Length-Based Stock Assessment Area WPP
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Checklist of Serranid and Epinephelid Fishes (Perciformes: Serranidae & Epinephelidae) of India
Journal of the Ocean Science Foundation 2021, Volume 38 Checklist of serranid and epinephelid fishes (Perciformes: Serranidae & Epinephelidae) of India AKHILESH, K.V. 1, RAJAN, P.T. 2, VINEESH, N. 3, IDREESBABU, K.K. 4, BINEESH, K.K. 5, MUKTHA, M. 6, ANULEKSHMI, C. 1, MANJEBRAYAKATH, H. 7, GLADSTON, Y. 8 & NASHAD M. 9 1 ICAR-Central Marine Fisheries Research Institute, Mumbai Regional Station, Maharashtra, India. Corresponding author: [email protected]; Email: [email protected] 2 Andaman & Nicobar Regional Centre, Zoological Survey of India, Port Blair, India. Email: [email protected] 3 Department of Health & Family Welfare, Government of West Bengal, India. Email: [email protected] 4 Department of Science and Technology, U.T. of Lakshadweep, Kavaratti, India. Email: [email protected] 5 Southern Regional Centre, Zoological Survey of India, Chennai, Tamil Nadu, India. Email: [email protected] 6 ICAR-Central Marine Fisheries Research Institute, Visakhapatnam Regional Centre, Andhra Pradesh, India. Email: [email protected] 7 Centre for Marine Living Resources and Ecology, Kochi, Kerala, India. Email: [email protected] 8 ICAR-Central Island Agricultural Research Institute, Port Blair, Andaman and Nicobar Islands, India. Email: [email protected] 9 Fishery Survey of India, Port Blair, Andaman and Nicobar Islands, 744101, India. Email: [email protected] Abstract We provide an updated checklist of fishes of the families Serranidae and Epinephelidae reported or listed from India, along with photographs. A total of 120 fishes in this group are listed as occurring in India based on published literature, of which 25 require further confirmation and validation. We confirm here the presence of at least 95 species in 22 genera occurring in Indian marine waters. -
Parasites of Coral Reef Fish: How Much Do We Know? with a Bibliography of Fish Parasites in New Caledonia
Belg. J. Zool., 140 (Suppl.): 155-190 July 2010 Parasites of coral reef fish: how much do we know? With a bibliography of fish parasites in New Caledonia Jean-Lou Justine (1) UMR 7138 Systématique, Adaptation, Évolution, Muséum National d’Histoire Naturelle, 57, rue Cuvier, F-75321 Paris Cedex 05, France (2) Aquarium des lagons, B.P. 8185, 98807 Nouméa, Nouvelle-Calédonie Corresponding author: Jean-Lou Justine; e-mail: [email protected] ABSTRACT. A compilation of 107 references dealing with fish parasites in New Caledonia permitted the production of a parasite-host list and a host-parasite list. The lists include Turbellaria, Monopisthocotylea, Polyopisthocotylea, Digenea, Cestoda, Nematoda, Copepoda, Isopoda, Acanthocephala and Hirudinea, with 580 host-parasite combinations, corresponding with more than 370 species of parasites. Protozoa are not included. Platyhelminthes are the major group, with 239 species, including 98 monopisthocotylean monogeneans and 105 digeneans. Copepods include 61 records, and nematodes include 41 records. The list of fish recorded with parasites includes 195 species, in which most (ca. 170 species) are coral reef associated, the rest being a few deep-sea, pelagic or freshwater fishes. The serranids, lethrinids and lutjanids are the most commonly represented fish families. Although a list of published records does not provide a reliable estimate of biodiversity because of the important bias in publications being mainly in the domain of interest of the authors, it provides a basis to compare parasite biodiversity with other localities, and especially with other coral reefs. The present list is probably the most complete published account of parasite biodiversity of coral reef fishes. -
Reef Fishes of the Bird's Head Peninsula, West Papua, Indonesia
Check List 5(3): 587–628, 2009. ISSN: 1809-127X LISTS OF SPECIES Reef fishes of the Bird’s Head Peninsula, West Papua, Indonesia Gerald R. Allen 1 Mark V. Erdmann 2 1 Department of Aquatic Zoology, Western Australian Museum. Locked Bag 49, Welshpool DC, Perth, Western Australia 6986. E-mail: [email protected] 2 Conservation International Indonesia Marine Program. Jl. Dr. Muwardi No. 17, Renon, Denpasar 80235 Indonesia. Abstract A checklist of shallow (to 60 m depth) reef fishes is provided for the Bird’s Head Peninsula region of West Papua, Indonesia. The area, which occupies the extreme western end of New Guinea, contains the world’s most diverse assemblage of coral reef fishes. The current checklist, which includes both historical records and recent survey results, includes 1,511 species in 451 genera and 111 families. Respective species totals for the three main coral reef areas – Raja Ampat Islands, Fakfak-Kaimana coast, and Cenderawasih Bay – are 1320, 995, and 877. In addition to its extraordinary species diversity, the region exhibits a remarkable level of endemism considering its relatively small area. A total of 26 species in 14 families are currently considered to be confined to the region. Introduction and finally a complex geologic past highlighted The region consisting of eastern Indonesia, East by shifting island arcs, oceanic plate collisions, Timor, Sabah, Philippines, Papua New Guinea, and widely fluctuating sea levels (Polhemus and the Solomon Islands is the global centre of 2007). reef fish diversity (Allen 2008). Approximately 2,460 species or 60 percent of the entire reef fish The Bird’s Head Peninsula and surrounding fauna of the Indo-West Pacific inhabits this waters has attracted the attention of naturalists and region, which is commonly referred to as the scientists ever since it was first visited by Coral Triangle (CT). -
Exploitation of Reef Resources, Grouper and Other Food Fishes in the Maldives by Hassan Shakeel & Hudha Ahmed 1
14 SPC Live Reef Fish Information Bulletin #2 May 1997 generally accompany low replacement capacity, many While red-listing has no legal muscle, it is useful as a groupers spawn for extremely limited periods each guideline by policy makers and as a warning. year, at spawning sites often well known in time and Fisheries biologists and managers should heed this place. These aggregations are frequently heavily warning and look carefully at fishery developments exploited and several have completely ceased to form, in their region. The seas are not as bountiful as we almost certainly as a result of fishing; they represent once thought. Certain species, such as some of the important areas on which these species depend for groupers and seahorses and the humphead wrasse, reproduction. In specific examples in the Caribbean, it will not live up to high economic hopes for them in is likely that much of the population or sub-popula- the long term unless we resist the greed that serves tion dependent on lost aggregations has also disap- nothing but short-term gain and invites the scrutinis- peared as a result of excessive aggregation fishing. ing eye of the conservationists. A different suite of biological characteristics renders While there is concern for the status of stocks, there seahorses susceptible to fishing. Loss of critical habi- is still very little information on the biology or trade tat (such as seagrass beds) combined with low natur- of the humphead wrasse and the giant grouper. If al seahorse densities and the reproductive habits of anybody is carrying out any studies, or has any many species (such as faithful monogamy and low information on humphead wrasse or giant grouper rates of production of young) mean that recovery populations, such as numbers being caught or from anything other than light fishing levels may be exported, sizes of individuals observed in the field very slow. -
Fish Movement in the Red Sea and Implications for Marine Protected Area Design
Fish Movement in the Red Sea and Implications for Marine Protected Area Design Thesis by Irene Antonina Salinas Akhmadeeva In Partial Fulfillment of the Requirements For the Degree of Master of Science King Abdullah University of Science and Technology Thuwal, Kingdom of Saudi Arabia April, 2021 2 EXAMINATION COMMITTEE PAGE The thesis of Irene Antonina Salinas Akhmadeeva is approved by the examination committee. Committee Chairperson: Prof. Michael L. Berumen Committee Co-Chair: Dr. Alison Green Committee Members: Dr. Darren Coker, Prof. Rusty Brainard 3 COPYRIGHT © April 2021 Irene Antonina Salinas Akhmadeeva All Rights Reserved 4 ABSTRACT Fish Movement in the Red Sea and Implications for Marine Protected Area Design Irene Antonina Salinas Akhmadeeva The Red Sea is valued for its biodiversity and the livelihoods it provides for many. It now faces overfishing, habitat degradation, and anthropogenic induced climate-change. Marine Protected Areas (MPAs) became a powerful management tool to protect vulnerable species and ecosystems, re-establish their balance, and enhance marine populations. For this, they need to be well designed and managed. There are 15 designated MPAs in the Red Sea but their level of enforcement is unclear. To design an MPA it is necessary to know if it will protect species of interest by considering their movement needs. In this thesis I aim at understanding fish movement in the Red Sea, specifically home range (HR) to inform MPA size designation. With not much empirical data available on HR for Red Sea fish, I used a Machine Learning (ML) classification model, trained with empirical literature HR measurements with Maximum Total Length (L Max), Aspect Ratio (AR) of the caudal fin, and Trophic Level as predictor variables. -
NORTH COAST FISH IDENTIFICATION GUIDE Ben M
NORTH COAST FISH IDENTIFICATION GUIDE Ben M. Rome and Stephen J. Newman Department of Fisheries 3rd floor SGIO Atrium 168-170 St George’s Terrace PERTH WA 6000 Telephone (08) 9482 7333 Facsimile (08) 9482 7389 Website: www.fish.wa.gov.au ABN: 55 689 794 771 Published by Department of Fisheries, Perth, Western Australia. Fisheries Occasional Publications No. 80, September 2010. ISSN: 1447 - 2058 ISBN: 1 921258 90 X Information about this guide he intention of the North Coast Fish Identification Guide is to provide a simple, Teasy to use manual to assist commercial, recreational, charter and customary fishers to identify the most commonly caught marine finfish species in the North Coast Bioregion. This guide is not intended to be a comprehensive taxonomic fish ID guide for all species. It is anticipated that this guide will assist fishers in providing a more comprehensive species level description of their catch and hence assist scientists and managers in understanding any variation in the species composition of catches over both spatial and temporal scales. Fish taxonomy is a dynamic and evolving field. Advances in molecular analytical techniques are resolving many of the relationships and inter-relationships among species, genera and families of fishes. In this guide, we have used and adopted the latest taxonomic nomenclature. Any changes to fish taxonomy will be updated and revised in subsequent editions. The North Coast Bioregion extends from the Ashburton River near Onslow to the Northern Territory border. Within this region there is a diverse range of habitats from mangrove creeks, rivers, offshore islands, coral reef systems to continental shelf and slope waters. -
Molecular Phylogeny Reconstruction of Grouper (Serranidae: Epinephelinae) at Northern Part of Bird’S Head Seascape - Papua Inferred from COI Gene
RESEARCH ARTICLE eISSN 2234-1757 Fish Aquat Sci. 2021;24(5):181-190 Fisheries and https://doi.org/10.47853/FAS.2021.e18 Aquatic Sciences Molecular Phylogeny Reconstruction of Grouper (Serranidae: Epinephelinae) at Northern Part of Bird’s Head Seascape - Papua Inferred from COI Gene Ricardo F. Tapilatu1, 2, *, Tresia Sonya Tururaja1, Sipriyadi3, Aradea Bujana Kusuma1 1 Marine Science Department, Faculty of Fisheries and Marine Science, University of Papua, Papua Barat, Indonesia 2 Research Centre of Pacific Marine Resources, Research and Community Service Institute, University of Papua, Papua Barat, Indonesia 3 Biology Department, Faculty of Science, Bengkulu University, Bengkulu, Indonesia Abstract Grouper is one of the most economically important fishes with various morphological forms and characteristics, meaning it is often difficult to identify species and distinguish between life stages, sometimes leading to morphological misidentification. Therefore, identification using a molecular deoxyribose nucleic acid (DNA) approach was needed as an alternative means to identify closely related species. This study aims to determine the molecular phylogeny of grouper from the northern part of the Bird’s Head Seascape of Papua. The DNA sequence of each cytochrome oxidase I (COI) gene was used to study the molecular re- lationship among closely related species of grouper. The results showed that there were 16 Epinephelinae that have been com- pared to a gene bank (National Centre for Biotechnology Information, NCBI) in the sequence length of 623 base pairs. The closest genetic distance was found between Cephalopholis miniata and Cephalopholis sexmaculata (0.036), while the furthest genetic distance was observed between Plectropomus laevis and Cephalopholis spiloparaea (0.247). -
The Kagoshima University Museum No
Bulletin of the Kagoshima University Museum No. 9 A total of 1,277 species, including 129 species that represent the first reliable records from the island on the basis of Annotated Checklist of Marine and Freshwater Fishes Yaku-shima Island ISSN-L 2188-9074 collected specimens and/or underwater photographs, are listed with citation of literature, registration numbers, sizes, ANNOTATED CHECKLIST OF MARINE AND FRESHWATER FISHES OF localities in the island, and nomenclatural, taxonomic, and ecological remarks. Color photographs of all the 129 YAKU-SHIMA ISLAND IN THE OSUMI ISLANDS, species newly recorded from the island are provided. KAGOSHIMA, SOUTHERN JAPAN, WITH 129 NEW RECORDS HIROYUKI MOTOMURA AND SHIGERU HARAZAKI Hiroyuki Motomura • Shigeru Harazaki February 2017 The Kagoshima University Museum Cover photograph: Cephalopholis sonnerati in a wreck off Isso, Yaku-shima island. Photo by S. Harazaki Back cover photograph: Males of Pseudanthias hypselosoma at 15 m depth off Isso, Yaku-shima island. Photo by S. Harazaki Bulletin of the Kagoshima University Museum No. 9 ISSN-L 2188-9074 Annotated checklist of marine and freshwater fishes of Yaku-shima island in the Osumi Islands, Kagoshima, southern Japan, with 129 new records Hiroyuki Motomura1, 3 and Shigeru Harazaki2 1The Kagoshima University Museum, 1–21–30 Korimoto, Kagoshima 890–0065, Japan E-mail: [email protected] 2Yakushima Diving Service “Mori to Umi”, 2473–294 Miyanoura, Yakushima, Kumage, Kagoshima 891–4205, Japan 3Corresponding author Abstract The second edition of an annotated checklist of marine and freshwater fishes of Yaku-shima island in the Osumi Group, Kagoshima Prefecture, southern Japan, was compiled from specimen and literature surveys. -
Live Reef Fish Identification Cards
WRI fice or: The Nature Conservancy, The Nature Conservancy, the World Resources Institute. World the International Marinelife Alliance, and International Marinelife the Secretariat of the Pacific Community, the Secretariat of the Pacific Community, The Secretariat of the Pacific Community Phone: +687 26 20 00 Fax: +687 26 38 18 the Pacific Live Reef Fish Trade Initiative by Trade the Pacific Live Reef Fish BP D5, 98848 Noumea Cedex, New Caledonia of a series of awareness materials developed for Information Section, Marine Resources Division the Asian Development Bank (ADB); and France. the SPC These fish identification cards are produced as part This publication was made possible through support E-mail: [email protected] Website: http://www.spc.int. Website: E-mail: [email protected] and do not necessarily reflect the views of the donors. U.S. Agency for International Development (USAID); U.S. The opinions expressed herein are those of the authors provided by the Bureau for Global Programs, Field Support, For further information contact your local Fisheries Of The Pacific Regional Live Reef Fish Trade Initiative The Pacific Regional Live Reef Fish Trade Initiative and Research, Office of Environment and Natural Resources, and Research, Office FFiisshh IIddeennttiiffiiccaattiioonn CCaarrddss Second dorsal fin Caudal fin Dorsal fin Caudal peduncle Pectoral fin Anal fin Pelvic fin The Pacific Regional Live Reef Fish Trade Initiative The Pacific Regional Live Reef Fish Trade Initiative Total length (TL) The Pacific Regional Live Reef Fish Trade Initiative The Pacific Regional Live Reef Fish Trade Initiative Cheilinus trilobatus Cheilinus trilobatus • Local name(s): • Biology: Inhabits lagoon and seaward reefs at depths of 1 to over 30 m. -
ICRI Live Reef Food Fish Report
LIVE REEF FOOD FISH TRADE: UNDERVALUED, OVERFISHED AND OPPORTUNITIES FOR CHANGE Sadly, it has become widely recognized that “Much of Southeast Asia’s economic success is based on the under-priced export of valuable natural resources. Sadovy de Mitcheson, Y. 2019. Nowhere is this more evident than in The Live Reef Food Fish Trade; Undervalued, Overfished and Opportunities for Change. International Coral Reef Initiative. fisheries”(Mulekom et al. 2006) 44 pages. Cover photo: «Camouflage grouper, Epinephelus polyphekadion, in a protected spawning aggregation. These are their only mating opportunities and many aggregations are now declining due to overfishing. This threatened species is valued in the live fish The live reef food fish trade is a, if not the, trade» / © Yvonne Sadovy de Mitcheson. prime example. Time to change that! 2 ICRI Report 2019 Live Reef Food Fish Trade - Y. Sadovy ICRI Report 2019 Live Reef Food Fish Trade - Y. Sadovy 3 EXECUTIVE SUMMARY Background The international live reef food fish trade (LRFFT) started Twenty years ago ICRI Partners set a goal to reduce over 4 decades ago. In the 1970s it emerged and over adverse ecological and socio-economic impacts the following decades grew in volume and geographic of trade in coral and coral reef species, eliminate extent across the Indo-Pacific region in response to unsustainable fishing practices and protect coral reefs rising interest in live seafood and increasing wealth. The and related ecosystems. They also recognized that growth was largely in response to demand according to international trade in corals and coral reef species is a culinary tradition of southern China in which food is contributing to stresses on these systems including kept alive until immediately before cooking. -
Parasites of Coral Reef Fish: How Much Do We Know? with a Bibliography of Fish Parasites in New Caledonia
Belg. J. Zool., 140 (Suppl.): 155-190 July 2010 Parasites of coral reef fish: how much do we know? With a bibliography of fish parasites in New Caledonia Jean-Lou Justine (1) UMR 7138 Systématique, Adaptation, Évolution, Muséum National d’Histoire Naturelle, 57, rue Cuvier, F-75321 Paris Cedex 05, France (2) Aquarium des lagons, B.P. 8185, 98807 Nouméa, Nouvelle-Calédonie Corresponding author: Jean-Lou Justine; e-mail: [email protected] ABSTRACT. A compilation of 107 references dealing with fish parasites in New Caledonia permitted the production of a parasite-host list and a host-parasite list. The lists include Turbellaria, Monopisthocotylea, Polyopisthocotylea, Digenea, Cestoda, Nematoda, Copepoda, Isopoda, Acanthocephala and Hirudinea, with 580 host-parasite combinations, corresponding with more than 370 species of parasites. Protozoa are not included. Platyhelminthes are the major group, with 239 species, including 98 monopisthocotylean monogeneans and 105 digeneans. Copepods include 61 records, and nematodes include 41 records. The list of fish recorded with parasites includes 195 species, in which most (ca. 170 species) are coral reef associated, the rest being a few deep-sea, pelagic or freshwater fishes. The serranids, lethrinids and lutjanids are the most commonly represented fish families. Although a list of published records does not provide a reliable estimate of biodiversity because of the important bias in publications being mainly in the domain of interest of the authors, it provides a basis to compare parasite biodiversity with other localities, and especially with other coral reefs. The present list is probably the most complete published account of parasite biodiversity of coral reef fishes. -
Morphometric Variation and Allozyme Electrophoretic Studies in Hind
International Journal of Science and Research (IJSR) ISSN (Online): 2319-7064 Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438 Morphometric Variation and Allozyme Electrophoretic Studies in Hind Grouper Species of Genus Cephalopholis (Epinephelidae) off Visakhapatnam, Central Eastern Coast of India V. A. Iswarya Deepti1, K. V. L. Shrikanya2, K. Sujatha3 1 & 3 Department of Marine Living Resources, Andhra University, Visakhapatnam – 530 003, Andhra Pradesh, India 2 Present address: Department of Biotechnology, Vikrama Simhapuri University, Nellore - 524320 Andhra Pradesh, India Abstract: Most studies of groupers have focussed on species of commercially important genera. For smaller Epinephelines such as species of genus Cephalopholis studies are very little despite having commercial value as food in some regions and increasing inclusion in the aquarium trade. The present paper deals with morphometric and meristic characters used to identify six species of hind groupers of genus Cephalopholis that are represented in the coastal waters of Visakhapatnam . Multivariate analysis (Principal Component Analysis) has been carried out to study existing variation in biometric characters of two closely related species – C. nigripinnis (Valen- ciennes, 1828) and C . sonnerati (Valenciennes, 1828). Cephalopholis microprion (Bleeker, 1852) is new record from coastal waters of mainland India. The genetic variability in four species – C. formosa, C. miniata, C. nigripinnis and C. sonnerati was evidenced by al- lozyme electrophoretic studies carried out on eleven enzyme systems that revealed seventeen loci out of which ten are polymorphic. Spe- cies are easily distinguished and also diagnostic locus and alleles were identified that can aid in species identification. This data along with morphometric and meristic data has varied application in research on evolution, conservation and management of natural re- sources and genetic improvement programmes.