masseter and IP part of “mandibular sling” •External (lateral) pterygoid(?)-- also protrudes and rocks side to side.
    [Show full text]
  • Dr. Maue-Dickson Is Associate Professor of Pediat- Rics, University of Miami, Mailman Center for Child Development, University
    Section II. Anatomy and Physiology WILMA MAUE-DICKSON, Ph.D. (CHAIRMAN) Introduction Middle Ear Musculature, The Auditory Tube, and The Velopharyngeal This Section has been prepared for the Mechanism purpose of updating the previous report, "Status of Research in Cleft Palate: Anat- 1. Tur Mippour® Ear omy and Physiology," published in two parts in the Cleft Palate Journal, Volume 11, The authors of the previous report 1974, and Volume 12, 1975. questioned the validity of the concept that As indicated in the previous two-part the tensor tympani and the stapedius mus- report, it is imperative to consider not only cles provide protection to the inner ear the palate but all of the oral-facial-pharyn- from loud sounds, except perhaps for geal system, both in normal and abnormal minimal protection (less than 10 dB) at low conditions, and both in the adult and in frequencies. They also cited research the developing child. Thus, this review in- which indicated that stapedius contraction cludes normal, abnormal, and develop- is more closely associated with voicing and mental studies on middle ear musculature, coughing than with acoustic stimuli, and the auditory tube, the velopharyngeal that the middle ear muscles might be in- mechanism, the tongue, the larynx, the volved in auditory tube opening. face and mandible, and blood supply and The literature reviewed for this report innervation relevant to cleft lip and palate. does not resolve all of these questions, but Though the relevance of embryology of it does add some focus for future research. the orofacial complex is obvious, it has Greisen and Neergaard (1975) used extra- been reviewed in a recently published re- tympanic phonometry to study middle ear port (Dickson, 1975) and will not be in- reflex activity and were able to demon- cluded as a separate topic in this review strate a tensor tympani reflex in response because of space limitations.
    [Show full text]
  • Head & Neck Muscle Table
    Robert Frysztak, PhD. Structure of the Human Body Loyola University Chicago Stritch School of Medicine HEAD‐NECK MUSCLE TABLE PROXIMAL ATTACHMENT DISTAL ATTACHMENT MUSCLE INNERVATION MAIN ACTIONS BLOOD SUPPLY MUSCLE GROUP (ORIGIN) (INSERTION) Anterior floor of orbit lateral to Oculomotor nerve (CN III), inferior Abducts, elevates, and laterally Inferior oblique Lateral sclera deep to lateral rectus Ophthalmic artery Extra‐ocular nasolacrimal canal division rotates eyeball Inferior aspect of eyeball, posterior to Oculomotor nerve (CN III), inferior Depresses, adducts, and laterally Inferior rectus Common tendinous ring Ophthalmic artery Extra‐ocular corneoscleral junction division rotates eyeball Lateral aspect of eyeball, posterior to Lateral rectus Common tendinous ring Abducent nerve (CN VI) Abducts eyeball Ophthalmic artery Extra‐ocular corneoscleral junction Medial aspect of eyeball, posterior to Oculomotor nerve (CN III), inferior Medial rectus Common tendinous ring Adducts eyeball Ophthalmic artery Extra‐ocular corneoscleral junction division Passes through trochlea, attaches to Body of sphenoid (above optic foramen), Abducts, depresses, and medially Superior oblique superior sclera between superior and Trochlear nerve (CN IV) Ophthalmic artery Extra‐ocular medial to origin of superior rectus rotates eyeball lateral recti Superior aspect of eyeball, posterior to Oculomotor nerve (CN III), superior Elevates, adducts, and medially Superior rectus Common tendinous ring Ophthalmic artery Extra‐ocular the corneoscleral junction division
    [Show full text]
  • Cranial Nerves 1, 5, 7-12
    Cranial Nerve I Olfactory Nerve Nerve fiber modality: Special sensory afferent Cranial Nerves 1, 5, 7-12 Function: Olfaction Remarkable features: – Peripheral processes act as sensory receptors (the other special sensory nerves have separate Warren L Felton III, MD receptors) Professor and Associate Chair of Clinical – Primary afferent neurons undergo continuous Activities, Department of Neurology replacement throughout life Associate Professor of Ophthalmology – Primary afferent neurons synapse with secondary neurons in the olfactory bulb without synapsing Chair, Division of Neuro-Ophthalmology first in the thalamus (as do all other sensory VCU School of Medicine neurons) – Pathways to cortical areas are entirely ipsilateral 1 2 Crania Nerve I Cranial Nerve I Clinical Testing Pathology Anosmia, hyposmia: loss of or impaired Frequently overlooked in neurologic olfaction examination – 1% of population, 50% of population >60 years Aromatic stimulus placed under each – Note: patients with bilateral anosmia often report nostril with the other nostril occluded, eg impaired taste (ageusia, hypogeusia), though coffee, cloves, or soap taste is normal when tested Note that noxious stimuli such as Dysosmia: disordered olfaction ammonia are not used due to concomitant – Parosmia: distorted olfaction stimulation of CN V – Olfactory hallucination: presence of perceived odor in the absence of odor Quantitative clinical tests are available: • Aura preceding complex partial seizures of eg, University of Pennsylvania Smell temporal lobe origin
    [Show full text]
  • New Knowledge Resource for Anatomy Enables Comprehensive Searches of the Literature on the Feeding Muscles of Mammals
    RESEARCH ARTICLE Muscle Logic: New Knowledge Resource for Anatomy Enables Comprehensive Searches of the Literature on the Feeding Muscles of Mammals Robert E. Druzinsky1*, James P. Balhoff2, Alfred W. Crompton3, James Done4, Rebecca Z. German5, Melissa A. Haendel6, Anthony Herrel7, Susan W. Herring8, Hilmar Lapp9,10, Paula M. Mabee11, Hans-Michael Muller4, Christopher J. Mungall12, Paul W. Sternberg4,13, a11111 Kimberly Van Auken4, Christopher J. Vinyard5, Susan H. Williams14, Christine E. Wall15 1 Department of Oral Biology, University of Illinois at Chicago, Chicago, Illinois, United States of America, 2 RTI International, Research Triangle Park, North Carolina, United States of America, 3 Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, United States of America, 4 Division of Biology and Biological Engineering, M/C 156–29, California Institute of Technology, Pasadena, California, United States of America, 5 Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, Ohio, United States of America, 6 Oregon Health and Science University, Portland, Oregon, ’ OPEN ACCESS United States of America, 7 Département d Ecologie et de Gestion de la Biodiversité, Museum National d’Histoire Naturelle, Paris, France, 8 University of Washington, Department of Orthodontics, Seattle, Citation: Druzinsky RE, Balhoff JP, Crompton AW, Washington, United States of America, 9 National Evolutionary Synthesis Center, Durham, North Carolina, Done J, German RZ, Haendel MA, et al. (2016) United States of America, 10 Center for Genomic and Computational Biology, Duke University, Durham, Muscle Logic: New Knowledge Resource for North Carolina, United States of America, 11 Department of Biology, University of South Dakota, Vermillion, South Dakota, United States of America, 12 Genomics Division, Lawrence Berkeley National Laboratory, Anatomy Enables Comprehensive Searches of the Berkeley, California, United States of America, 13 Howard Hughes Medical Institute, M/C 156–29, California Literature on the Feeding Muscles of Mammals.
    [Show full text]
  • Making Faces
    Making Faces Chris Landreth CSC2529, Session 4 31 January 2011 AU1,2 (Frontalis): 2 AU4 (Corrugator): 1 AU5 (Levitor Palpabrae): 3 AU6,44 (Orbicularis Oculi): 6 How AU9 (Alaeque Nasi Labius Superioris): 1 AU10 (Labius Superioris): 3 many AU12 (Zygomatic Major): 3 letters in AU14 (Buccinator): 3 AU15 (Triangularis): 3 this AU16 (Labius Inferioris): 1 alphabet? AU17 (Mentalis): 1 AU18 (Incisivus): 1 AU20 (Risorius/Platysma): 3 AU22,23 (Orbicularis Oris): 6 AU26 (Jaw): 4 _________________________________________________ TOTAL: 41 AU’s Putting the letters together into words: Expressions The six fundamental expressions: 1. Anger 2. Sadness 3. Disgust 4. Surprise 5. Fear 6. Happiness The six fundamental expressions: 1. Anger 2. Sadness 3. Disgust 4. Surprise 5. Fear 6. Happiness A Few Words of Anger Glaring: A Few Words of Anger Glaring: Slight creases in the middle brow (Currogator) Eyelids are slightly raised (Levitor Palpabrae) Lips are clenched backward (Buccinator) Slight downturn in lip corners (Triangularis) A Few Words of Anger Miffed: A Few Words of Anger Miffed: Classic, angry ‘v-shaped’ eyebrows (Currogator) Nasolabial fold deepens, Upper lip is squared off (A.N. Labius Superioris) Lower lip raises into a pout, Dimpling in the chin (Mentalis) A Few Words of Anger Pissed off: A Few Words of Anger Pissed off: Brow raises slightly (Frontalis) Sharper Nasolabial Fold, Raised upper lip (A.N. Labius Superioris) Lower lip juts out (Orb. Oris, Lower Lip out) A Few Words of Anger Very Pissed off: A Few Words of Anger Very Pissed off: Slight squinting (Orb. Oculi) Bared upper teeth (Orb. Oris, Upper Lip Out) Squared lower lip corners, Sharp tendon creases in her neck (Risorius/Platysma) A Few Words of Anger Consumed in Rage: A Few Words of Anger Consumed in Rage: Intense, asymmetrical squinting (Orb.
    [Show full text]
  • Chin Ptosis: Classification, Anatomy, and Correction/Garfein, Zide 3
    Chin Ptosis: Classification, Anatomy, and Correction Evan S. Garfein, M.D.,1 and Barry M. Zide, D.M.D., M.D.1 ABSTRACT For years, the notion of chin ptosis was somehow integrated with the concept of witch’s chin. That was a mistake on many levels because chin droop has four major causes, all different and with some overlap. With this article, the surgeon can quickly diagnose which type and which therapeutic modality would work best. In some cases the problem is a simple fix, in others the droop can only be stabilized, and in the final two, definite corrective procedures are available. Of note, in certain situations two types of chin ptosis may overlap because both the patient and the surgeon may each contribute to the problems. For example, in dynamic ptosis, a droop that occurs with smile in the unoperated patient can be exacerbated and further produced by certain surgical methods also. This paper classifies the variations of the problems and explains the anatomy with the final emphasis on long-term surgical correction, well described herein. This article is the ninth on this subject and a review of them all would be helpful (greatly) for understanding the enigmas of the lower face. KEYWORDS: Lip incompetence, chin ptosis, witch’s chin, chin droop, mentalis muscle All chin ptosis patients are not alike. The abnormal anatomy, diagnosis, and management of the proper diagnosis of the type of chin ptosis places the four types of chin ptosis, as well as how to manage patient into one of four categories, which will deter- dynamic ptosis in the presence of other problems— mine who can and who cannot be helped and by which surgeon-caused or not.
    [Show full text]
  • Appendix B: Muscles of the Speech Production Mechanism
    Appendix B: Muscles of the Speech Production Mechanism I. MUSCLES OF RESPIRATION A. MUSCLES OF INHALATION (muscles that enlarge the thoracic cavity) 1. Diaphragm Attachments: The diaphragm originates in a number of places: the lower tip of the sternum; the first 3 or 4 lumbar vertebrae and the lower borders and inner surfaces of the cartilages of ribs 7 - 12. All fibers insert into a central tendon (aponeurosis of the diaphragm). Function: Contraction of the diaphragm draws the central tendon down and forward, which enlarges the thoracic cavity vertically. It can also elevate to some extent the lower ribs. The diaphragm separates the thoracic and the abdominal cavities. 2. External Intercostals Attachments: The external intercostals run from the lip on the lower border of each rib inferiorly and medially to the upper border of the rib immediately below. Function: These muscles may have several functions. They serve to strengthen the thoracic wall so that it doesn't bulge between the ribs. They provide a checking action to counteract relaxation pressure. Because of the direction of attachment of their fibers, the external intercostals can raise the thoracic cage for inhalation. 3. Pectoralis Major Attachments: This muscle attaches on the anterior surface of the medial half of the clavicle, the sternum and costal cartilages 1-6 or 7. All fibers come together and insert at the greater tubercle of the humerus. Function: Pectoralis major is primarily an abductor of the arm. It can, however, serve as a supplemental (or compensatory) muscle of inhalation, raising the rib cage and sternum. (In other words, breathing by raising and lowering the arms!) It is mentioned here chiefly because it is encountered in the dissection.
    [Show full text]
  • Gender Differences in Genioglossus Muscle Response to the Change in Pharyngeal Airway Patency Jeffrey J
    University of Connecticut OpenCommons@UConn SoDM Masters Theses School of Dental Medicine June 2001 Gender Differences in Genioglossus Muscle Response to the Change in Pharyngeal Airway Patency Jeffrey J. Blasius Follow this and additional works at: https://opencommons.uconn.edu/sodm_masters Recommended Citation Blasius, Jeffrey J., "Gender Differences in Genioglossus Muscle Response to the Change in Pharyngeal Airway Patency" (2001). SoDM Masters Theses. 21. https://opencommons.uconn.edu/sodm_masters/21 GENDER DIFFERENCES IN GENIOGLOSSUS MUSCLE RESPONSE TO THE CHANGE IN PHARYNGEAL AIRWAY PATENCY Jeffrey J. Blasius B.S., University of Connecticut, 1994 D.M.D., University of Connecticut, 1998 A Thesis Submitted in Partial Fulfillment ofthe Requirements for the Degree of Master ofDental Science at the University of Connecticut 2001 APPROVAL PAGE Master of Dental Science Thesis GENDER DIFFERENCES IN GENIOGLOSSUS MUSCLE SPONSE TO THE CHANGE IN PHARYNGEAL AIRWAY PATENCY Presented by Jeffrey J. B lasius, D.M.D. Major Advisor Dr. Eung Kwon- Pae Associate Advisor en Godwin Associate Advisor Dr. Ravindra Nanda University of Connecticut 2001 ABSTRACT Differences in genioglossal (GG) basal activity and in GG muscle response to the change in pharyngeal patency were studied using bipolar surface EMG electrodes in age- matched, historically healthy, 16 males and 15 females. To minimize hormonal influences on ventilatory activity, all female EMG records were obtained during the follicular phase of the menstrual cycle or during the placebo days for individuals using oral contraceptives. Two experimental conditions were applied: a miniature balloon was placed in the retroglossal pharynx, and three positive airway pressures were applied to the nose to observe the change in GG basal tone.
    [Show full text]
  • The Muscular System Text © the Mcgraw−Hill Physiology: the Unity of Companies, 2003 Form and Function, Third Edition
    Saladin: Anatomy & 10. The Muscular System Text © The McGraw−Hill Physiology: The Unity of Companies, 2003 Form and Function, Third Edition CHAPTER 10 The Muscular System Muscles of the thigh to upper calf (MRI) CHAPTER OUTLINE The Structural and Functional Organization of Muscles Acting on the Shoulder and Upper Muscles 326 Limb 352 INSIGHTS • The Functions of Muscles 326 • Muscles Acting on the Scapula 352 • Connective Tissues of a Muscle 326 • Muscles Acting on the Humerus 356 10.1 Medical History: Discovery of a • General Anatomy of Skeletal Muscles 328 • Muscles Acting on the Forearm 357 New Muscle 342 • Coordinated Action of Muscle Groups 328 • Muscles Acting on the Wrist and Hand 361 10.2 Clinical Application: Heavy Lifting • Intrinsic and Extrinsic Muscles 329 and Back Injuries 349 • Muscle Innervation 329 Muscles Acting on the Hip and Lower 10.3 Clinical Application: Hernias 351 • How Muscles Are Named 330 Limb 369 10.4 Clinical Application: Carpal • A Learning Strategy 330 • Muscles Acting on the Hip and Femur 369 Tunnel Syndrome 365 • Muscles Acting on the Knee 373 10.5 Clinical Application: Muscles of the Head and Neck 330 • Muscles Acting on the Foot 374 Intramuscular Injections 366 • Muscles of Facial Expression 330 10.6 Clinical Application: Athletic Connective Issues 387 • Muscles of Chewing and Swallowing 335 Injuries 386 • Muscles Acting on the Head 343 Chapter Review 388 Muscles of the Trunk 345 • Muscles of Respiration 345 • Muscles of the Abdomen 346 • Muscles of the Back 347 • Muscles of the Pelvic Floor 350 Brushing Up To understand this chapter, it is important that you understand or brush up on the following concepts: • Gross anatomy of the skeleton (chapter 8) • Movements of synovial joints (pp.
    [Show full text]
  • Principles of Anatomy and Physiology
    PRINCIPLES OF ANATOMY AND PHYSIOLOGY Tenth Edition Volume 2 Support and Movement of the Human Body Gerard J. Tortora Bergen Community College Sandra Reynolds Grabowski Purdue University John WiIey & Sons, Inc. .... , " '.. j' .. I' Brief Table of Contents ! jl : I1 11 , n il Preface IV Acknowledgements XVI To the Student XVIII Unit 1 Chapter 1 An Introduction to the Human Body 1 Organization of 2 The Chemical Level of Organization 26 the Human Body 3 The Cellular Level of Organization 59 4 The Tissue Level of Organization 103 5 The Integumentary System 139 Unit2 Chapter 6 The .Skeletal System: BoneTissue 161 Principles of Support 7 The Skeletal System:The Axial.Skeleton 185 and Movement 8 The Skeletal System:The Appendicular Skeleton 218 9 Joints 243 10 Muscle Tisuue .273 11 The Muscular System 308 Unit3 Chapter 12 Nervous Tissue 385 Control Systems of 13 The Spinal Cord and Spinal Nerves 419 the Human Body 14 The Brain and Cranial Nerves 451 15 Sensory, Motor and Integrative Systems 498 16 The Special Senses 526 17 The Autonomic Nervous System 565 18 The Endocrine System 586 Unit4 Chapter 19 The Cardiovascular System: The Blood 633 Maintenance of 20 The Cardiovascular System: The Heart 659 I the Human Body 21 The Cardiovascular System: Blood Vessels and Hemodynamics 696 22 The Lymphatic and Immune System and Resistance to Disease 764 - I 23 The Respiratory System 805 24 The Digestive System 851 25 Metabolism 906 26 The Urinary System 948 27 Fluid, Electrolyte, and Acid-Base Homeostasis 991 Unit 5 Chapter 28 The Reproductive Systems 1011
    [Show full text]