The Effect of Temperature Increases on an Ant-Hemiptera-Plant Interaction
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Alien Invasive Species and International Trade
Forest Research Institute Alien Invasive Species and International Trade Edited by Hugh Evans and Tomasz Oszako Warsaw 2007 Reviewers: Steve Woodward (University of Aberdeen, School of Biological Sciences, Scotland, UK) François Lefort (University of Applied Science in Lullier, Switzerland) © Copyright by Forest Research Institute, Warsaw 2007 ISBN 978-83-87647-64-3 Description of photographs on the covers: Alder decline in Poland – T. Oszako, Forest Research Institute, Poland ALB Brighton – Forest Research, UK; Anoplophora exit hole (example of wood packaging pathway) – R. Burgess, Forestry Commission, UK Cameraria adult Brussels – P. Roose, Belgium; Cameraria damage medium view – Forest Research, UK; other photographs description inside articles – see Belbahri et al. Language Editor: James Richards Layout: Gra¿yna Szujecka Print: Sowa–Print on Demand www.sowadruk.pl, phone: +48 022 431 81 40 Instytut Badawczy Leœnictwa 05-090 Raszyn, ul. Braci Leœnej 3, phone [+48 22] 715 06 16 e-mail: [email protected] CONTENTS Introduction .......................................6 Part I – EXTENDED ABSTRACTS Thomas Jung, Marla Downing, Markus Blaschke, Thomas Vernon Phytophthora root and collar rot of alders caused by the invasive Phytophthora alni: actual distribution, pathways, and modeled potential distribution in Bavaria ......................10 Tomasz Oszako, Leszek B. Orlikowski, Aleksandra Trzewik, Teresa Orlikowska Studies on the occurrence of Phytophthora ramorum in nurseries, forest stands and garden centers ..........................19 Lassaad Belbahri, Eduardo Moralejo, Gautier Calmin, François Lefort, Jose A. Garcia, Enrique Descals Reports of Phytophthora hedraiandra on Viburnum tinus and Rhododendron catawbiense in Spain ..................26 Leszek B. Orlikowski, Tomasz Oszako The influence of nursery-cultivated plants, as well as cereals, legumes and crucifers, on selected species of Phytophthopra ............30 Lassaad Belbahri, Gautier Calmin, Tomasz Oszako, Eduardo Moralejo, Jose A. -
The Ecology of the Gum Tree Scale
WAITI. INSTII'UTE à1.3. 1b t.IP,RÅRY THE ECoLOGY 0F THE GUM TREE SCALE ( ERI0COCCUS CORIACEUS MASK.), AND ITS NATURAL ENEMIES BY Nei'l Gough , B. Sc. Hons . A thesis submitted for the degree of Doctor of Philosophy in the Faculty of Ag¡icultural Science at the UniversitY of Adelaide. Department of Entomoì ogY' l^laite Agricultural Research Institute' Unj versi ty of Adelaide. .l975 May 't CONTENTS Page SUMMARY viii DECLARATION xii ACKNOl^lLEDGEMENTS xiii 1. INTRODUCTION I l 1 I Introduction I 2 Histori cal information 1 4 1 3 The study area tr I 4 The climate of Ade'laide 6 1 5 A brief description of the biology of E. coriaceus l 6 Initial observations 9 1.64 First generations observed 9 1.68 The measurement of causes of rnortality to the female scale and of the ìengths of the survivors l0 'l .6C Reproduction by the female scale. November 1971 t3 'l .6D The estimation of the number of craw'lers produced '15 in the second generation. November and December l97l l.6E The estimation of the number of nymphs on the tree l6 'l 7 Conc'lus ions f rom the 'i ni ti al observati ons and general p'l an of the study 21 2 ASPECTS OF THE BIOLOGY OF E. CORIACEUS 25 2 .t Biology of the irmature stages 25 2.1A The nymphal stages 25 2.18 The ínfluence of the density of nymphs on their rate of sett'ling 27 2 .2 The adult female 30 2.2A The adul t femal e sett'l i ng patterns 30 2.28 The distribution of the colonies on the twigs 30 2.2C Settl ing on the leaves 33 2.20 Seasona'l variation in the densities of the co'lonies of femal es 33 11. -
The Gall-Inducing Habit Has Evolved Multiple Times Among the Eriococcid Scale Insects (Sternorrhyncha: Coccoidea: Eriococcidae)
Blackwell Science, LtdOxford, UKBIJBiological Journal of the Linnean Society0024-4066The Linnean Society of London, 2004? 2004 834 441452 Original Article MULTIPLE ORIGINS OF GALLING IN ERIOCOCCIDS L. G. COOK and P. J. GULLAN Biological Journal of the Linnean Society, 2004, 83, 441–452. With 2 figures The gall-inducing habit has evolved multiple times among the eriococcid scale insects (Sternorrhyncha: Coccoidea: Eriococcidae) L. G. COOK* and P. J. GULLAN† School of Botany and Zoology, The Australian National University, Canberra, ACT, 0200, Australia Received 7 August 2003; accepted for publication 20 February 2004 The habit of inducing plant galls has evolved multiple times among insects but most species diversity occurs in only a few groups, such as gall midges and gall wasps. This phylogenetic clustering may reflect adaptive radiations in insect groups in which the trait has evolved. Alternatively, multiple independent origins of galling may suggest a selective advantage to the habit. We use DNA sequence data to examine the origins of galling among the most spe- ciose group of gall-inducing scale insects, the eriococcids. We determine that the galling habit has evolved multiple times, including four times in Australian taxa, suggesting that there has been a selective advantage to galling in Australia. Additionally, although most gall-inducing eriococcid species occur on Myrtaceae, we found that lineages feeding on Myrtaceae are no more likely to have evolved the galling habit than those feeding on other plant groups. However, most gall-inducing species-richness is clustered in only two clades (Apiomorpha and Lachnodius + Opisthoscelis), all of which occur exclusively on Eucalyptus s.s. -
Effects of Ecology, Life History, and Behavior
Effects of Ecology, Life History, and Behavior Edited by Susan Mopper Department of Biology University of Southwestern Louisiana Lafayette, lA Sharon Y. Strauss Section of Evolution and Ecology University of California, Davis Davis, CA CHAPMAN & HALL I (f)p ® INTERNATIONAL THOMSON PUBLISHING Thomson Science New York • Albany • Bonn • Boston • Cincinnati • Detroit London • Madrid • Melbourne o Mexico City o Pacific Grove Cover design: Susan Mopper, Karl Hasenstein, Curtis Tow Graphics Copyright© 1998 by Chapman & Hall Printed in the United States of America Chapman & Hall Chapman & Hall 115 Fifth Avenue 2-6 Boundary Row New York, NY 10003 London SE1 8HN England Thomas Nelson Australia Chapman & Hall GmbH 102 Dodds Street Postfach 100 263 South Melbourne, 3205 D-69442 Weinheim Victoria, Australia Germany International Thomson Editores International Thomson Publishing-Japan Campos Eliseos 385, Piso 7 Hirakawacho-cho Kyowa Building, 3F Col. Polanco 1-2-1 Hirakawacho-cho 11560 Mexico D.F Chiyoda-ku, 102 Tokyo Mexico Japan International Thomson Publishing Asia 221 Henderson Road #05-10 Henderson Building Singapore 0315 All rights reserved. No part of this book covered by the copyright hereon may be reproduced or used in any form or by any means-graphic, electronic, or mechanical, including photocopying, recording, tapin� or information storage and retrieval systems-without the written permission of the publisher. 1 2 3 4 5 6 7 8 9 10 XXX 01 00 99 98 Library of Congress Cataloging-in-Publication Data Genetic structure and local adaptation in natural insect populations: effects of ecology, life history, and behavior I [compiled by] Susan Mopper and Sharon Y. -
Hemiptera: Coccoidea: Eriococcidae) from China, with a Redescription of Macroporicoccus Ulmi (Tang & Hao) Comb
Zootaxa 3722 (2): 170–182 ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2013 Magnolia Press ISSN 1175-5334 (online edition) http://dx.doi.org/10.11646/zootaxa.3722.2.3 http://zoobank.org/urn:lsid:zoobank.org:pub:D7FF6D6E-6820-4333-9D40-F018F1925234 A new felt scale genus Macroporicoccus gen. n. (Hemiptera: Coccoidea: Eriococcidae) from China, with a redescription of Macroporicoccus ulmi (Tang & Hao) comb. n. NAN NAN, JUN DENG & SAN’AN WU1 The Key Laboratory for Silviculture and Conservation of Ministry of Education, Beijing Forestry University, Beijing, China 100083. 1Corresponding author. E-mail: [email protected] Abstract The Chinese species Cryptococcus ulmi Tang & Hao is found to be distantly related to other sampled Cryptococcus species based on both molecular and morphological study. A new felt scale genus, Macroporicoccus Nan & Wu gen. n., is erected therefore for C. ulmi. The new genus differs from other eriococcid genera due to the presence of large simple pores, here referred to as macrodisc pores. The adult female of Macroporicoccus ulmi (Tang & Hao) comb. n. is redescribed and il- lustrated. Some important taxonomic characters are illustrated with SEM photographs. Key words: Cryptococcus ulmi, phylogeny, 18S, 28S, new genus, new combination, SEM Introduction Cryptococcus ulmi was originally described and illustrated by Tang and Hao (1995) based on adult female specimens collected from Shanxi Province and Beijing City under the bark of Ulmus pumila (Ulmaceae). Wu (2000) described and illustrated the adult male and all immature stages of both sexes and provided a key to all stages. He also briefly reported its biology based on field studies at Taigu County, Shanxi Province, between 1996 and 1998 and added a new host plant, Syringa oblata (Oleaceae). -
Variation in the Manna of Eucalyptus Viminalis
Variation in the manna of Eucalyptus viminalis Department and University: School of Natural Sciences, University of Tasmania Supervisory team: Geoff While, Julianne O’Reilly-Wapstra and Peter Harrison Amy Wing May 2020 A thesis submitted in partial fulfillment of the requirements of the degree Bachelor of Science with Honours Declaration I hereby declare that this thesis contains no material which has previously been accepted for the award of any other degree or diploma and contains no copy or paraphrase of material previously published or written by any other person, except where due reference is made in the text of this thesis. Statement on authority to access This thesis may be made available for loan and limited copying in accordance with the Copyright Act 1968. Signed: Amy Wing Date: 20/05/2020 1 Acknowledgements I would love to thank my three amazing supervisors, Geoff, Julianne and Peter. This project was a blast, I loved all the knowledge and enthusiasm you all had towards me and my project. Thank you Geoff for getting me into such an amazing project and team, despite the fact I am not being a Lizard person. The immense support and advice on my work, no matter the hour, was such a huge help. Thanks to Peter for all the expertise in all things statistics. The hours upon hours you dedicated to helping me wrap my head around the data was absolutely essential for what I achieved. And thank you to Julianne for being such a great support and encouragement in my writing. Towards the end of this project, when we had to all work at a distance, all those small words of encouragement helped me keep going. -
Plant Compensation for Arthropod Herbivory
Annual Reviews www.annualreviews.org/aronline Annu. Rev. Entornol. 1993.38:93-119 Copyright© 1993 by AnnualReviews Inc. All rights reserved PLANT COMPENSATION FOR ARTHROPOD HERBIVORY J. T. Trumble Departmentof Entomology,University of California, Riverside, California 92521 D, M. Kolodny-Hirsch CropGenetics International, 7249National Drive, Hanover,Maryland 21076 I. P. Ting Departmentof Botany,University of California, Riverside,California 92521 KEYWORDS: tolerance, defoliation, plant resistance,photosynthesis, resource allocation INTRODUCTION Plant compensationfor arthropod damageis a general occurrence of consid- erable importancein both natural and agricultural systems. In natural systems, plant species that can tolerate or compensate(e.g. recover equivalent yield or fitness) for herbivore feeding have obvious selective advantagesthat lead by Dr. John Trumble on 02/28/05. For personal use only. to genotype maintenance. Scientists publishing in this area often cite an optimal strategy for enhancingfitness (90, 108). In agricultural crops, reports of plant compensationmostly are concerned with yields rather than fitness (164). However,variation in compensatoryresponse also affects sampling Annu. Rev. Entomol. 1993.38:93-119. Downloaded from arjournals.annualreviews.org strategies and economicthreshold levels [sensu Stern (166)] and provides viable tactic for breeding insect resistance to key arthropod pests into plants. Not surprisingly, the relative importanceof the various forms of compensation in agricultural and natural systems -
Logs and Chips of Eighteen Eucalypt Species from Australia
United States Department of Agriculture Pest Risk Assessment Forest Service of the Importation Into Forest Products Laboratory the United States of General Technical Report Unprocessed Logs and FPL−GTR−137 Chips of Eighteen Eucalypt Species From Australia P. (=Tryphocaria) solida, P. tricuspis; Scolecobrotus westwoodi; Abstract Tessaromma undatum; Zygocera canosa], ghost moths and carpen- The unmitigated pest risk potential for the importation of unproc- terworms [Abantiades latipennis; Aenetus eximius, A. ligniveren, essed logs and chips of 18 species of eucalypts (Eucalyptus amyg- A. paradiseus; Zelotypia stacyi; Endoxyla cinereus (=Xyleutes dalina, E. cloeziana, E. delegatensis, E. diversicolor, E. dunnii, boisduvali), Endoxyla spp. (=Xyleutes spp.)], true powderpost E. globulus, E. grandis, E. nitens, E. obliqua, E. ovata, E. pilularis, beetles (Lyctus brunneus, L. costatus, L. discedens, L. parallelocol- E. regnans, E. saligna, E. sieberi, E. viminalis, Corymbia calo- lis; Minthea rugicollis), false powderpost or auger beetles (Bo- phylla, C. citriodora, and C. maculata) from Australia into the strychopsis jesuita; Mesoxylion collaris; Sinoxylon anale; Xylion United States was assessed by estimating the likelihood and conse- cylindricus; Xylobosca bispinosa; Xylodeleis obsipa, Xylopsocus quences of introduction of representative insects and pathogens of gibbicollis; Xylothrips religiosus; Xylotillus lindi), dampwood concern. Twenty-two individual pest risk assessments were pre- termite (Porotermes adamsoni), giant termite (Mastotermes dar- pared, fifteen dealing with insects and seven with pathogens. The winiensis), drywood termites (Neotermes insularis; Kalotermes selected organisms were representative examples of insects and rufinotum, K. banksiae; Ceratokalotermes spoliator; Glyptotermes pathogens found on foliage, on the bark, in the bark, and in the tuberculatus; Bifiditermes condonensis; Cryptotermes primus, wood of eucalypts. C. -
Increasing Numbers and Intercontinental Spread of Invasive Insects on Eucalypts
Biol Invasions (2016) 18:921–933 DOI 10.1007/s10530-016-1081-x INSECT INVASIONS Increasing numbers and intercontinental spread of invasive insects on eucalypts Brett P. Hurley . Jeff Garnas . Michael J. Wingfield . Manuela Branco . David M. Richardson . Bernard Slippers Received: 3 July 2015 / Accepted: 15 October 2015 / Published online: 26 February 2016 Ó Springer International Publishing Switzerland 2016 Abstract Native to Australasia, Eucalyptus (sensu spread among continents has also increased. Surpris- lato) is one of the most planted genera of trees in the ingly, we found no association between area planted world. However, the sustainability of Eucalyptus and the number of pests or new introductions. Only a species as plantation trees in non-native areas is small number of countries have been the points of first increasingly threatened by the introduction and spread detection outside the native range; these countries of Eucalyptus-feeding insects from Australia. We have acted as bridgeheads to other regions. Quarantine examine patterns and potential trends with respect to regulations aimed at reducing the spread of invasive the global spread of Eucalyptus-feeding insects. organisms appear to be ineffective at a global scale, Likely pathways of introduction and drivers of the and pathways allowing these invasions to occur are rapid distribution of these insects, as well as manage- poorly understood or unknown. An expanded suite of ment options are considered. The rate of introductions management options are needed to provide resilience is shown to have increased nearly fivefold since the against the rapid accrual and homogenization of 1980s. As a result, the number of non-native pests of eucalypt pests, thereby ensuring the sustainability of eucalypts outside of Australia has doubled in less than eucalypt forestry worldwide. -
Volume 2, Chapter 12-7: Terrestrial Insects: Hemimetabola
Glime, J. M. 2017. Terrestrial Insects: Hemimetabola – Hemiptera (Non-Heteroptera) and Thysanoptera. Chapter 12-7. In: Glime, 12-7-1 J. M. Bryophyte Ecology. Volume 2. Interactions. Ebook sponsored by Michigan Technological University and the International Association of Bryologists. eBook last updated 19 July 2020 and available at <http://digitalcommons.mtu.edu/bryophyte-ecology2/>. CHAPTER 12-7 TERRESTRIAL INSECTS: HEMIMETABOLA – HEMIPTERA (NON- HETEROPTERA) AND THYSANOPTERA TABLE OF CONTENTS SUBORDER AUCHENORRHYNCHA .......................................................................................................... 12-7-2 CICADOMORPHA .................................................................................................................................. 12-7-2 Cicadellidae – Leaf Hoppers .............................................................................................................. 12-7-2 FULGOROMORPHA – PLANTHOPPERS ............................................................................................ 12-7-5 Delphacidae – Delphacid Planthoppers ............................................................................................. 12-7-5 Derbidae – Planthoppers .................................................................................................................... 12-7-6 Issidae – Planthoppers........................................................................................................................ 12-7-7 SUBORDER STERNORRHYNCHA ............................................................................................................. -
Enhancing Biological Control Against Eucalyptus Pests
Enhancing Biological Control against Eucalyptus pests André Filipe Fidalgo Casquilho Garcia SCIENTIFIC ADVISORS: Doutora Manuela Rodrigues Branco Simões Doutor José Carlos Franco Santos Silva THESIS PRESENTED TO OBTAIN THE DOCTOR DEGREE IN FORESTRY ENGINEERING AND NATURAL RESOURCES 2020 Enhancing Biological Control against Eucalyptus pests André Filipe Fidalgo Casquilho Garcia SCIENTIFIC ADVISORS: Doutora Manuela Rodrigues Branco Simões Doutor José Carlos Franco Santos Silva, Professor Auxiliar do Instituto Superior de Agronomia da Universidade de Lisboa Jury President: Doutora Maria Margarida Branco de Brito Tavares Tomé, Professora Catedrática do Instituto Superior de Agronomia da Universidade de Lisboa. Members: Doutor Zvi Mendel, Full Professor aposentado do Agricultural Research Organization (ARO), Volcani Center, Israel; Doutora Maria Rosa Santos Paiva, Professora Catedrática da Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa; Doutor António Maria Marques Mexia, Professor Catedrático do Instituto Superior de Agronomia da Universidade de Lisboa; Doutora Manuela Rodrigues Branco Simões, Professora Associada com Agregação do Instituto Superior de Agronomia da Universidade de Lisboa, orientadora; Doutora Elisabete Tavares Lacerda de Figueiredo Oliveira, Professora Auxiliar do Instituto Superior de Agronomia da Universidade de Lisboa. THESIS PRESENTED TO OBTAIN THE DOCTOR DEGREE IN FORESTRY ENGINEERING AND NATURAL RESOURCES Instituições Financiadoras e âmbito: Programa de doutoramento FCT (Sustainable Forests and Products, SUSFOR) - PD/BD/52693/2014 2020 Agradecimentos Ao aproximar-se o fim de mais um capítulo da minha vida académica e pessoal, não poderia, nem posso deixar escapar a oportunidade de agradecer àqueles que de alguma forma me apoiaram, contribuíram e proporcionaram esta oportunidade. Sem o vosso apoio provavelmente não teria conseguido chegar até este momento. -
A Survey of Genome Size Diversity Within Scale Insects (Hemiptera: Coccoidea) and Cockroaches and Termites (Blattodea)
A Survey of Genome Size Diversity Within Scale Insects (Hemiptera: Coccoidea) and Cockroaches and Termites (Blattodea) by Darren James Kelly A Thesis presented to The University of Guelph In partial fulfilment of requirements for the degree of Master of Science in Integrative Biology Guelph, Ontario, Canada © Darren James Kelly, May, 2018 ABSTRACT A SURVEY OF GENOME SIZE DIVERSITY WITHIN SCALE INSECTS (HEMIPTERA: COCCOIDEA) AND COCKROACHES AND TERMITES (BLATTODEA) Darren James Kelly Advisor: University of Guelph, 2018 Dr. T. Ryan Gregory This thesis is an investigation of the genome size diversity present within two diverse insect groups: the hemipteran superfamily Coccoidea (scale insects) and the order Blattodea (cockroaches and termites). Data have previously been lacking for these two groups, even though both present some intriguing potential patterns of genome size diversity related to unique aspects of their biology. More than 140 species from the two groups were estimated for genome size using Feulgen Image Analysis Densitometry (FIAD). Coccoidean genome sizes ranged from 0.15pg-2.1pg (n=62 species) while blattodeans ranged from 0.58pg-9.58pg (n=70 species). These data were then correlated with organismal traits related to ecology, morphology, metamorphosis, and reproduction. Genome size was found to be most strongly related to body size and geographic range size in scale insects and to the evolution of sociality in blattodeans. iii Acknowledgments To start, I am extremely thankful for this opportunity to complete my MSc under Dr. T. Ryan Gregory. I am ever grateful for being guided by an accessible, humorous, and knowledgeable advisor for this journey; I left every meeting and discussion with further understanding and confidence in my work.