Article Title: the Geographic, Environmental and Phylogenetic Evolution of the Alveolinoidea from the Cretaceous to the Present Day
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Larger Foraminifera from Deep Drill Holes on Midway Atoll
Larger Foraminifera From Deep Drill Holes on Midway Atoll GEOLOGICAL SURVEY PROFESSIONAL PAPER 680-C Larger Foraminifera From Deep Drill Holes on Midway Atoll By W. STORRS COLE GEOLOGY OF THE MIDWAY AREA, HAWAIIAN ISLANDS GEOLOGICAL SURVEY PROFESSIONAL PAPER 680-C Discussion of nine species, four of which are diagnostic of early Miocene (Tertiary e) UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1969 UNITED STATES DEPARTMENT OF THE INTERIOR WALTER J. HIGKEL, Secretary GEOLOGICAL SURVEY William T. Pecora, Director For sale by the Superintendent of Documents, U.S. Government Printing Office Washington, D.C. 20402 - Price 45 cents (paper cover) CONTENTS Abstract.__________________________________ Cl Introduction_______________________________ 1 Comparison with other Pacific island drill holes. 3 Migration....______________________________ 3 Discussion of species___.___ 4 Family Miliolidae.____ 4 Family Soritidae_-____ 4 Family Alveolinidae___ 5 Family Camerinidae_._ 8 Family Miogypsinidae. 10 References cited._________ 12 Index___--________-___ 15 ILLUSTRATIONS [Plates follow index] PLATE 1. Miocene Miogypsinoides. 2. Miocene Spiroclypeus. 3. Miocene Spiroclypeus and post-Miocene Heterostegina, Marginopora, and Sorites. 4. Miocene Marginopora, Sorites, Borelis, Flosculinella, and Austrotrillina and post-Miocene Borelis. 5. Miocene Borelis and Austrotrillina and post-Miocene Borelis. FIGURE 1. Index map showing Midway and other Pacific localities which have related fossiliferous sections._ Cl 2. Map of Midway atoll, showing location of drill holes_______________________________________ 2 TABLES Page TABLE 1. Distribution of larger Foraminif era in the Midway drill holes. __________-______-__-_-___---------_----__---- C2 2. Reevaluation and distribution of selected Foraminif era from the Kita-daito-jima test hole- _____-___---_____-_ 3 3. -
Recent Benthic Foraminifera from the Itaipu Lagoon, Rio De Janeiro (Southeastern Brazil)
12 5 1959 the journal of biodiversity data 15 September 2016 Check List LISTS OF SPECIES Check List 12(5): 1959, 15 September 2016 doi: http://dx.doi.org/10.15560/12.5.1959 ISSN 1809-127X © 2016 Check List and Authors Recent benthic foraminifera from the Itaipu Lagoon, Rio de Janeiro (southeastern Brazil) Débora Raposo1*, Vanessa Laut2, Iara Clemente3, Virginia Martins3, Fabrizio Frontalini4, Frederico Silva5, Maria Lúcia Lorini6, Rafael Fortes6 and Lazaro Laut1 1 Laboratório de Micropaleontologia (LabMicro), Universidade Federal do Estado do Rio de Janeiro – UNIRIO. Avenida Pasteur 458, Urca, Rio de Janeiro, CEP 22290-240, RJ, Brazil 2 Universidade Federal Fluminense (UFF), Instituto de Biologia Marinha, Outeiro São João Batista, s/nº, Niterói, Rio de Janeiro, CEP 24001-970, RJ, Brazil 3 Universidade do Estado do Rio de Janeiro (UERJ). Rua São Francisco Xavier, 524, Maracanã, Rio de Janeiro, CEP 20550-900, RJ, Brazil 4 DiSTeVA, Università degli Studi di Urbino “Carlo Bo”, Campus Scientifico Enrico Mattei. Località Crocicchia, 61029 Urbino, Italy 5 Laboratório de Palinofácies e Fácies Orgânicas (LAFO), Universidade Federal do Rio de Janeiro (UFRJ). Avenida Pedro Calmon, 550, Cidade Universitária, Rio de Janeiro, CEP 21941-901, RJ, Brazil 6 Laboratório de Ecologia Bêntica, Universidade Federal do Estado do Rio de Janeiro – UNIRIO. Avenida Pasteur 458, Urca, Rio de Janeiro, CEP 22290-240, RJ, Brazil * Corresponding author. E-mail: [email protected] Abstract: Itaipu Lagoon is located near the mouth of There are many advantages of applying foraminifera Guanabara Bay and has great importance for recreation to environmental monitoring when compared with to the city of Niterói, Rio de Janeiro state, Brazil. -
Foraminifera from Exmouth Gulf, Western Australia
JournalJournal of ofthe the Royal Royal Society Society of ofWestern Western Australia, Australia, 80(4), 80:263-280, December 1997 1997 Foraminifera from Exmouth Gulf, Western Australia D W Haig Department of Geology & Geophysics, University of Western Australia, Nedlands WA 6907 email: [email protected] Manuscript received January 1997; accepted September 1997. Abstract Two hundred and thirty-six benthonic species and six planktonic species are identified among Foraminifera present in Holocene sediment of Exmouth Gulf, in a water depth of 5-30 m. The benthonic microfauna comprises 20 agglutinated species (including 9 Lituolida, 1 Trochamminida, and 10 Textulariida), 74 porcellaneous species (Miliolida), and 142 hyaline species (including 4 Spirillinida, 27 Lagenida, 37 Buliminida, and 75 Rotaliida). Abundant species, at least at one site, include Ammotium australiensis, Textularia foliacea, Textularia lateralis, and Textularia oceanica among the agglutinated types; Parahauerinoides fragilissimus, Peneroplis pertusus, Planispirinella exigua, Pseudomassilina australis, Quinqueloculina arenata, Q. philippinensis, Q. sp 8, Sigmoihauerina involuta, Sorites marginalis, Triloculina tricarinata among the porcellaneous species; and Ammonia parkinsoniana, Amphistegina lessonii, A. sp cf A. papillosa, A. radiata, Asterorotalia gaimardi, Cibicides sp cf C. refulgens, Discorbinoides patelliformis, Elphidium sp cf E. advenum, E. crispum, E. sp 1, Heterostegina depressa, Operculina ammonoides, Pararotalia nipponica, and Rosalina cosymbosella among the hyaline (Rotaliida) species. Introduction The purpose of this paper is to provide a comprehen- sive record of the foraminiferal species present in Holocene There are no comprehensive published records of sediment in Exmouth Gulf, a major embayment on the foraminiferal faunas from inner neritic environments central north-west coast of Western Australia (Figs 1, 2). -
Next-Generation Environmental Diversity Surveys of Foraminifera: Preparing the Future Jan Pawlowski, Franck Lejzerowicz, Philippe Esling
Next-Generation Environmental Diversity Surveys of Foraminifera: Preparing the Future Jan Pawlowski, Franck Lejzerowicz, Philippe Esling To cite this version: Jan Pawlowski, Franck Lejzerowicz, Philippe Esling. Next-Generation Environmental Diversity Sur- veys of Foraminifera: Preparing the Future . Biological Bulletin, Marine Biological Laboratory, 2014, 227 (2), pp.93-106. 10.1086/BBLv227n2p93. hal-01577891 HAL Id: hal-01577891 https://hal.archives-ouvertes.fr/hal-01577891 Submitted on 28 Aug 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/268789818 Next-Generation Environmental Diversity Surveys of Foraminifera: Preparing the Future Article in Biological Bulletin · October 2014 Source: PubMed CITATIONS READS 26 41 3 authors: Jan Pawlowski Franck Lejzerowicz University of Geneva University of Geneva 422 PUBLICATIONS 11,852 CITATIONS 42 PUBLICATIONS 451 CITATIONS SEE PROFILE SEE PROFILE Philippe Esling Institut de Recherche et Coordination Acoust… 24 PUBLICATIONS 551 CITATIONS SEE PROFILE Some of the authors of this publication are also working on these related projects: UniEuk View project KuramBio II (Kuril Kamchatka Biodiversity Studies II) View project All content following this page was uploaded by Jan Pawlowski on 30 December 2015. -
A Guide to 1.000 Foraminifera from Southwestern Pacific New Caledonia
Jean-Pierre Debenay A Guide to 1,000 Foraminifera from Southwestern Pacific New Caledonia PUBLICATIONS SCIENTIFIQUES DU MUSÉUM Debenay-1 7/01/13 12:12 Page 1 A Guide to 1,000 Foraminifera from Southwestern Pacific: New Caledonia Debenay-1 7/01/13 12:12 Page 2 Debenay-1 7/01/13 12:12 Page 3 A Guide to 1,000 Foraminifera from Southwestern Pacific: New Caledonia Jean-Pierre Debenay IRD Éditions Institut de recherche pour le développement Marseille Publications Scientifiques du Muséum Muséum national d’Histoire naturelle Paris 2012 Debenay-1 11/01/13 18:14 Page 4 Photos de couverture / Cover photographs p. 1 – © J.-P. Debenay : les foraminifères : une biodiversité aux formes spectaculaires / Foraminifera: a high biodiversity with a spectacular variety of forms p. 4 – © IRD/P. Laboute : îlôt Gi en Nouvelle-Calédonie / Island Gi in New Caledonia Sauf mention particulière, les photos de cet ouvrage sont de l'auteur / Except particular mention, the photos of this book are of the author Préparation éditoriale / Copy-editing Yolande Cavallazzi Maquette intérieure et mise en page / Design and page layout Aline Lugand – Gris Souris Maquette de couverture / Cover design Michelle Saint-Léger Coordination, fabrication / Production coordination Catherine Plasse La loi du 1er juillet 1992 (code de la propriété intellectuelle, première partie) n'autorisant, aux termes des alinéas 2 et 3 de l'article L. 122-5, d'une part, que les « copies ou reproductions strictement réservées à l'usage privé du copiste et non destinées à une utilisation collective » et, d'autre part, que les analyses et les courtes citations dans un but d'exemple et d'illustration, « toute représentation ou reproduction intégrale ou partielle, faite sans le consentement de l'auteur ou de ses ayants droit ou ayants cause, est illicite » (alinéa 1er de l'article L. -
Reef Foraminifera As Bioindicators of Coral Reef Health in Southern South
www.nature.com/scientificreports OPEN Reef foraminifera as bioindicators of coral reef health in southern South China Sea Aishah Norashikin Abdul A’ziz1, Fatin Izzati Minhat1,2*, Hui‑Juan Pan3, Hasrizal Shaari1,2, Wan Nurzalia Wan Saelan1,2, Nazihah Azmi1, Omar Abdul Rahman Abdul Manaf1 & Md Nizam Ismail4 Pulau Tioman is a famous tourist island of Peninsular Malaysia with beautiful coral reefs. This study aims to assess the health of the coral reefs surrounding Pulau Tioman based on the application of the Foraminifera in Reef Assessment and Monitoring Index (FI). Ten sampling sites around Pulau Tioman were studied with a total of 30 samples. Eight orders, 41 families, 80 genera, and 161 species of benthic foraminifera were identifed. The agglutinated type of foraminifera constituted 2–8% of the total assemblages. Calcareous hyaline and porcelaneous groups represented 79% and 19% of the total assemblages, respectively. Symbiont‑bearing taxa were the most common foraminifera. The results indicate that most of the sampling sites are conducive for coral reef growth with good recoverability from future stress to the ecosystem. However, several areas with higher coastal development and tourism have reduced water and sediment quality. Therefore, the limit on the number of visitors and tourists should be revised to enable coral growth and health. The FI values in this study showed a positive correlation with good water qualities and a negative correlation with organic matter enrichment. The FI is a good measure to assess the health of a coral reef and can be applied to other reef ecosystems around Malaysia. Te coral reef ecosystem is among the most biologically diverse ecosystems in the world that plays a vital role in shaping the balance of environmental processes over the past 200 million years 1. -
Chamber Arrangement Versus Wall Structure in the High-Rank Phylogenetic Classification of Foraminifera
Editors' choice Chamber arrangement versus wall structure in the high-rank phylogenetic classification of Foraminifera ZOFIA DUBICKA Dubicka, Z. 2019. Chamber arrangement versus wall structure in the high-rank phylogenetic classification of Fora- minifera. Acta Palaeontologica Polonica 64 (1): 1–18. Foraminiferal wall micro/ultra-structures of Recent and well-preserved Jurassic (Bathonian) foraminifers of distinct for- aminiferal high-rank taxonomic groups, Globothalamea (Rotaliida, Robertinida, and Textulariida), Miliolida, Spirillinata and Lagenata, are presented. Both calcite-cemented agglutinated and entirely calcareous foraminiferal walls have been investigated. Original test ultra-structures of Jurassic foraminifers are given for the first time. “Monocrystalline” wall-type which characterizes the class Spirillinata is documented in high resolution imaging. Globothalamea, Lagenata, porcel- aneous representatives of Tubothalamea and Spirillinata display four different major types of wall-structure which may be related to distinct calcification processes. It confirms that these distinct molecular groups evolved separately, probably from single-chambered monothalamids, and independently developed unique wall types. Studied Jurassic simple bilocular taxa, characterized by undivided spiralling or irregular tubes, are composed of miliolid-type needle-shaped crystallites. In turn, spirillinid “monocrystalline” test structure has only been recorded within more complex, multilocular taxa pos- sessing secondary subdivided chambers: Jurassic -
Foraminifera As Bioindicators in Coral Reef Assessment and Monitoring: the Foram Index
FORAMINIFERA AS BIOINDICATORS IN CORAL REEF ASSESSMENT AND MONITORING: THE FORAM INDEX PAMELA HALLOCK1*, BARBARA H. LIDZ2 ELIZABETH M. COCKEY-BURKHARD3, AND KELLY B. DONNELLY4 1College of Marine Science, Univ. of South Florida, 140 Seventh Ave. S., St. Petersburg, FL 33701, USA; 2U.S. Geological Survey Center for Coastal and Regional Marine Studies, 600 Fourth St. S., St. Petersburg, FL 33701, USA; 3Minerals Management Service, 381 Elden Street, Herndon, VA 20170, USA; 4Florida Fish and Wildlife Conservation Commission, 100 Eighth St. SE, St. Petersburg, FL 33701, USA *(author for correspondence, e-mail: [email protected]) Abstract. Coral reef communities are threatened worldwide. Resource managers urgently need indicators of the biological condition of reef environments that can relate data acquired through remote-sensing, water-quality and benthic-community monitoring to stress responses in reef or- ganisms. The “FORAM” (Foraminifera in Reef Assessment and Monitoring) Index (FI) is based on 30 years of research on reef sediments and reef-dwelling larger foraminifers. These shelled protists are ideal indicator organisms because: • Foraminifers are widely used as environmental and paleoenvironmental indicators in many contexts; • Reef-building, zooxanthellate corals and foraminifers with algal symbionts have similar water- quality requirements; • The relatively short life spans of foraminifers as compared with long-lived colonial corals facili- tate differentiation between long-term water-quality decline and episodic stress events; • Foraminifers are relatively small and abundant, permitting statistically significant sample sizes to be collected quickly and relatively inexpensively, ideally as a component of comprehensive moni- toring programs; and • Collection of foraminifers has minimal impact on reef resources. USEPA guidelines for ecological indicators are used to evaluate the FI. -
A Preliminary Report
Candidate bioindicator measures to monitor exposure to changing water quality on the Great Barrier Reef INTERIM REPORT Katharina Fabricius1, Sven Uthicke1, Tim Cooper1,2, Craig Humphrey1, Glenn De’ath1 and Jane Mellors3 1 Australian Institute of Marine Science, Townsville 2 James Cook University, Townsville 3 Queensland Department of Primary Industries and Fisheries, Cairns Catchment to Reef Joint Research Programme of the CRC Reef Research Centre and Rainforest CRC Supported by the Australian Government’s Marine and Tropical Sciences Research Facility © Australian Institute of Marine Science and Catchment to Reef Joint Research Programme of the CRC Reef Research Centre and Rainforest CRC. National Library of Australia Cataloguing-in-Publication entry: Candidate bioindicator measures to monitor exposure to changing water quality on the Great Barrier Reef. Bibliography. ISBN 9781921359026 (pdf). 1. Water quality management – Queensland – Great Barrier Reef Region. 2. Watershed management – Queensland – Great Barrier Reef Region. 3. Water quality – Queensland – Great Barrier Reef Region. 4. Environmental protection – Queensland – Great Barrier Reef Region. 5. Great Barrier Reef Region (Qld.) – Environmental aspects. I. Fabricius, Katharina. II. Reef and Rainforest Research Centre. 628.1109443 This report should be cited as: Fabricius, K., Uthicke, S., Cooper, T., Humphrey, C., De’ath, G. and Mellors, J. (2007) Candidate bioindicator measures to monitor exposure to changing water quality on the Great Barrier Reef. Final Report to the Catchment to Reef Joint Research Programme. Marine and Tropical Sciences Research Facility Research Report Series. Reef and Rainforest Research Centre Limited, Cairns (253 pp.). Published by the Reef and Rainforest Research Centre Limited for the Catchment to Reef Joint Research Programme and the Australian Government’s Marine and Tropical Sciences Research Facility. -
Checklist, Assemblage Composition, and Biogeographic Assessment of Recent Benthic Foraminifera (Protista, Rhizaria) from São Vincente, Cape Verdes
Zootaxa 4731 (2): 151–192 ISSN 1175-5326 (print edition) https://www.mapress.com/j/zt/ Article ZOOTAXA Copyright © 2020 Magnolia Press ISSN 1175-5334 (online edition) https://doi.org/10.11646/zootaxa.4731.2.1 http://zoobank.org/urn:lsid:zoobank.org:pub:560FF002-DB8B-405A-8767-09628AEDBF04 Checklist, assemblage composition, and biogeographic assessment of Recent benthic foraminifera (Protista, Rhizaria) from São Vincente, Cape Verdes JOACHIM SCHÖNFELD1,3 & JULIA LÜBBERS2 1GEOMAR Helmholtz-Centre for Ocean Research Kiel, Wischhofstrasse 1-3, 24148 Kiel, Germany 2Institute of Geosciences, Christian-Albrechts-University, Ludewig-Meyn-Straße 14, 24118 Kiel, Germany 3Corresponding author. E-mail: [email protected] Abstract We describe for the first time subtropical intertidal foraminiferal assemblages from beach sands on São Vincente, Cape Verdes. Sixty-five benthic foraminiferal species were recognised, representing 47 genera, 31 families, and 8 superfamilies. Endemic species were not recognised. The new checklist largely extends an earlier record of nine benthic foraminiferal species from fossil carbonate sands on the island. Bolivina striatula, Rosalina vilardeboana and Millettiana milletti dominated the living (rose Bengal stained) fauna, while Elphidium crispum, Amphistegina gibbosa, Quinqueloculina seminulum, Ammonia tepida, Triloculina rotunda and Glabratella patelliformis dominated the dead assemblages. The living fauna lacks species typical for coarse-grained substrates. Instead, there were species that had a planktonic stage in their life cycle. The living fauna therefore received a substantial contribution of floating species and propagules that may have endured a long transport by surface ocean currents. The dead assemblages largely differed from the living fauna and contained redeposited tests deriving from a rhodolith-mollusc carbonate facies at <20 m water depth. -
Recent Benthic Foraminifer's Distribution and Their Environmental Correlation in Qeshm Island
Journal of the Persian Gulf (Marine Science)/Vol. 9/No. 34/ December 2018/10/1-10 Issue of Second International Conference on Oceanography for West Asia (RCOWA) 2020 Recent benthic foraminifer’s distribution and their environmental correlation in Qeshm Island Niloofar Olad Azimi1, Pargol Ghavam Mostafavi1*, Wahab Maghsoudlou2, Babak Moghaddasi3, Ali Mashinchian Moradi1 1 Department of Marine Biology, Science and Research Branch, Islamic Azad University, Tehran [email protected] 2 Iranian National Institute for Oceanography and Atmospheric Science (INIOAS), Tehran, Iran. 3 Islamic Azad University, Savadkooh Branch, Departments of Natural Resources, Savadkooh, Iran. Abstract In addition to introducing foraminiferal communities, this study aims to investigate the relationships of these communities with the environmental parameters of water and sediment. Nine sediment samples were collected in 2019, from three stations in Qeshm Island. Environmental conditions including temperature, DO, salinity, pH, grain size, TOM, and CaCO3 were measured. Our results revealed that grain size, TOM, and DO factors controlling the diversity and distribution of benthic foraminifera. Thirty-five species from 26 genera and 21 families of foraminifer's assemblages were identified where Quinqueloculina was the most abundant genus in all stations. © 2018 Published by INIOAS Keywords: Modern foraminifera, physic-chemical parameters, Diversity, Persian Gulf 1. Introduction Foraminifera as an important member of different ecosystems is widely distributed in marine environments that their considerable taxonomic diversity gives them the potential for diverse biological responses to va rious pollutants and environmental stresses through time (Hallock et al., 2003). Identification of benthic foraminifera provide basic knowledge that can be used, as proxy for anthropogenic pollution (Carnahan et al., 2009; Martinez- Colon & Hallock, 2010), coral reef condition (Hallock et al., 2003) and other environmental changes (Mendes et al., 2004). -
Research Article: Study of Coral Reef Benthic Foraminiferal Assemblages
Iranian Journal of Fisheries Sciences 20(2) 558-571 2021 DOI: 10.22092/ijfs.2021.350796.0 Research Article Study of coral reef benthic foraminiferal assemblages in Qeshm Island, Persian Gulf Olad Azimi N.1; Ghavam Mostafavi P.1; Maghsoudlou A.2*; Moghaddasi B.3; Mashinchian Moradi A.1 Received: November 2019 Accepted: August 2020 Abstract Benthic foraminifera are important in sediment production of coral reef environments and are excellent indicators of water quality and reef health. There is a lack of precise information about the foraminifer’s fauna of the coral reefs in the Persian Gulf. In this study, sediment sampling was performed in June 2019 from two coral stations of Naz Island and Zeytoon Park. The surface sediment with three replicates for each location was collected using a mini corer and then were fixed in 70% ethanol. In this study, thirty species belong to 23 genera and 19 families of foraminifer's assemblages were identified based on morphological characters. Our results indicated that Foraminiferal assemblages were similar in both sampling localities. Quinqueloculina was the most abundant genera for both Naz Island and Zeytoon Park. Foraminifer's frequency of Zeytoon Park was higher than Naz Island. Symbiont-bearing foraminifera (e.g. Peneroplis) were observed just in Zeytoon Park. Higher frequency and the presence of symbiont-bearing foraminifera possibly indicate that Zeytoon Park has a more Downloaded from jifro.ir at 11:40 +0330 on Monday September 27th 2021 favorable condition for the coral reef growth in the future. Finally, we recommend that the structure of the foraminifer’s community could be used as an early warning system for water quality around coral reefs and in particular, would help resource managers make better decisions about protecting coral habitats.