Genioglossus Muscle Is the Largest Extrinsic Tongue Muscle and Upper Airway Dilator

Total Page:16

File Type:pdf, Size:1020Kb

Genioglossus Muscle Is the Largest Extrinsic Tongue Muscle and Upper Airway Dilator PLEASE TYPE THE UNIVERSITY OF NEW SOUTH WALES Thesis/Dissertation Sheet Surname or Family name: Kwan First name: Benjamin Other name/s: Chi Hin Abbreviation for degree as given in the University calendar: PhD School: Prince of Wales Hospital Clinical School Faculty: Medicine Title: Breathing movements of the human tongue and genioglossus measured with ultrasound imaging Abstract 350 words maximum: (PLEASE TYPE) Genioglossus muscle is the largest extrinsic tongue muscle and upper airway dilator. To maintain pharyngeal patency within and between breaths, delicate moment-to-moment coordination of pharyngeal muscles activity and drive is required. Dynamic pharyngeal muscle movement in response to the neural input during sleep/wake states is not clearly understood. This thesis reports a novel ultrasound method to visualise and measure dynamic genioglossus motion in healthy and OSA subjects. In Chapter 2, the method revealed ~1 mm predominantly anterior peak displacement within a 50 mm2 area in the infero-posterior genioglossus in healthy awake subjects during quiet breathing. Motion within this area was non-uniform. The method has good reliability, intraclass correlation coefficient (ICC) of 0.85 across separate imaging sessions. Chapter 3 reported good agreement between ultrasound and tagged MRI in measuring regional tongue motion in healthy and OSA subjects, with an ICC of 0.79. Compared to MRI, ultrasound revealed greater anterior displacement in the posterior tongue (mean difference of 0.24 ± 0.64 mm, 95% limits of agreement: 1.03 to -1.49). Chapter 4 examined influence of respiratory mechanics and drive on genioglossus movement. Inspiration against a resistive load increased posterior genioglossus motion, but it had less anterior and more inferior displacement at the highest inspiratory resistance. An increase in voluntary respiratory drive resulted in increased motion and a more uniform motion within the infero-posterior genioglossus. No significant change in genioglossus motion was observed with alteration of end-expiratory lung volumes. Chapter 5 examined the patterns of posterior tongue motion in awake healthy and OSA subjects. More uniform peak inspiratory motion was recorded within the posterior genioglossus in OSA subjects. Three types of inspiratory posterior tongue motion were observed, with breath-to-breath variability within and across subjects. There may be an association between tongue motion pattern with BMI and tongue-base angle. Likely effect of the motion is to counterbalance the negative pharyngeal collapsing forces. Variation between breaths and individual is possibly due to local anatomical, neural and biomechanical factors. Future research to investigate the biomechanical behaviour of the tongue in OSA subjects during sleep with concurrent neural drive measures may further our understanding into OSA pathogenesis. Declaration relating to disposition of project thesis/dissertation I hereby grant to the University of New South Wales or its agents the right to archive and to make available my thesis or dissertation in whole or in part in the University libraries in all forms of media, now or here after known, subject to the provisions of the Copyright Act 1968. I retain all property rights, such as patent rights. I also retain the right to use in future works (such as articles or books) all or part of this thesis or dissertation. I also authorise University Microfilms to use the 350 word abstract of my thesis in Dissertation Abstracts International (this is applicable to doctoral theses only). Signature Witness Signature Date The University recognises that there may be exceptional circumstances requiring restrictions on copying or conditions on use. Requests for restriction for a period of up to 2 years must be made in writing. Requests for a longer period of restriction may be considered in exceptional circumstances and require the approval of the Dean of Graduate Research. FOR OFFICE USE ONLY Date of completion of requirements for Award: ORIGINALITY STATEMENT ‘I hereby declare that this submission is my own work and to the best of my knowledge it contains no materials previously published or written by another person, or substantial proportions of material which have been accepted for the award of any other degree or diploma at UNSW or any other educational institution, except where due acknowledgement is made in the thesis. Any contribution made to the research by others, with whom I have worked at UNSW or elsewhere, is explicitly acknowledged in the thesis. I also declare that the intellectual content of this thesis is the product of my own work, except to the extent that assistance from others in the project's design and conception or in style, presentation and linguistic expression is acknowledged.’ Signed …………………………………………….............. Date …………………………………………….............. COPYRIGHT STATEMENT ‘I hereby grant the University of New South Wales or its agents the right to archive and to make available my thesis or dissertation in whole or part in the University libraries in all forms of media, now or here after known, subject to the provisions of the Copyright Act 1968. I retain all proprietary rights, such as patent rights. I also retain the right to use in future works (such as articles or books) all or part of this thesis or dissertation. I also authorise University Microfilms to use the 350 word abstract of my thesis in Dissertation Abstract International (this is applicable to doctoral theses only). I have either used no substantial portions of copyright material in my thesis or I have obtained permission to use copyright material; where permission has not been granted I have applied/will apply for a partial restriction of the digital copy of my thesis or dissertation.' Signed ……………………………………………........................... Date ……………………………………………........................... AUTHENTICITY STATEMENT ‘I certify that the Library deposit digital copy is a direct equivalent of the final officially approved version of my thesis. No emendation of content has occurred and if there are any minor variations in formatting, they are the result of the conversion to digital format.’ Signed ……………………………………………........................... Date ……………………………………………........................... Breathing movements of the human tongue and genioglossus measured with ultrasound imaging Benjamin Chi Hin Kwan A thesis in fulfilment of the requirements for the degree of Doctor of Philosophy Neuroscience Research Australia Faculty of Medicine, Prince of Wales Hospital Clinical School University of New South Wales August 2018 Abstract Genioglossus muscle is the largest extrinsic tongue muscle and upper airway dilator. To maintain pharyngeal patency within and between breaths, delicate moment-to-moment coordination of pharyngeal muscles activity and drive is required. Dynamic pharyngeal muscle movement in response to the neural input during sleep/wake states is not clearly understood. This thesis reports a novel ultrasound method to visualise and measure dynamic genioglossus motion in healthy and OSA subjects. In Chapter 2, the method revealed ~1 mm predominantly anterior peak displacement within a 50 mm2 area in the infero-posterior genioglossus in healthy awake subjects during quiet breathing. Motion within this area was non-uniform. The method has good reliability, intraclass correlation coefficient (ICC) of 0.85 across separate imaging sessions. Chapter 3 reported good agreement between ultrasound and tagged MRI in measuring regional tongue motion in healthy and OSA subjects, with an ICC of 0.79. Compared to MRI, ultrasound revealed greater anterior displacement in the posterior tongue (mean difference of 0.24 ± 0.64 mm, 95% limits of agreement: 1.03 to -1.49). Chapter 4 examined influence of respiratory mechanics and drive on genioglossus movement. Inspiration against a resistive load increased posterior genioglossus motion, but it had less anterior and more inferior displacement at the highest inspiratory resistance. An increase in voluntary respiratory drive resulted in increased motion and a more uniform motion within the infero-posterior genioglossus. No significant change in genioglossus motion was observed with alteration of end-expiratory lung volumes. Chapter 5 examined the patterns of posterior tongue motion in awake healthy and OSA subjects. More uniform peak inspiratory motion was recorded within the posterior genioglossus in OSA subjects. Three types of inspiratory posterior tongue motion were observed, with breath-to-breath variability within and across subjects. There may be an association between tongue motion pattern with BMI and tongue-base angle. Likely effect of the motion is to counterbalance the negative pharyngeal collapsing forces. Variation between breaths and individual is possibly due to local anatomical, neural and biomechanical factors. Future research to investigate the biomechanical behaviour of the tongue in OSA subjects during sleep with concurrent neural drive measures may further our understanding into OSA pathogenesis. ii Acknowledgements First and foremost, I would like to express my sincere gratitude to Prof. Simon Gandevia for the continuous support of my PhD study, for his tremendous patience, motivation, guidance, understanding and immense knowledge. His mentorship and guidance helped me in all the time of research and writing of this thesis. His selfless time and care encourages me to become a better mentor and teacher to my own students and junior team members. I could not have imagined
Recommended publications
  • Head& Neck II
    nd Dr.Ban I.S. head & neck anatomy 2 y جامعة تكريت كلية طب اﻻسنان مادة التشريح املرحلة الثانية أ.م.د. بان امساعيل صديق 6102-6102 1 nd Dr.Ban I.S. head & neck anatomy 2 y Triangles of the neck: Each side of the neck is divided into anterior and posterior triangles by the obliquely placed sternocleidomastoid muscle. The anterior triangle is bounded by the midline, lower border of mandible and anterior border of sternocleidomastoid muscle. The posterior triangle is bounded by the posterior border of sternocleidomastoid, the anterior border of trapezius and the clavicle. Sternocleidomastoid: This muscle has two heads of origin below: that from the sternal manubrium is a rounded tendon and that from the clavicle is a flat tendon. A triangular interval exists between the two above the sternoclavicular joint, and the lower end of the internal jugular vein lies behind. The muscle is attached by a tendon to the lateral surface of the mastoid process and the lateral half of the superior nuchal line. The muscle is crossed superficially by the great auricular nerve, the external jugular vein and the transverse cervical nerve. 2 nd Dr.Ban I.S. head & neck anatomy 2 y Nerve supply. By the spinal part of the accessory nerve. Action. Contraction of one muscle tilts the head towards the ipsilateral shoulder, and rotates the head to the opposite side. When both muscles acting together, draw the head forwards. Trapezius muscle: It arises from medial third of superior nuchal line, external occipital protuberance, ligamentum nuchae, spine of 7th cervical vertebra, and all thoracic vertebrae .
    [Show full text]
  • The Role of the Tensor Veli Palatini Muscle in the Development of Cleft Palate-Associated Middle Ear Problems
    Clin Oral Invest DOI 10.1007/s00784-016-1828-x REVIEW The role of the tensor veli palatini muscle in the development of cleft palate-associated middle ear problems David S. P. Heidsieck1 & Bram J. A. Smarius1 & Karin P. Q. Oomen2 & Corstiaan C. Breugem1 Received: 8 July 2015 /Accepted: 17 April 2016 # The Author(s) 2016. This article is published with open access at Springerlink.com Abstract Conclusion More research is warranted to clarify the role of Objective Otitis media with effusion is common in infants the tensor veli palatini muscle in cleft palate-associated with an unrepaired cleft palate. Although its prevalence is Eustachian tube dysfunction and development of middle ear reduced after cleft surgery, many children continue to suffer problems. from middle ear problems during childhood. While the tensor Clinical relevance Optimized surgical management of cleft veli palatini muscle is thought to be involved in middle ear palate could potentially reduce associated middle ear ventilation, evidence about its exact anatomy, function, and problems. role in cleft palate surgery is limited. This study aimed to perform a thorough review of the lit- Keywords Cleft palate . Eustachian tube . Otitis media with erature on (1) the role of the tensor veli palatini muscle in the effusion . Tensor veli palatini muscle Eustachian tube opening and middle ear ventilation, (2) ana- tomical anomalies in cleft palate infants related to middle ear disease, and (3) their implications for surgical techniques used in cleft palate repair. Introduction Materials and methods A literature search on the MEDLINE database was performed using a combination of the keywords Otitis media with effusion is very common in infants with an Btensor veli palatini muscle,^ BEustachian tube,^ Botitis media unrepaired cleft palate under the age of 2 years.
    [Show full text]
  • Questions on Human Anatomy
    Standard Medical Text-books. ROBERTS’ PRACTICE OF MEDICINE. The Theory and Practice of Medicine. By Frederick T. Roberts, m.d. Third edi- tion. Octavo. Price, cloth, $6.00; leather, $7.00 Recommended at University of Pennsylvania. Long Island College Hospital, Yale and Harvard Colleges, Bishop’s College, Montreal; Uni- versity of Michigan, and over twenty other medical schools. MEIGS & PEPPER ON CHILDREN. A Practical Treatise on Diseases of Children. By J. Forsyth Meigs, m.d., and William Pepper, m.d. 7th edition. 8vo. Price, cloth, $6.00; leather, $7.00 Recommended at thirty-five of the principal medical colleges in the United States, including Bellevue Hospital, New York, University of Pennsylvania, and Long Island College Hospital. BIDDLE’S MATERIA MEDICA. Materia Medica, for the Use of Students and Physicians. By the late Prof. John B Biddle, m.d., Professor of Materia Medica in Jefferson Medical College, Phila- delphia. The Eighth edition. Octavo. Price, cloth, $4.00 Recommended in colleges in all parts of the UnitedStates. BYFORD ON WOMEN. The Diseases and Accidents Incident to Women. By Wm. H. Byford, m.d., Professor of Obstetrics and Diseases of Women and Children in the Chicago Medical College. Third edition, revised. 164 illus. Price, cloth, $5.00; leather, $6.00 “ Being particularly of use where questions of etiology and general treatment are concerned.”—American Journal of Obstetrics. CAZEAUX’S GREAT WORK ON OBSTETRICS. A practical Text-book on Midwifery. The most complete book now before the profession. Sixth edition, illus. Price, cloth, $6.00 ; leather, $7.00 Recommended at nearly fifty medical schools in the United States.
    [Show full text]
  • The Articulatory System Chapter 6 Speech Science/ COMD 6305 UTD/ Callier Center William F. Katz, Ph.D
    The articulatory system Chapter 6 Speech Science/ COMD 6305 UTD/ Callier Center William F. Katz, Ph.D. STRUCTURE/FUNCTION VOCAL TRACT CLASSIFICATION OF CONSONANTS AND VOWELS MORE ON RESONANCE ACOUSTIC ANALYSIS/ SPECTROGRAMS SUPRSEGMENTALS, COARTICULATION 1 Midsagittal dissection From Kent, 1997 2 Oral Cavity 3 Oral Structures – continued • Moistened by saliva • Lined by mucosa • Saliva affected by meds 4 Tonsils • PALATINE* (laterally – seen in oral periph • LINGUAL (inf.- root of tongue) • ADENOIDS (sup.) [= pharyngeal] • Palatine, lingual tonsils are larger in children • *removed in tonsillectomy 5 Adenoid Facies • Enlargement from infection may cause problems (adenoid facies) • Can cause problems with nasal sounds or voicing • Adenoidectomy; also tonsillectomy (for palatine tonsils) 6 Adenoid faces (example) 7 Oral structures - frenulum Important component of oral periphery exam Lingual frenomy – for ankyloglossia “tongue-tie” Some doctors will snip for infants, but often will loosen by itself 8 Hard Palate Much variability in palate shape and height Very high vault 9 Teeth 10 Dentition - details Primary (deciduous, milk teeth) Secondary (permanent) n=20: n=32: ◦ 2 incisor ◦ 4 incisor ◦ 1 canine ◦ 2 canine ◦ 2 molar ◦ 4 premolar (bicuspid) Just for “fun” – baby ◦ 6 molar teeth pushing in! NOTE: x 2 for upper and lower 11 Types of malocclusion • Angle’s classification: • I, II, III • Also, individual teeth can be misaligned (e.g. labioversion) Also “Neutrocclusion/ distocclusion/mesiocclusion” 12 Dental Occlusion –continued Other terminology 13 Mandible Action • Primary movements are elevation and depression • Also…. protrusion/retraction • Lateral grinding motion 14 Muscles of Jaw Elevation Like alligators, we are much stronger at jaw elevation (closing to head) than depression 15 Jaw Muscles ELEVATORS DEPRESSORS •Temporalis ✓ •Mylohyoid ✓ •Masseter ✓ •Geniohyoid✓ •Internal (medial) Pterygoid ✓ •Anterior belly of the digastric (- Kent) •Masseter and IP part of “mandibular sling” •External (lateral) pterygoid(?)-- also protrudes and rocks side to side.
    [Show full text]
  • Dr. Maue-Dickson Is Associate Professor of Pediat- Rics, University of Miami, Mailman Center for Child Development, University
    Section II. Anatomy and Physiology WILMA MAUE-DICKSON, Ph.D. (CHAIRMAN) Introduction Middle Ear Musculature, The Auditory Tube, and The Velopharyngeal This Section has been prepared for the Mechanism purpose of updating the previous report, "Status of Research in Cleft Palate: Anat- 1. Tur Mippour® Ear omy and Physiology," published in two parts in the Cleft Palate Journal, Volume 11, The authors of the previous report 1974, and Volume 12, 1975. questioned the validity of the concept that As indicated in the previous two-part the tensor tympani and the stapedius mus- report, it is imperative to consider not only cles provide protection to the inner ear the palate but all of the oral-facial-pharyn- from loud sounds, except perhaps for geal system, both in normal and abnormal minimal protection (less than 10 dB) at low conditions, and both in the adult and in frequencies. They also cited research the developing child. Thus, this review in- which indicated that stapedius contraction cludes normal, abnormal, and develop- is more closely associated with voicing and mental studies on middle ear musculature, coughing than with acoustic stimuli, and the auditory tube, the velopharyngeal that the middle ear muscles might be in- mechanism, the tongue, the larynx, the volved in auditory tube opening. face and mandible, and blood supply and The literature reviewed for this report innervation relevant to cleft lip and palate. does not resolve all of these questions, but Though the relevance of embryology of it does add some focus for future research. the orofacial complex is obvious, it has Greisen and Neergaard (1975) used extra- been reviewed in a recently published re- tympanic phonometry to study middle ear port (Dickson, 1975) and will not be in- reflex activity and were able to demon- cluded as a separate topic in this review strate a tensor tympani reflex in response because of space limitations.
    [Show full text]
  • Comparative Study of the Digastric and the Stylohyoid Muscles Between
    Original Article https://doi.org/10.5115/acb.20.301 pISSN 2093-3665 eISSN 2093-3673 Comparative study of the digastric and the stylohyoid muscles between wild boars (Sus scrofa scrofa) and domestic swine (Sus scrofa domesticus): revisiting the gross anatomy Henrique Inhauser Riceti Magalhães1, Jeferson Borges Barcelos2, Fabiano Braz Romão3, Tânia Ribeiro Junqueira Borges2, Roseâmely Angélica de Carvalho-Barros4, Maria Angelica Miglino1, Frederico Ozanam Carneiro e Silva2, Lucas de Assis Ribeiro2 1Department of Surgery, School of Veterinary Medicine and Animal Sciences, University of São Paulo, São Paulo, 2Animal Anatomy Laboratory, School of Veterinary Medicine and Animal Sciences, Federal University of Uberlândia, Uberlândia, 3Animal Anatomy Laboratory, School of Veterinary Medicine, University Center of Patos de Minas, Patos de Minas, 4Anatomy Laboratory, School of Biological Sciences, Federal University of Catalão, Catalão, Brazil Abstract: Considering Suidae Familie as a perfect and viable experimental biomedical model for research applied to human medicine, it has been sought to describe the comparative anatomy of the digastric and the stylohyoid muscles between boars and domestic swine. Heads of Sus scrofa scrofa and Sus scrofa domesticus were dissected. The digastric muscle presented only one muscle belly as anatomical component of a tendinous origin in the jugular process of the occipital bone, and muscle insertion in the midventral edge of the caudal two thirds of the body of the mandible. Thus, its function is fundamentally associated with the lowering and the retracting of the mandible which, by the way, can deliver greater muscle power at lesser energy expense. For the stylohyoid muscle, the tendinous origin was in the laterocaudal edge of the dorsal third of the stylohyoid bone.
    [Show full text]
  • The Myloglossus in a Human Cadaver Study: Common Or Uncommon Anatomical Structure? B
    Folia Morphol. Vol. 76, No. 1, pp. 74–81 DOI: 10.5603/FM.a2016.0044 O R I G I N A L A R T I C L E Copyright © 2017 Via Medica ISSN 0015–5659 www.fm.viamedica.pl The myloglossus in a human cadaver study: common or uncommon anatomical structure? B. Buffoli*, M. Ferrari*, F. Belotti, D. Lancini, M.A. Cocchi, M. Labanca, M. Tschabitscher, R. Rezzani, L.F. Rodella Section of Anatomy and Physiopathology, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy [Received: 1 June 2016; Accepted: 18 July 2016] Background: Additional extrinsic muscles of the tongue are reported in literature and one of them is the myloglossus muscle (MGM). Since MGM is nowadays considered as anatomical variant, the aim of this study is to clarify some open questions by evaluating and describing the myloglossal anatomy (including both MGM and its ligamentous counterpart) during human cadaver dissections. Materials and methods: Twenty-one regions (including masticator space, sublin- gual space and adjacent areas) were dissected and the presence and appearance of myloglossus were considered, together with its proximal and distal insertions, vascularisation and innervation. Results: The myloglossus was present in 61.9% of cases with muscular, ligamen- tous or mixed appearance and either bony or muscular insertion. Facial artery pro- vided myloglossal vascularisation in the 84.62% and lingual artery in the 15.38%; innervation was granted by the trigeminal system (buccal nerve and mylohyoid nerve), sometimes (46.15%) with hypoglossal component. Conclusions: These data suggest us to not consider myloglossus as a rare ana- tomical variant.
    [Show full text]
  • MRI-Based Assessment of Masticatory Muscle Changes in TMD Patients After Whiplash Injury
    Journal of Clinical Medicine Article MRI-Based Assessment of Masticatory Muscle Changes in TMD Patients after Whiplash Injury Yeon-Hee Lee 1,* , Kyung Mi Lee 2 and Q-Schick Auh 1 1 Department of Orofacial Pain and Oral Medicine, Kyung Hee University Dental Hospital, #613 Hoegi-dong, Dongdaemun-gu, Seoul 02447, Korea; [email protected] 2 Department of Radiology, Kyung Hee University College of Medicine, Kyung Hee University Hospital, #26 Kyunghee-daero, Dongdaemun-gu, Seoul 02447, Korea; [email protected] * Correspondence: [email protected]; Tel.: +82-2-958-9409; Fax: +82-2-968-0588 Abstract: Objective: to investigate the change in volume and signal in the masticatory muscles and temporomandibular joint (TMJ) of patients with temporomandibular disorder (TMD) after whiplash injury, based on magnetic resonance imaging (MRI), and to correlate them with other clinical parameters. Methods: ninety patients (64 women, 26 men; mean age: 39.36 ± 15.40 years), including 45 patients with symptoms of TMD after whiplash injury (wTMD), and 45 age- and sex- matched controls with TMD due to idiopathic causes (iTMD) were included. TMD was diagnosed using the study diagnostic criteria for TMD Axis I, and MRI findings of the TMJ and masticatory muscles were investigated. To evaluate the severity of TMD pain and muscle tenderness, we used a visual analog scale (VAS), palpation index (PI), and neck PI. Results: TMD indexes, including VAS, PI, and neck PI were significantly higher in the wTMD group. In the wTMD group, muscle tenderness was highest in the masseter muscle (71.1%), and muscle tenderness in the temporalis (60.0%), lateral pterygoid muscle (LPM) (22.2%), and medial pterygoid muscle (15.6%) was significantly more frequent than that in the iTMD group (all p < 0.05).
    [Show full text]
  • Head & Neck Muscle Table
    Robert Frysztak, PhD. Structure of the Human Body Loyola University Chicago Stritch School of Medicine HEAD‐NECK MUSCLE TABLE PROXIMAL ATTACHMENT DISTAL ATTACHMENT MUSCLE INNERVATION MAIN ACTIONS BLOOD SUPPLY MUSCLE GROUP (ORIGIN) (INSERTION) Anterior floor of orbit lateral to Oculomotor nerve (CN III), inferior Abducts, elevates, and laterally Inferior oblique Lateral sclera deep to lateral rectus Ophthalmic artery Extra‐ocular nasolacrimal canal division rotates eyeball Inferior aspect of eyeball, posterior to Oculomotor nerve (CN III), inferior Depresses, adducts, and laterally Inferior rectus Common tendinous ring Ophthalmic artery Extra‐ocular corneoscleral junction division rotates eyeball Lateral aspect of eyeball, posterior to Lateral rectus Common tendinous ring Abducent nerve (CN VI) Abducts eyeball Ophthalmic artery Extra‐ocular corneoscleral junction Medial aspect of eyeball, posterior to Oculomotor nerve (CN III), inferior Medial rectus Common tendinous ring Adducts eyeball Ophthalmic artery Extra‐ocular corneoscleral junction division Passes through trochlea, attaches to Body of sphenoid (above optic foramen), Abducts, depresses, and medially Superior oblique superior sclera between superior and Trochlear nerve (CN IV) Ophthalmic artery Extra‐ocular medial to origin of superior rectus rotates eyeball lateral recti Superior aspect of eyeball, posterior to Oculomotor nerve (CN III), superior Elevates, adducts, and medially Superior rectus Common tendinous ring Ophthalmic artery Extra‐ocular the corneoscleral junction division
    [Show full text]
  • An Anomalous Digastric Muscle in the Carotid Sheath: a Case Report with Its
    Short Communication 2020 iMedPub Journals Journal of Stem Cell Biology and Transplantation http://journals.imedpub.com Vol. 4 ISS. 4 : sc 37 ISSN : 2575-7725 DOI : 10.21767/2575-7725.4.4.37 8th Edition of International Conference on Clinical and Medical Case Reports - An anomalous digastric muscle in the carotid sheath: a case report with its embryological perspective and clinical relevance Srinivasa Rao Sirasanagandla Sultan Qaboos University, Oman Abstract Key words: Although infrahyoid muscles show considerable variations in Anterior belly, Posterior belly, Variation, Stylohyoid muscle, My- their development, existence of an anomalous digastric muscle lohyoid muscle, Hyoid bone in the neck was seldom reported. During dissection of trian- Anatomy gles of the neck for medical undergraduate students, we came across an anomalous digastric muscle in the carotid sheath of There is a pair of digastric muscles in the neck, and each digas- left side of neck. It was observed in a middle-aged cadaver at tric muscle has the anterior belly and the posterior belly. The College of Medicine and Health Sciences, Sultan Qaboos Uni- anterior belly is attached to the digastric fossa on the base of versity, Muscat, Oman. Digastric muscle was located within the the mandible close to the midline and runs toward the hyoid carotid sheath between the common and internal carotid arter- bone. The posterior belly is attached to the notch of the mas- ies and internal jugular vein. It had two bellies; cranial belly and toid process of the temporal bone and also runs toward the caudal belly which were connected by an intermediate tendon.
    [Show full text]
  • Tinnitus and Temporomandibular Joint Disorder Subtypes
    TINNITUS AND TEMPOROMANDIBULAR JOINT DISORDER SUBTYPES SUSEE PRIYANKA RAVURI A thesis Submitted in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE IN DENTISTRY University of Washington 2017 Committee Edmond L. Truelove Peggy Lee Lloyd A. Mancl Program Authorized to Offer Degree: Oral Medicine 1 © Copyright 2017 Susee Priyanka Ravuri 2 University of Washington ABSTRACT Tinnitus And Temporomandibular Joint Disorder Subtypes Susee Priyanka Ravuri Edmond L. Truelove B.S., D.D.S., M.S.D. Oral Medicine OBJECTIVE: The purpose of this study was to assess the prevalence of tinnitus within a TMD population and to determine an association between the presence of tinnitus and type of TMD diagnoses. METHODS: A secondary data analysis was performed using data from ‘Research Diagnostic Criteria for Temporomandibular Disorders (RDC/TMD) baseline (Validation project) study and follow up (Impact project) study. Self-reported questionnaires for reporting tinnitus and medical history and gold standard diagnoses after clinical examination were used. Log-binomial regression was used to compute risk ratios for tinnitus by TMD subtype and adjusted for patient characteristics. All statistical analysis was performed using SAS 9.3 software (SAS Institute), and a two-sided significance level of 0.05 to determined statistical significance (p<0.05). RESULTS: At baseline, 614 subjects met required criteria for TMD diagnosis. Prevalence of tinnitus within sample was 41% (253 of 614). Approximately 80% of TMD subjects received a MPD diagnosis. Tinnitus frequency in the MPD group was 48% (238/495) while subjects without MPD diagnosis the rate of tinnitus was 13% (15 of 119). Using log-binomial regression analysis, the risk ratio for tinnitus was calculated.
    [Show full text]
  • Cranial Nerves 1, 5, 7-12
    Cranial Nerve I Olfactory Nerve Nerve fiber modality: Special sensory afferent Cranial Nerves 1, 5, 7-12 Function: Olfaction Remarkable features: – Peripheral processes act as sensory receptors (the other special sensory nerves have separate Warren L Felton III, MD receptors) Professor and Associate Chair of Clinical – Primary afferent neurons undergo continuous Activities, Department of Neurology replacement throughout life Associate Professor of Ophthalmology – Primary afferent neurons synapse with secondary neurons in the olfactory bulb without synapsing Chair, Division of Neuro-Ophthalmology first in the thalamus (as do all other sensory VCU School of Medicine neurons) – Pathways to cortical areas are entirely ipsilateral 1 2 Crania Nerve I Cranial Nerve I Clinical Testing Pathology Anosmia, hyposmia: loss of or impaired Frequently overlooked in neurologic olfaction examination – 1% of population, 50% of population >60 years Aromatic stimulus placed under each – Note: patients with bilateral anosmia often report nostril with the other nostril occluded, eg impaired taste (ageusia, hypogeusia), though coffee, cloves, or soap taste is normal when tested Note that noxious stimuli such as Dysosmia: disordered olfaction ammonia are not used due to concomitant – Parosmia: distorted olfaction stimulation of CN V – Olfactory hallucination: presence of perceived odor in the absence of odor Quantitative clinical tests are available: • Aura preceding complex partial seizures of eg, University of Pennsylvania Smell temporal lobe origin
    [Show full text]