This Asthma Treatment Has a Lasting Side Effect in Children

Total Page:16

File Type:pdf, Size:1020Kb

This Asthma Treatment Has a Lasting Side Effect in Children ® Priority updates from the research literature PURLs from the family Physicians inquiries network Tanner Nissly, DO; Shailendra Prasad, MBBS, MPH This asthma treatment has Department of Family Medicine and Community Health, University of a lasting side effect in children Minnesota, Minneapolis PURL s E D i tor A new study finds that when children with asthma use James Stevermer, MD, MSPH inhaled corticosteroids, the effect on growth may not be Department of Family Medicine, University of temporary, as once thought. Missouri at Columbia Practice changer awakenings and improving quality of life— Before prescribing inhaled corticosteroids with few side effects.3 (ICS) for a child with asthma, tell the pa- tient—and parents—that their use could What we know about lead to a small but permanent effect on adult iCS and children’s growth height.1 One adverse effect of ICS, however, is that of “decreased linear growth velocity”4—ie, slow- strength of recommendations ing the rate at which children grow. Until re- B: Based on one prospective study. cently, children were thought to “catch up” Kelly HW, Sternberg AL, Lescher R, et al; CAMP Research Group. Effect later in life, either by growing for a longer pe- of inhaled glucocorticoids in childhood on adult height. N Engl J Med. 2012;367:904-912. riod of time than they would had they not tak- en ICS or by growing at an increased velocity after ICS medications are discontinued.4-6 illustrative case a 10-year-old boy is brought in by his fa- ther for asthma follow-up. The child uses an study summary albuterol inhaler, but has had increased The effect on growth is small, coughing and wheezing recently. you are but long-lasting ready to step up his asthma therapy to in- Kelly et al conducted a prospective observa- clude ICS. But the patient’s father questions tional cohort study that followed 943 (90.7%) this, noting that he recently read that steroids participants in the Childhood Asthma Man- may reduce a child’s growth. how should you agement Program (CAMP) in the years af- respond? ter the randomized controlled trial (RCT) ended. nhaled corticosteroids (ICS) are a main- A double-blind, placebo-controlled stay in the treatment of asthma ranging RCT, CAMP studied the linear growth of I from mild persistent to severe. Standards 1041 children with mild-to-moderate persis- of care for asthma treatment involve a step- tent asthma who were divided into 3 treat- wise approach, with ICS added if symptoms ment groups: One group received 200 mcg are not controlled with short-acting beta inhaled budesonide twice daily; a second antagonists alone.2 In addition, monother- group received 8 mg inhaled nedocromil apy with ICS is more effective for control- twice daily; and a third group received pla- ling symptoms than leukotriene inhibitors cebo. Albuterol was used symptomatically or other controller medications, while also by all 3 groups.7 The children ranged in age decreasing hospitalizations and nocturnal from 5 to 13 years at the start of the study; 500 The Journal of family PracTice | SePTEMBER 2013 | Vol 62, no 9 98 patients—split evenly among the 3 treat- ate asthma would have an initial slowing in ment arms—were lost to follow-up. growth velocity but then “catch up” by grow- During the 4 to 6 years of the CAMP trial, ing for a longer period of time.3-5 This is the the budesonide group received a mean to- first prospective study with good follow-up to tal of 636 mg ICS, whereas the nedocromil show that ICS use affects long-term growth and placebo groups received an average of and adult height. While the effect is not large, 88.5 and 109.4 mg ICS, respectively. After some children and their families might be the RCT ended, all participants had stan- concerned about it. dardized asthma treatment, receiving mean adjusted total doses of ICS of 381 mg for the budesonide group, 347.9 mg for the nedocro- caveats mil group, and 355 mg for the placebo group. iCS use was atypical Patients’ height was measured every The randomized controlled portion of the 6 months for the next 4.5 years, and once or study used a prescribed dose of budesonide twice a year thereafter until they reached without regard to symptoms. This is not the adult height (at a mean age of 24.9±2.7 years). typical pattern of ICS use. In addition, com- pliance with ICS varies significantly.12 Be- iCS users were a half inch shorter cause the effect on adult height appears to Long-term ICS use was linked to a lower be dose dependent, however, we think the adult height. The adjusted mean height results of this study are valid. This is the first was 171.1 cm for the budesonide group vs In addition, there was a placebo control prospective 172.3 cm for those on placebo, a difference of group (and big differences in exposure to study with good 1.2 cm, or 0.47 inch (95% confidence interval ICS) only for the duration of the RCT. During follow-up to [CI], −1.9 to −0.5; P=.001); the mean adult the subsequent study, all patients received show that iCS height in the nedocromil group (172.1 cm) equivalent doses of ICS. This means that the use affects was similar to that of the placebo group variation in mean adult height achieved can long-term (−0.2 cm; 95% CI, −0.9 to 0.5; P=.61). be primarily ascribed to participants’ use of growth and The lower adult height in the ICS group ICS during the 4- to 6-year CAMP trial. Of adult height. did not vary significantly based on sex, age at note, the effect of ICS was greatest in pre- trial entry, race, or duration of asthma prior to pubertal participants, so there may be a di- trial entry; however, dose was a key factor. A minished effect as teens approach their final larger daily dose of budesonide—particularly height. in the first 2 years of the RCT—was associated The study did not look at the effect of ICS with a lower adult height (about −0.1 cm for use in patients with severe asthma—the group each mcg/kg in that 2-year time frame). This most likely to use ICS. However, the benefits was consistent with results from studies that of ICS for those with severe asthma likely out- looked at other types of ICS (beclomethasone, weigh any negative effects on adult height. fluticasone, and mometasone).8-11 The study also showed that growth ve- locity was reduced in the first 2 years of challenges to imPlementation assigned treatment with budesonide, and What to tell patients this was primarily among prepubertal par- The message we convey to patients (and par- ticipants. After the initial 2-year slowing in ents) about ICS use is a nuanced one. We can growth rate, the children resumed growing stress that ICS remain very important in the at normal speeds. treatment of asthma and, while it appears that their use causes a slight decrease in adult height, most children with persistent asthma What’s neW? benefit from ICS. JFP Now we know: Children don’t “catch up” Retrospective studies have reported that ACKNOWLEDGEMENT The PURLs Surveillance System is supported in part by Grant children on ICS for mild persistent to moder- number UL1RR024999 from the national center for re- JfPonline.com Vol 62, no 9 | SePTEMBER 2013 | The Journal of family PracTice 501 PURLs® search resources, a clinical Translational Science award to or the national institutes of health. the university of chicago. The content is solely the responsi- bility of the authors and does not necessarily represent the copyright © 2013 family Physicians inquiries network. official views of the national center for research resources all rights reserved. references 1. Kelly HW, Sternberg AL, Lescher R, et al; CAMP Research Group. J Allergy Clin Immunol. 1997;99:466-474. Effect of inhaled glucocorticoids in childhood on adult height. 7. The Childhood Asthma Management Program Research Group. N Engl J Med. 2012;367:904-912. Long-term effects of budesonide or nedocromil in children with 2. Expert Panel Report 3: Guidelines for the Diagnosis and Man- asthma. N Engl J Med. 2000;343:1054-1063. agement of Asthma. National Institutes of Health National 8. Tinkelman DG, Reed CE, Nelson HS, et al. Aerosol beclometha- Heart, Lung and Blood Institute: National Asthma Education sone dipropionate compared with theophylline as primary treat- and Prevention Program, 2007. Available at: http://www.nhlbi. ment of chronic, mild to moderately severe asthma in children. nih.gov/guidelines/asthma/asthgdln.pdf. Accessed August 15, Pediatrics. 1993;92:64-77. 2013. 9. Verberne AA, Frost C, Roorda RJ, et al. One year treatment with 3. Chauhan BF, Ducharme FM. Anti-leukotriene agents compared salmeterol compared with beclomethasone in children with to inhaled corticosteroids in the management of recurrent and/ asthma. Am J Respir Crit Care Med. 1997;156:688-695. or chronic asthma in adults and children. Cochrane Database Syst Rev. 2012;(5):CD002314. 10. Allen DB, Bronsky EA, LaForce CF, et al. Growth in asthmatic children treated with fluticasone propionate. J Pediatr 1998;132: 4. Agertoft L, Pedersen S. Effect of long- term treatment with 472-477. budesonide on adult height in children with asthma. N Engl J Med. 2000;343:1064-1069. 11. Skoner DP, Meltzer EO, Milgrom H, et al. Effects of inhaled mo- metasone furoate on growth velocity and adrenal function: a 5. Van Bever HP, Desager KN, Lijssens N, et al.
Recommended publications
  • Comparison of Intramuscular Betamethasone and Oral
    Color profile: Disabled Composite Default screen 100 ORIGINAL ARTICLE 100 95 95 75 75 25 25 5 5 0 Comparison of intramuscular 0 betamethasone and oral prednisone in the prevention of relapse of acute asthma John S Chan MD1, Robert L Cowie MD1, Gerald C Lazarenko MD2, Cinde Little RRT1, Sandra Scott RRT1, Gordon T Ford MD FCCP1 1Division of Respiratory Medicine and 2Department of Emergency Medicine, University of Calgary, Calgary, Alberta JS Chan, RL Cowie, GC Lazarenko, C Little, S Scott, tively) and use of inhaled corticosteroids (46% versus 64.3% GT Ford. Comparison of intramuscular betamethasone respectively) (P<0.05). Using intention-to-treat analysis, the and oral prednisone in the prevention of relapse of acute relapse rates for betamethasone and prednisone at day 7 were asthma. Can Respir J 2001;8(3):147-152. 14.9% (13 of 87 patients) and 25% (21 of 84 patients), respectively (P=0.1), and at day 21, the rates were 36.8% (32 OBJECTIVE: To compare the relapse rate after a single intra- of 87 patients) and 31% (26 of 84 patients), respectively muscular injection of a long acting corticosteroid, betametha- (P=0.4). There were no differences in symptom score, peak sone, with oral prednisone in patients discharged from the flows and adverse effects between the two groups at days 7 emergency department (ED) for acute exacerbations of and 21. asthma. CONCLUSIONS: A single dose of intramuscular betametha- PATIENTS AND METHODS: Patients with acute exacer- sone 12 mg was safe and as efficacious as prednisone in pre- bations of asthma who were suitable for discharge from the venting the relapse of acute asthma.
    [Show full text]
  • Long-Term Budesonide Or Nedocromil Mineral Accretion Over a Period of Years
    term inhaled corticosteroid (ICS) treatment on bone Long-term Budesonide or Nedocromil mineral accretion over a period of years. Treatment, Once Discontinued, Does Not Alter the Course of Mild to Moderate Asthma in STUDY POPULATION. Cohort follow-up study for a median Children and Adolescents of 7 years with 877 children 5 to 12 years of age who Strunk RC, Sternberg AL, Szefler SJ, et al. J Pediatr. had mild-to-moderate asthma and initially were ran- 2009;154(5):682–687 domly assigned in the Childhood Asthma Management Program. PURPOSE OF THE STUDY. To determine whether long-term, METHODS. Serial dual-energy x-ray absorptiometry scans continuous use of inhaled antiinflammatory medications of the lumbar spine to assess bone mineral density were affects asthma outcomes in children with mild-to-mod- performed for all patients. Annual bone mineral accre- erate asthma after use is discontinued. tion was calculated for 531 boys and 346 girls. STUDY POPULATION. A total of 941 children, 5 to 12 years of RESULTS. Oral corticosteroid bursts produced dose- age, who had previously participated in the Childhood dependent reductions in bone mineral accretion (0.052, Asthma Management Program (CAMP). 0.049, and 0.046 g/cm2 per year with 0, 1–4, and Ն5 courses, respectively) and increases in the risk for osteo- METHODS. During the CAMP trial, subjects received treat- penia (10%, 14%, and 21%, respectively) in boys but ment with budesonide, nedocromil, or placebo for 4.3 not girls. Cumulative ICS use was associated with a small years. During the posttrial period, asthma manage- decrease in bone mineral accretion in boys but not girls ment was provided by primary care physicians ac- but no increased risk for osteopenia.
    [Show full text]
  • FDA Briefing Document Pulmonary-Allergy Drugs Advisory Committee Meeting
    FDA Briefing Document Pulmonary-Allergy Drugs Advisory Committee Meeting August 31, 2020 sNDA 209482: fluticasone furoate/umeclidinium/vilanterol fixed dose combination to reduce all-cause mortality in patients with chronic obstructive pulmonary disease NDA209482/S-0008 PADAC Clinical and Statistical Briefing Document Fluticasone furoate/umeclidinium/vilanterol fixed dose combination for all-cause mortality DISCLAIMER STATEMENT The attached package contains background information prepared by the Food and Drug Administration (FDA) for the panel members of the advisory committee. The FDA background package often contains assessments and/or conclusions and recommendations written by individual FDA reviewers. Such conclusions and recommendations do not necessarily represent the final position of the individual reviewers, nor do they necessarily represent the final position of the Review Division or Office. We have brought the supplemental New Drug Application (sNDA) 209482, for fluticasone furoate/umeclidinium/vilanterol, as an inhaled fixed dose combination, for the reduction in all-cause mortality in patients with COPD, to this Advisory Committee in order to gain the Committee’s insights and opinions, and the background package may not include all issues relevant to the final regulatory recommendation and instead is intended to focus on issues identified by the Agency for discussion by the advisory committee. The FDA will not issue a final determination on the issues at hand until input from the advisory committee process has been considered
    [Show full text]
  • Protective Effects of Inhaled Ipratropium Bromide on Bronchoconstriction Induced by Adenosine and Methacholine in Asthma
    Eur Aesplr J 1992, 5, 56()-665 Protective effects of inhaled ipratropium bromide on bronchoconstriction induced by adenosine and methacholine In asthma N. Crimi, F. Palermo, R. Oliveri, R. Polosa, I. Settinieri, A. Mistretta Protective effects of inhaled ipratropium bromide on bronchoconstriction induced by Istituto di Malattie dell' Apparato adenosine and methacholine in asthma. N. Crimi, F. Palermo, R. Oliveri, R. Po/osa, Respiratorio e Tisiologia, Universita' di Catania, Catania, Italy. I. Seuinier~ A. Mistretta. ABSTRACT: Although adenosine-Induced bronchoconstrictlon is mainly due to Correspondence: N. Crimi mast cell mediator release, vagal reflexes have also been Implicated in this Istituto di Malattie dell' Appara.to response. Respiratorio e Tisiologia We have Investigated the effect of a speciflc muscarlnlc-receptor antagonist, Universita' di Catania ipratroplum bromide, on methacholine- and adenosine-Induced bronchoconstriction Via Passo Gravina 187 In a randomized, placebo-controlled, double-blind study of 12 asthmatic subjects. 95125 Catania Airway response was evaluated as forced expiratory volume in one second (FEV,). Italy Inhaled lpratroplum bromide (40 Jlg), administered 20 mln prior to bronchoprovocation, Increased the provocation dose of Inhaled methacholine and Keywords: Adenosine adenosine required to reduce FEV, by 20% from baseline (PD,.) from 0.11 to 0.79 asthma ipratropium bromide mg (p<O.Ol) and from 0.57 to 1.27 mg (p<0.01), respectively. The mean baseline methacholine FEV, values after administration of lpratroplum bromide were signlfkantly higher than after placebo administration (p<O.OS). However, there was no correlation Received: May 22 1991 between the degree of bronchodllatatlon and dose-ratios for methacholine and Accepted after revision January 7 1992 adenosine.
    [Show full text]
  • Core Safety Profile
    Core Safety Profile Active substance: Nedocromil Pharmaceutical form(s)/strength: Eye drops: 20 mg/ml, Inhalation vapour: 5 mg/ml, Pressurised inhalation: 2 mg/dose, 2mg/0,1 mg, Nebuliser solution: 10 mg/2 ml, Inhalation powder: 10 mg/dose, Nasal spray: 10 mg/ml P-RMS: CZ/H/PSUR/0016/001 Date of FAR: 09.10.2010 EU Core Safety Profile (CSP) For Nedocromil sodium NB: This CSP is combining safety information from the three existing pharmaceutical forms: Eye drops, Nasal spray and Inhaler. Information that is specific to one form is identified by a subheading. No subheading indicates that information is valid for all pharmaceuticals forms 4.3 Contraindications For eye drops <Product name> eye drops is contraindicated in patients with known hypersensitivity to nedocromil sodium, benzalkonium chloride or other constituents of the formulation. For Nasal spray and Inhaler <Product name> nasal spray or inhaler is contraindicated in patients with known hypersensitivity to any of the constituents. 4.4 Special warnings and precautions for use For eye drops Patients should be advised not to wear soft contact lenses during treatment with <product name> eye drops. Benzalkonium chloride, a constituent of the formulation, may accumulate in soft contact lenses. This preservative, when slowly released, could possibly irritate the cornea. In patients who continue to wear hard or gas permeable contact lenses during <product name> eye drops treatment, the lenses should be taken out of the eye prior to instillation of the drops. They should be inserted again not earlier than 10 minutes after administration, in order to allow an even conjunctival distribution of the solution.
    [Show full text]
  • Drug Class Review Nasal Corticosteroids
    Drug Class Review Nasal Corticosteroids Final Report Update 1 June 2008 The Agency for Healthcare Research and Quality has not yet seen or approved this report The purpose of this report is to make available information regarding the comparative effectiveness and safety profiles of different drugs within pharmaceutical classes. Reports are not usage guidelines, nor should they be read as an endorsement of, or recommendation for, any particular drug, use or approach. Oregon Health & Science University does not recommend or endorse any guideline or recommendation developed by users of these reports. Dana Selover, MD Tracy Dana, MLS Colleen Smith, PharmD Kim Peterson, MS Oregon Evidence-based Practice Center Oregon Health & Science University Mark Helfand, MD, MPH, Director Marian McDonagh, PharmD, Principal Investigator, Drug Effectiveness Review Project Copyright © 2008 by Oregon Health & Science University Portland, Oregon 97239. All rights reserved. Final Report Update 1 Drug Effectiveness Review Project TABLE OF CONTENTS INTRODUCTION ..........................................................................................................................5 Scope and Key Questions .......................................................................................................................7 METHODS ....................................................................................................................................9 Literature Search .....................................................................................................................................9
    [Show full text]
  • Asthma Control
    Asthma Stepwise Formulary FOR DAILY CONTROL MEDICATION QuickGuide to abbreviations: step 6 2014 • ICS: inhaled corticosteroid step 5 • LABA: long-acting beta2-agonist Asthma Control HIGH-DOSE ICS • LTRA: leukotriene receptor antagonist (per step 5) • SABA: short-acting beta2-agonist step 4 LTRA (per step 4) for the care of pediatric and adult patients + LTRA (per step 4) + HIGH-DOSE ICS with established asthma step 3 (mark choice): + oral systemic steroids MEDIUM-DOSE ICS fluticasone (Flovent) MDI: (lowest dose for the shortest (per step 3; mark a choice there) 110 mcg: 2 puffs twice daily duration: 5-10 mg is A tool for ongoing assessment considered low-dose) MEDIUM-DOSE ICS + LTRA: montelukast budesonide (Pulmicort) respules: and treatment adjustment step 2 (mark choice): (Singulair) by mouth: 1.0 mg: 1 respule twice daily 4 mg: 1 tablet once daily, or fluticasone (Flovent) MDI: 1 packet oral granules once daily 110 mcg: 1 puff twice daily HIGH-DOSE ICS budesonide (Pulmicort) respules: (per step 5) LOW-DOSE ICS (mark choice): LABA (per step 3) 0.50 mg: 1 respule twice daily + LABA (per step 4) fluticasone (Flovent) MDI: + HIGH-DOSE ICS LABA (per step 3) Inside the QuickGuide... 44 mcg: 2 puffs twice daily (mark choice): + oral systemic steroids budesonide (Pulmicort) respules: + MEDIUM-DOSE ICS fluticasone (Flovent) MDI: (lowest dose for the shortest 0.25 mg: 1 respule twice daily (mark choice): • Asthma control tables step 1 110 mcg: 2 puffs twice daily duration: 5-10 mg is considered low-dose) fluticasone (Flovent)
    [Show full text]
  • Product Information Tilade Cfc-Free
    PRODUCT INFORMATION TILADE CFC-FREE NAME OF THE MEDICINE nedocromil sodium DESCRIPTION Tilade CFC-Free contains nedocromil sodium as a suspension in a non-CFC propellant, 1,1,1,2,3,3,3-heptafluoropropane (HFA-227). Other excipients include povidone, macrogol 600 and menthol. CAS number: 69049-74-74 Nedocromil sodium (Disodium 9-ethyl-6,9-dihydro-4,6-dioxo-10-propyl-4H-pyrano-(3,2- g)quinoline-2,8-dicarboxylate). PHARMACOLOGY Nedocromil sodium inhibits the release of inflammatory mediators from a variety of cell types occurring in the lumen and in the mucosa of the bronchial tree. Laboratory experiments have shown that nedocromil sodium prevents the release of inflammatory chemotactic and smooth muscle contracting mediators which are preformed or derived from arachidonic acid metabolism by both the lipoxygenase and cyclo-oxygenase pathways in a range of human and animal leucocytes. In the Ascaris suum sensitised monkey subjected to bronchial challenge with specific antigen, nedocromil sodium provides protection against changes in airways resistance and lung compliance. Nedocromil sodium prevents the release of mediators such as histamine, LTC4 and PGD2 from the cellular population of the chronically inflamed bronchus. There is growing evidence that these mediators are important also in lung disease in man, and this additional activity may be expected to give nedocromil sodium extended scope in the management of bronchial asthma in which inflammation, allergy and bronchial hyper-responsiveness are significant physiological factors. Pharmacokinetics After inhalation, nedocromil sodium is deposited throughout the respiratory tract, from which about 5% of the dose is absorbed. By the nature of inhalation dosing, much of the delivered dose is swallowed directly or subsequently upon mucociliary clearance from the large airways.
    [Show full text]
  • Supplement to NDL [As of December, 17,2008]
    Supplement to NDL [As of December, 17,2008] S/N GENERIC NAME DESCRIPTION TGROUP 1 Abacavir sulfate Tablet, 60mg Anti-infective,Anti- retroviral 2 Abacavir sulfate+Lamivudine Tablet, 60mg+30mg Anti-infective,Anti- retroviral 3 Abacavir Tablet, 60mg+30mg+60mg Anti-infective,Anti- sulfate+Lamivudine+Zidovudine retroviral 4 Acarbose Tablet, 50mg, 100mg Oral Anti-diabetic 5 Acemetacin Capsule, 30mg, 60mg, 90mg(D/R) Anti-rheumatic 6 Alfacalcidol Capsule(s/g), 1mcg Vitamins 7 Amikacin Eye drop, 0.3% Ophthalmic, Antibacterial 8 Apraclonidine Eye drop, 0.5%, 1% Ophthalmic, Anti-glaucoma 9 Azelastin Eye drop, 0.05% Ophthalmic, Anti-allergic 10 Betamethasone sodium Injection, 2mg+5mg/2ml Anti-inflammatory phosphate+Betamethasone dipro 11 Bimatoprost Eye drop, 0.003% Ophthalmic, Anti-glaucoma 12 Brimonidine Eye drop, 0.2% Ophthalmic, Anti-glaucoma 13 Bromfenac Eye drop, 0.1% Ophthalmic, Anti- inflammatory 14 Cefditoren Tablet 200mg, 400mg Anti-infective 15 Chloramphenicol+Dexamethasone Eye drop, 0.5%+0.1% Ophthalmic, Anti- infective/Anti-inflammatory combination 16 Ciprofloxacin Eye drop(ointment), 0.3% Ophthalmic, Antibacterial 17 Cisatracurium Injection, 2mg Neuromuscular blocker 18 Clotrimazole Troches, 10mg Orophargeal preparation 19 Cyproterone acetate Tablet, 50mg Anti-androgenic hormone 20 Darunavir Tablet(f/c), 300mg Anti-infective, Anti- retroviral 21 Desloratadine Tablet, 5mg, Syrup, 0.5mg/ml Anti-histamine 22 Dexamethasone acetate +Clotrimazole Cream, 0.4mg+100mg Dermatological, Anti- inflammatory/Anti-infective combination 23 Drospirenone+Ethinyl
    [Show full text]
  • Balancing Safety and Efficacy in Pediatric Asthma Management
    Balancing Safety and Efficacy in Pediatric Asthma Management David P. Skoner, MD ABSTRACT. In the treatment of childhood asthma, bal- or most children, the onset of asthma occurs ancing safety and efficacy is key to achieving optimal before the age of 2 years, underscoring the need therapeutic benefit. Inhaled corticosteroids (ICS), be- for early treatment not only to control the de- cause of their efficacy, remain a cornerstone in managing F bilitating effects of asthma symptomatology but also persistent pediatric asthma, but also are associated with to prevent irreversible structural changes that can significant adverse effects, including growth suppres- lead to permanent airway obstruction.1 Because sion. Consequently, careful attention must be given to balancing their safety and efficacy, which should include asthma requires chronic—often lifelong—treatment, an understanding of airway patency and systemic ab- a critical issue in the management of pediatric sorption (dose, disease severity, propellant and lipophi- asthma is balancing the safety and efficacy of asthma licity of inhalant), bioavailability (inhalation technique, interventions to achieve optimal long-term results. propellant, delivery devices, and hepatic first-pass me- This review will examine some of the challenges to tabolism), techniques for using minimum effective doses balancing safety and efficacy associated with inhaled (dosing time, add-on therapy), and reduction of other corticosteroid (ICS) therapy and explore the potential exacerbating conditions (allergens, influenza, upper-res- benefits of other available alternative therapies for piratory diseases). The growth-suppressive effects of ICS managing persistent mild-to-moderate pediatric may be most evident in children with: 1) mild asthma asthma. because the relatively high airway patency may facilitate increased levels of deposition and steroid absorption in more distal airways, and 2) evening dosing that may ICS reduce nocturnal growth hormone activity.
    [Show full text]
  • Prior Authorization PDL Implementation Schedule
    Prior Authorization PDL Implementation Schedule Effective Date: Item January 1, 2017 – Descriptive Therapeutic Class Drugs on PDL Drugs which Require PA Nbr Updated: March 1, 2018 1 ADD/ADHD Amphetamine Salt Combo Tablet ( Generic Adderall®) Amphetamine ODT (Adzenys® XR ODT) Stimulants and Related Agents Amphetamine Salt Combo ER (Adderall XR®) Amphetamine Suspension (Dyanavel XR®) Atomoxetine Capsule (Strattera®) Amphetamine Salt Combo ER (Generic; Authorized Generic for Adderall XR) Dexmethylphenidate (Generic; Authorized Generic of Focalin®) Amphetamine Sulfate Tablet (Evekeo®) Dexmethylphenidate ER (Focalin XR®) Armodafinil Tablet (Generic; Authorized Generic; Nuvigil®) Dextroamphetamine Solution (Procentra®) Clonidine ER Tablet (Generic; Kapvay®) Dextroamphetamine Sulfate Tablet (Generic) Dexmethylphenidate (Focalin®) Guanfacine ER Tablet (Generic) Dexmethylphenidate XR (Generic; Authorized Generic for Focalin XR) Lisdexamfetamine Capsule (Vyvanse®) Dextroamphetamine Sulfate Capsule ER (Generic; Dexedrine®Spansule) Methylphenidate IR (Generic) Dextroamphetamine IR Tablet (Zenzedi®) Methylphenidate ER Chew (Quillichew ER®) Dextroamphetamine Solution (Generic for Procentra®) Methylphenidate ER Capsule (Metadate CD®) Guanfacine ER Tablet (Intuniv®) Methylphenidate ER Tablet (Generic; Generic Concerta®; Methamphetamine (Generic; Desoxyn®) Authorized Generic Concerta®) Methylphenidate ER Susp (Quillivant XR®) Methylphenidate IR (Ritalin®) Modafinil Tablet (Generic) Methylphenidate Solution (Generic; Authorized Generic; Methylin®) Methylphenidate
    [Show full text]
  • COPD/Asthma Class Update
    Drug Use Research & Management Program Oregon State University, 500 Summer Street NE, E35, Salem, Oregon 97301-1079 Phone 503-947-5220 | Fax 503-947-1119 © Copyright 2012 Oregon State University. All Rights Reserved Class Update: Asthma/COPD Medications Month/Year of Review: July 2014 Last Oregon Review: May 2012/November 2013 PDL Classes: Asthma Controller, Asthma Rescue, COPD Source Documents: OSU College of Pharmacy New drug(s): Anoro® Ellipta® (umeclidinium/vilanterol) Manufacturer: GSK/Theravance Dossier Received: Yes Current Status of PDL Classes: Chronic Obstructive Pulmonary Disease (COPD): Preferred Agents: IPRATROPIUM BROMIDE HFA AER AD, IPRATROPIUM BROMIDE SOLUTION, IPRATROPIUM/ALBUTEROL SULFATE AMPUL-NEB, TIOTROPIUM BROMIDE(SPIRIVA®) CAP W/DEV, IPRATROPIUM/ALBUTEROL (COMBIVENT®) RESPIMAT Non-Preferred Agents: AFORMOTEROL (BROVANA®), FORMOTEROL (PERFOROMIST), ROFLUMILAST (DALIRESP®), INDACATEROL (ARCAPTA®) NEOHALER, ACLIDINIUM (TUDORZA®) PRESSAIR, VILANTEROL/FLUTICASONE (BREO®) ELLIPTA Asthma Controllers and Asthma Rescue Preferred Agents: BECLOMETHASONE DIPROPIONATE(QVAR®), BUDESONIDE (PULMICORT FLEXHALER®), BUDESONIDE / FORMOTEROL FUMARATE (SYMBICORT®), FLUTICASONE PROPIONATE(FLOVENT HFA®), FLUTICASONE PROPIONATE(FLOVENT DISKUS®), FLUTICASONE/SALMETEROL(ADVAIR DISKUS®), FLUTICASONE/SALMETEROL(ADVAIR HFA®), FORMOTEROL (FORADIL®) AEROLIZER, MONTELUKAST SODIUM TAB CHEW/TABLET, SALMETEROL XINAFOATE (SEREVENT®), ALBUTEROL SULFATE SOLUTION/VIAL NEBS, PIRBUTEROL ACETATE, PROAIR® HFA, VENTOLIN® HFA Non-preferred Agents: CICLESONIDE
    [Show full text]