Contributions Cushman Foundation Foraminiferal
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Warm Water Benthic Foraminifera Document The
Boise State University ScholarWorks Geosciences Faculty Publications and Presentations Department of Geosciences 11-15-2014 Warm Water Benthic Foraminifera Document the Pennsylvanian-permian Warming and Cooling Events – The Record from the Western Pangea Tropical Shelves Vladimir Davydov Boise State University Publication Information Davydov, Vladimir. (2014). "Warm Water Benthic Foraminifera Document the Pennsylvanian-permian Warming and Cooling Events – The Record from the Western Pangea Tropical Shelves". Palaeogeography, Palaeoclimatology, Palaeoecology, 414, 284-295. http://dx.doi.org/10.1016/j.palaeo.2014.09.013 NOTICE: this is the author’s version of a work that was accepted for publication in Palaeogeography, Palaeoclimatology, Palaeoecology. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Palaeogeography, Palaeoclimatology, Palaeoecology, (In Press). doi: 10.1016/j.palaeo.2014.09.013 This is an author-produced, peer-reviewed version of this article. The final, definitive version of this document can be found online at Palaeogeography, Palaeoclimatology, Palaeoecology, published by Elsevier. Copyright restrictions may apply. doi: 10.1016/ j.palaeo.2014.09.013 1 Vladimir Davydov Warm water benthic foraminifera document the Pennsylvanian-Permian warming and cooling events – the record from the Western Pangea tropical shelves Permian Research Institute, Boise State University and Kazan (Volga Region) Federal University , Russia; 1910 University Drive, Department of Geosciences, Boise State University, Boise, Idaho, USA; [email protected]; fax: (208) 4264061. ABSTRACT. Shallow warm water benthic foraminifera (SWWBF), including all larger fusulinids (symbiont-bearing benthic foraminifera), are among the best indicators of paleoclimate and paleogeography in the Carboniferous and Permian. -
Larger Foraminifera from Deep Drill Holes on Midway Atoll
Larger Foraminifera From Deep Drill Holes on Midway Atoll GEOLOGICAL SURVEY PROFESSIONAL PAPER 680-C Larger Foraminifera From Deep Drill Holes on Midway Atoll By W. STORRS COLE GEOLOGY OF THE MIDWAY AREA, HAWAIIAN ISLANDS GEOLOGICAL SURVEY PROFESSIONAL PAPER 680-C Discussion of nine species, four of which are diagnostic of early Miocene (Tertiary e) UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1969 UNITED STATES DEPARTMENT OF THE INTERIOR WALTER J. HIGKEL, Secretary GEOLOGICAL SURVEY William T. Pecora, Director For sale by the Superintendent of Documents, U.S. Government Printing Office Washington, D.C. 20402 - Price 45 cents (paper cover) CONTENTS Abstract.__________________________________ Cl Introduction_______________________________ 1 Comparison with other Pacific island drill holes. 3 Migration....______________________________ 3 Discussion of species___.___ 4 Family Miliolidae.____ 4 Family Soritidae_-____ 4 Family Alveolinidae___ 5 Family Camerinidae_._ 8 Family Miogypsinidae. 10 References cited._________ 12 Index___--________-___ 15 ILLUSTRATIONS [Plates follow index] PLATE 1. Miocene Miogypsinoides. 2. Miocene Spiroclypeus. 3. Miocene Spiroclypeus and post-Miocene Heterostegina, Marginopora, and Sorites. 4. Miocene Marginopora, Sorites, Borelis, Flosculinella, and Austrotrillina and post-Miocene Borelis. 5. Miocene Borelis and Austrotrillina and post-Miocene Borelis. FIGURE 1. Index map showing Midway and other Pacific localities which have related fossiliferous sections._ Cl 2. Map of Midway atoll, showing location of drill holes_______________________________________ 2 TABLES Page TABLE 1. Distribution of larger Foraminif era in the Midway drill holes. __________-______-__-_-___---------_----__---- C2 2. Reevaluation and distribution of selected Foraminif era from the Kita-daito-jima test hole- _____-___---_____-_ 3 3. -
Next-Generation Environmental Diversity Surveys of Foraminifera: Preparing the Future Jan Pawlowski, Franck Lejzerowicz, Philippe Esling
Next-Generation Environmental Diversity Surveys of Foraminifera: Preparing the Future Jan Pawlowski, Franck Lejzerowicz, Philippe Esling To cite this version: Jan Pawlowski, Franck Lejzerowicz, Philippe Esling. Next-Generation Environmental Diversity Sur- veys of Foraminifera: Preparing the Future . Biological Bulletin, Marine Biological Laboratory, 2014, 227 (2), pp.93-106. 10.1086/BBLv227n2p93. hal-01577891 HAL Id: hal-01577891 https://hal.archives-ouvertes.fr/hal-01577891 Submitted on 28 Aug 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/268789818 Next-Generation Environmental Diversity Surveys of Foraminifera: Preparing the Future Article in Biological Bulletin · October 2014 Source: PubMed CITATIONS READS 26 41 3 authors: Jan Pawlowski Franck Lejzerowicz University of Geneva University of Geneva 422 PUBLICATIONS 11,852 CITATIONS 42 PUBLICATIONS 451 CITATIONS SEE PROFILE SEE PROFILE Philippe Esling Institut de Recherche et Coordination Acoust… 24 PUBLICATIONS 551 CITATIONS SEE PROFILE Some of the authors of this publication are also working on these related projects: UniEuk View project KuramBio II (Kuril Kamchatka Biodiversity Studies II) View project All content following this page was uploaded by Jan Pawlowski on 30 December 2015. -
A Guide to 1.000 Foraminifera from Southwestern Pacific New Caledonia
Jean-Pierre Debenay A Guide to 1,000 Foraminifera from Southwestern Pacific New Caledonia PUBLICATIONS SCIENTIFIQUES DU MUSÉUM Debenay-1 7/01/13 12:12 Page 1 A Guide to 1,000 Foraminifera from Southwestern Pacific: New Caledonia Debenay-1 7/01/13 12:12 Page 2 Debenay-1 7/01/13 12:12 Page 3 A Guide to 1,000 Foraminifera from Southwestern Pacific: New Caledonia Jean-Pierre Debenay IRD Éditions Institut de recherche pour le développement Marseille Publications Scientifiques du Muséum Muséum national d’Histoire naturelle Paris 2012 Debenay-1 11/01/13 18:14 Page 4 Photos de couverture / Cover photographs p. 1 – © J.-P. Debenay : les foraminifères : une biodiversité aux formes spectaculaires / Foraminifera: a high biodiversity with a spectacular variety of forms p. 4 – © IRD/P. Laboute : îlôt Gi en Nouvelle-Calédonie / Island Gi in New Caledonia Sauf mention particulière, les photos de cet ouvrage sont de l'auteur / Except particular mention, the photos of this book are of the author Préparation éditoriale / Copy-editing Yolande Cavallazzi Maquette intérieure et mise en page / Design and page layout Aline Lugand – Gris Souris Maquette de couverture / Cover design Michelle Saint-Léger Coordination, fabrication / Production coordination Catherine Plasse La loi du 1er juillet 1992 (code de la propriété intellectuelle, première partie) n'autorisant, aux termes des alinéas 2 et 3 de l'article L. 122-5, d'une part, que les « copies ou reproductions strictement réservées à l'usage privé du copiste et non destinées à une utilisation collective » et, d'autre part, que les analyses et les courtes citations dans un but d'exemple et d'illustration, « toute représentation ou reproduction intégrale ou partielle, faite sans le consentement de l'auteur ou de ses ayants droit ou ayants cause, est illicite » (alinéa 1er de l'article L. -
The Revised Classification of Eukaryotes
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/231610049 The Revised Classification of Eukaryotes Article in Journal of Eukaryotic Microbiology · September 2012 DOI: 10.1111/j.1550-7408.2012.00644.x · Source: PubMed CITATIONS READS 961 2,825 25 authors, including: Sina M Adl Alastair Simpson University of Saskatchewan Dalhousie University 118 PUBLICATIONS 8,522 CITATIONS 264 PUBLICATIONS 10,739 CITATIONS SEE PROFILE SEE PROFILE Christopher E Lane David Bass University of Rhode Island Natural History Museum, London 82 PUBLICATIONS 6,233 CITATIONS 464 PUBLICATIONS 7,765 CITATIONS SEE PROFILE SEE PROFILE Some of the authors of this publication are also working on these related projects: Biodiversity and ecology of soil taste amoeba View project Predator control of diversity View project All content following this page was uploaded by Smirnov Alexey on 25 October 2017. The user has requested enhancement of the downloaded file. The Journal of Published by the International Society of Eukaryotic Microbiology Protistologists J. Eukaryot. Microbiol., 59(5), 2012 pp. 429–493 © 2012 The Author(s) Journal of Eukaryotic Microbiology © 2012 International Society of Protistologists DOI: 10.1111/j.1550-7408.2012.00644.x The Revised Classification of Eukaryotes SINA M. ADL,a,b ALASTAIR G. B. SIMPSON,b CHRISTOPHER E. LANE,c JULIUS LUKESˇ,d DAVID BASS,e SAMUEL S. BOWSER,f MATTHEW W. BROWN,g FABIEN BURKI,h MICAH DUNTHORN,i VLADIMIR HAMPL,j AARON HEISS,b MONA HOPPENRATH,k ENRIQUE LARA,l LINE LE GALL,m DENIS H. LYNN,n,1 HILARY MCMANUS,o EDWARD A. D. -
A Case for Verella/Eofusulina Discrimination
SPANISH J OURNAL OF P ALAEONTOLOGY Demarcation problem in fusuline classifi cation: A case for Verella/Eofusulina discrimination Katsumi UENO1,2* & Elisa VILLA 2 1 Department of Earth System Science, Fukuoka University, Fukuoka 814-0180, Japan; [email protected] 2 Departamento de Geología, Universidad de Oviedo, c/ Jesús Arias de Velasco, s/n, 33005 Oviedo, Spain; [email protected] * Corresponding author Ueno, K. & Villa, E. 2018. Demarcation problem in fusuline classifi cation: A case for Verella/Eofusulina discrimination. [Problemas en la clasifi cación de fusulinas: el ejemplo de la distinción entre Verella y Eofusulina ]. Spanish Journal of Palaeontology, 33 (1), 215-230. Manuscript received 4 December 2017 © Sociedad Española de Paleontología ISSN 2255-0550 Manuscript accepted 5 March 2018 ABSTRACT RESUMEN The eofusulinin genera Verella and Eofusulina formed an La evolución de Verella hacia Eofusulina presenta un gran important lineage among fusulines to defi ne the Bashkirian/ interés para caracterizar paleontológicamente el intervalo Moscovian transitional interval in the Pennsylvanian (Upper de transición entre los pisos Bashkiriense y Moscoviense Carboniferous) subsystem. We studied morphologies of (Pensilvánico/Carbonífero superior). En este trabajo hemos Verella transiens , a highly evolved form in the genus, and estudiado detalladamente la morfología de Verella transiens , the fi rst Eofusulina species from the Los Tornos section in especie avanzada de este género, en ejemplares procedentes the Cantabrian Zone of northern -
Foraminifera (Forams) in Both the Protozoa Kingdom Or 1) Order Fusilinida (Fusilinids) the Protista Kingdom and You Will Find Variation in the Books
Kingdom – Protozoa or Protista Note: Forams have been included Phylum – Foraminifera (Forams) in both the Protozoa kingdom or 1) Order Fusilinida (Fusilinids) the Protista kingdom and you will find variation in the books. 2) Genus Nummulites Forams are small (usually less than 1 mm) shelled aquatic species. There are over 10,000 known species. Most are benthic and marine, but pelagic and fresh-water species do exist. The larger forams are excellent index fossils for both age and environment for much of geologic time as their form and structure continuously evolved. They are used in oil industry research in understanding geologic environment of drilled strata. Fusulinida is an extinct order of Foraminifera that lived from the Silurian until the Permian Periods of the Paleozoic Era. They tests (shells) were composed of tightly packed microgranular calcite. Genus Nummulites - A genus of relatively large (0.5-2 inches) modern recent forams found in Eocene to Miocene rocks. The Top pyramids in Egypt are constructed of fossiliferous limestone full view of Nummulites Horizontally bisected 1 inch Kingdom – ANIMALIA 3) Genus Astraeospongia Phylum – Porifera (Sponges) 4) Genus Hydnoceras Sponges are the simplest of animals, lacking tissues or organs. However, sponge cells are integrated and organized for filter feeding, waste deposal, reproduction, and secreting a calcite base that fixes the anchors the animal to substrate. The skeletal structure is often comprised of silica and forms protective spicules. Sponges get their name from the fact that their unicellular food is not taken into a single mouth. It is filtered out of water that passes through many pores, connected by canals, in their bodies. -
Foraminifera As Bioindicators in Coral Reef Assessment and Monitoring: the Foram Index
FORAMINIFERA AS BIOINDICATORS IN CORAL REEF ASSESSMENT AND MONITORING: THE FORAM INDEX PAMELA HALLOCK1*, BARBARA H. LIDZ2 ELIZABETH M. COCKEY-BURKHARD3, AND KELLY B. DONNELLY4 1College of Marine Science, Univ. of South Florida, 140 Seventh Ave. S., St. Petersburg, FL 33701, USA; 2U.S. Geological Survey Center for Coastal and Regional Marine Studies, 600 Fourth St. S., St. Petersburg, FL 33701, USA; 3Minerals Management Service, 381 Elden Street, Herndon, VA 20170, USA; 4Florida Fish and Wildlife Conservation Commission, 100 Eighth St. SE, St. Petersburg, FL 33701, USA *(author for correspondence, e-mail: [email protected]) Abstract. Coral reef communities are threatened worldwide. Resource managers urgently need indicators of the biological condition of reef environments that can relate data acquired through remote-sensing, water-quality and benthic-community monitoring to stress responses in reef or- ganisms. The “FORAM” (Foraminifera in Reef Assessment and Monitoring) Index (FI) is based on 30 years of research on reef sediments and reef-dwelling larger foraminifers. These shelled protists are ideal indicator organisms because: • Foraminifers are widely used as environmental and paleoenvironmental indicators in many contexts; • Reef-building, zooxanthellate corals and foraminifers with algal symbionts have similar water- quality requirements; • The relatively short life spans of foraminifers as compared with long-lived colonial corals facili- tate differentiation between long-term water-quality decline and episodic stress events; • Foraminifers are relatively small and abundant, permitting statistically significant sample sizes to be collected quickly and relatively inexpensively, ideally as a component of comprehensive moni- toring programs; and • Collection of foraminifers has minimal impact on reef resources. USEPA guidelines for ecological indicators are used to evaluate the FI. -
Article Title: the Geographic, Environmental and Phylogenetic Evolution of the Alveolinoidea from the Cretaceous to the Present Day
Article title: The Geographic, Environmental and Phylogenetic Evolution of the Alveolinoidea from the Cretaceous to the Present Day. Authors: Marcelle Boudagher-Fadel[1], Geoffrey David Price[2] Affiliations: Office of the Vice-Provost (Research), University College London, 2 Taviton Street, London WC1H 0BT UK[1] Orcid ids: 0000-0002-2339-2444[1], 0000-0001-8232-6853[2] Contact e-mail: [email protected] License information: This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY) 4.0 https://creativecommons.org/licenses/by/4.0/, which permits unrestricted use, distribution and reproduction in any medium, provided the original author and source are credited. Preprint statement: This article is a preprint and has not been peer-reviewed, under consideration and submitted to UCL Open: Environment Preprint for open peer review. DOI: 10.14324/111.444/000057.v1 Preprint first posted online: 22 October 2020 Keywords: Foraminifera, alveolinoids, Cretaceous, Paleogene, Neogene, Holocene, biostratigraphy, phylogeny, palaeoenvironment, palaeogeographic distribution, extinctions, sea-level changes. , The Environment, Climate, Ecology 1 The Geographic, Environmental and Phylogenetic Evolution of the Alveolinoidea from the Cretaceous to the Present Day. Marcelle K. BouDagher-Fadel and Geoffrey David Price Office of the Vice-Provost (Research), 2 Taviton Street, London WC1H 0BT UK Corresponding author Prof. Marcelle BouDagher-Fadel e-mail: [email protected], Tel: 020 7679 7480 Abstract The superfamily Alveolinoidea is a member of the Order Miliolida, and is comprised of three main families, the Alveolinidae, the Fabulariidae and the Rhapydioninidae. They are examples of Larger Benthic Foraminifera (LBF), which are single cell organisms with specific characteristic endoskeletons. -
X. Paleontology, Biostratigraphy
BIBLIOGRAPHY OF THE GEOLOGY OF INDONESIA AND SURROUNDING AREAS Edition 7.0, July 2018 J.T. VAN GORSEL X. PALEONTOLOGY, BIOSTRATIGRAPHY www.vangorselslist.com X. PALEONTOLOGY, BIOSTRATIGRAPHY X. PALEONTOLOGY, BIOSTRATIGRAPHY ................................................................................................... 1 X.1. Quaternary-Recent faunas-microfloras and distribution ....................................................................... 60 X.2. Tertiary ............................................................................................................................................. 120 X.3. Jurassic- Cretaceous ........................................................................................................................ 161 X.4. Triassic ............................................................................................................................................ 171 X.5. Paleozoic ......................................................................................................................................... 179 X.6. Quaternary Hominids, Mammals and associated stratigraphy ........................................................... 191 This chapter X of the Bibliography 7.0 contains 288 pages with >2150 papers. These are mainly papers of a more general or regional nature. Numerous additional paleontological papers that deal with faunas/ floras from specific localities are listed under those areas in this Bibliography. It is organized in six sub-chapters: - X.1 on modern and sub-recent -
Anatomy & Physiology
ANATOMY & PHYSIOLOGY See General Rules, Eye Protection & other Policies on www.soinc.org as they apply to every event. 1. DESCRIPTION: Participants will be assessed on their understanding of the anatomy and physiology for the human Cardiovascular, Lymphatic, and Excretory systems. A TEAM OF UP TO: 2 APPROXIMATE TIME: 50 Minutes 2. EVENT PARAMETERS: Each team may bring one 8.5” x 11” sheet of paper that may contain information on both sides in any form and from any source along with two stand-alone non-programmable, non-graphing calculators. 3. THE COMPETITION: Participants will complete a written test limited to the following topics. Topics listed in italics will only be assessed at the National Tournament. a. CARDIOVASCULAR SYSTEM: i. Anatomy and physiology of the cardiovascular system ii. The Heart - chambers and valves of the heart, electrical stimulation of myocardial tissue, pacemaker tissue, interpreting ECG (EKG) readings on strips iii. Blood Vessels – structure and function of arteries, arterioles, veins, venules, capillaries, including the functionality of Startling’s forces in the capillaries iv. Blood - plasma, hematocrit, red blood cells, oxygen transport, hemoglobin and cooperative binding of oxygen, platelets and blood clotting, regulation of blood plasma volume and acidity, blood typing & basic genetics of ABO, Rh, blood types v. Measurement of the pulse rate and blood pressure with appropriate instrumentation vi. Calculations include systolic and diastolic pressure, mean arterial pressure, stroke volume & cardiac output vii. Effects of exercise, smoking, alcohol, caffeine, and drugs on the cardiovascular system viii. Understand disorders: Congestive Heart Failure, Atrial Fibrillation, Myocardial Infarction, Atherosclerosis, Bradycardia, and Tachycardia ix. -
The Year 2000 Classification of the Agglutinated Foraminifera
237 The Year 2000 Classification of the Agglutinated Foraminifera MICHAEL A. KAMINSKI Department of Earth Sciences, University College London, Gower Street, London WCIE 6BT, U.K.; and KLFR, 3 Boyne Avenue, Hendon, London, NW4 2JL, U.K. [[email protected]] ABSTRACT A reclassification of the agglutinated foraminifera (subclass Textulariia) is presented, consisting of four orders, 17 suborders, 27 superfamilies, 107 families, 125 subfamilies, and containing a total of 747 valid genera. One order (the Loftusiida Kaminski & Mikhalevich), five suborders (the Verneuilinina Mikhalevich & Kaminski, Nezzazatina, Loftusiina Kaminski & Mikhalevich, Biokovinina, and Orbitolinina), two families (the Syrianidae and the Debarinidae) and five subfamilies (the Polychasmininae, Praesphaerammininae Kaminski & Mikhalevich, Flatschkofeliinae, Gerochellinae and the Scythiolininae Neagu) are new. The classification is modified from the suprageneric scheme used by Loeblich & Tappan (1992), and incorporates all the new genera described up to and including the year 2000. The major differences from the Loeblich & Tappan classification are (1) the use of suborders within the hierarchical classification scheme (2) use of a modified Mikhalevich (1995) suprageneric scheme for the Astrorhizida (3) transfer of the Ammodiscacea to the Astrorhizida (4) restriction of the Lituolida to forms with simple wall structure (5) supression of the order Trochamminida, and (6) inclusion of the Carterinida within the Trochamminacea (7) use of the new order Loftusiida for forms with complex inner structures (8) broadening the definition of the Textulariida to include perforate forms that are initially uniserial or planispiral. Numerous minor corrections have been made based on the recent literature. INTRODUCTION The agglutinated foraminifera constitute a diverse and 25 geologically long-ranging group of organisms.