Brain Spinal Nerves Spinal Cord (Dura Mater)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Radical Transsternal Thymectomy David Park Mason, MD
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Radical Transsternal Thymectomy David Park Mason, MD bnormalities of the thymus comprise more than half of generalized enlargement of the thymic gland caused by dif- Athe lesions found in the anterior mediastinal compart- fuse thymocyte proliferation. Thymic hyperplasia is an im- ment in adults. Greater than 95% of the tumors of the thymus munologic condition.10 In children, thymic hyperplasia can are thymomas that originate from thymic epithelial cells. be associated with a variety of endocrine disorders including They generally present as an incidental radiographic finding. hyperthyroidism. In adults, thymic hyperplasia has been as- They are of surgical importance both as isolated entities as sociated with thymoma as well as many immune dysfunction well as in association with myasthenia gravis (MG). Surgical syndromes—the most notable being myasthenia gravis. Re- excision is the cornerstone of therapy for thymoma.1 In ad- moval of the thymus gland, by a variety of surgical ap- dition, thymectomy is an integral component of the manage- proaches, appears to influence the immune dysfunction ob- ment of myasthenia gravis. served in myasthenia gravis.7 The mechanism of this Ludwig Rehn performed the first thymic operation in 1896, a influence, and the relative benefit of removing all residual or transcervical exothymopexy for a patient with an enlarged thy- ectopic thymic tissue, is unclear. 2 mus causing episodes of suffocation. He pulled the enlarged The most frequent asymptomatic indication for thymec- thymus out of the mediastinum and performed a pexy of the tomy is thymoma. -
Of the Pediatric Mediastinum
MRI of the Pediatric Mediastinum Dianna M. E. Bardo, MD Director of Body MR & Co-Director of the 3D Innovation Lab Disclosures Consultant & Speakers Bureau – honoraria Koninklijke Philips Healthcare N V Author – royalties Thieme Publishing Springer Publishing Mediastinum - Anatomy Superior Mediastinum thoracic inlet to thoracic plane thoracic plane to diaphragm Inferior Mediastinum lateral – pleural surface anterior – sternum posterior – vertebral bodies Mediastinum - Anatomy Anterior T4 Mediastinum pericardium to sternum Middle Mediastinum pericardial sac Posterior Mediastinum vertebral bodies to pericardium lateral – pleural surface superior – thoracic inlet inferior - diaphragm Mediastinum – MR Challenges Motion Cardiac ECG – gating/triggering Breathing Respiratory navigation Artifacts Intubation – LMA Surgical / Interventional materials Mediastinum – MR Sequences ECG gated/triggered sequences SSFP – black blood SE – IR – GRE Non- ECG gated/triggered sequences mDIXON (W, F, IP, OP), eTHRIVE, turbo SE, STIR, DWI Respiratory – triggered, radially acquired T2W MultiVane, BLADE, PROPELLER Mediastinum – MR Sequences MRA / MRV REACT – non Gd enhanced Gd enhanced sequences THRIVE, mDIXON, mDIXON XD Mediastinum – Contents Superior Mediastinum PVT Left BATTLE: Phrenic nerve Vagus nerve Structures at the level of the sternal angle Thoracic duct Left recurrent laryngeal nerve (not the right) CLAPTRAP Brachiocephalic veins Cardiac plexus Aortic arch (and its 3 branches) Ligamentum arteriosum Thymus Aortic arch (inner concavity) Trachea Pulmonary -
The Sympathetic and the Parasympathetic Nervous System
The sympathetic and the parasympathetic nervous system Zsuzsanna Tóth, PhD Institute of Anatomy, Histology and Embryology Semmelweis University The role of the autonomic nervous system Claude Bernard • „milieu intérieur” concept; every organism lives in its internal environment that is constant and independent form the external environment Walter Bradford Cannon homeostasis; • an extension of the “milieu interieur” concept • consistence in an open system requires mechanisms that act to maintain that consistency • steady-state conditions require that any tendency toward change automatically meets with factors that resist that change • regulating systems that determine the homeostatic state : o autonomic nervous system ( sympathetic, parasympathetic, enteral) o endocrine system General structure of the autonomic nervous system craniosacral thoracolumbar Anatomy Neurotransmittersof the gut autonomic nervous system. symp. gangl pregangl. fiber pregangl. postgangl. fiber fiber (PoR) PoR enteral ganglion PoR PoR smooth muscle smooth muscle Kuratani S Development 2009;136:1585-1589 Sympathetic activation: Fight or flight reaction • energy mobilization • preparation for escape, or fight vasoconstriction • generalized Parasympathetic activation: adrenal • energy saving and restoring • „rest and digest” system • more localized vasoconstriction Paravertebral ganglia and the sympathetic chains pars cervicalis superius ganglion medium cervicale stellatum pars vertebrae • from the base of the skull to the caudal end thoracalis thoracalis of the sacrum • paravertebral ganglia (ganglia trunci sympathici) • rami interganglionares pars vertebrae • the two chains fuses at the ganglion impar abdominalis lumbalis sacrum pars pelvina foramen sacralia anteriora ganglion impar Anatomy of the cervical part of the sympathetic trunk superior cervical ganglion • behind the seath of the carotid, fusiform ggl. cervicale superius • IML T1-3 vegetative motoneurons- preganglionic fibers truncus symp. -
The Peripheral Nervous System
The Peripheral Nervous System Dr. Ali Ebneshahidi Peripheral Nervous System (PNS) – Consists of 12 pairs of cranial nerves and 31 pairs of spinal nerves. – Serves as a critical link between the body and the central nervous system. – peripheral nerves contain an outermost layer of fibrous connective tissue called epineurium which surrounds a thinner layer of fibrous connective tissue called perineurium (surrounds the bundles of nerve or fascicles). Individual nerve fibers within the nerve are surrounded by loose connective tissue called endoneurium. Cranial Nerves Cranial nerves are direct extensions of the brain. Only Nerve I (olfactory) originates from the cerebrum, the remaining 11 pairs originate from the brain stem. Nerve I (Olfactory)- for the sense of smell (sensory). Nerve II (Optic)- for the sense of vision (sensory). Nerve III (Oculomotor)- for controlling muscles and accessory structures of the eyes ( primarily motor). Nerve IV (Trochlear)- for controlling muscles of the eyes (primarily motor). Nerve V (Trigeminal)- for controlling muscles of the eyes, upper and lower jaws and tear glands (mixed). Nerve VI (Abducens)- for controlling muscles that move the eye (primarily motor). Nerve VII (Facial) – for the sense of taste and controlling facial muscles, tear glands and salivary glands (mixed). Nerve VIII (Vestibulocochlear)- for the senses of hearing and equilibrium (sensory). Nerve IX (Glossopharyngeal)- for controlling muscles in the pharynx and to control salivary glands (mixed). Nerve X (Vagus)- for controlling muscles used in speech, swallowing, and the digestive tract, and controls cardiac and smooth muscles (mixed). Nerve XI (Accessory)- for controlling muscles of soft palate, pharynx and larynx (primarily motor). Nerve XII (Hypoglossal) for controlling muscles that move the tongue ( primarily motor). -
Peripheral Nervous System
Peripheral Nervous System Nervous system consists of CNS = brain and spinal cord ~90% (90 Bil) of all neurons in body are in CNS PNS = Cranial nerves and spinal nerves ~10% (10 Bil) of all neurons in body are in PNS PNS is our link to the outside world without it CNS us useless sensory deprivation hallucinations sensory (afferent) neurons ~2-3M; 6-8x’s more sensory than motor fibers motor (efferent) neurons ~350,000 efferent fibers somatic motor neurons autonomic motor neurons these neurons are bundled into nerves difference between nerve and neuron: neuron = individual nerve cell nerve = bundle of axons outside CNS surrounded by layers of connective tissue CNS PNS Axons Tracts Nerves Cell Bodies Nuclei Ganglia Nerves consist of either sensory or motor neurons or a combination of both (=mixed nerves) mixed nerves often carry both somatic and autonomic motor fibers ganglia examples: dorsal root ganglia = cell bodies of sensory neurons autonomic chain ganglia = cell bodies, dendrites & synapses of autonomic motor neurons PNS consists of 43 pairs of nerves branching from the CNS: 12 pairs of cranial nerves 31 pairs of spinal nerves Cranial Nerves 12 pairs of cranial nerves 1 structurally originate from: cerebrum: I, II midbrain: III, IV pons: V, VI, VII,VIII (pons/medulla border) medulla: IX, X, XI, XII functionally: some are sensory only: I. Olfactory [sense of smell] II. Optic [sense of sight] VIII. Vestibulocochlear [senses of hearing and balance] -injury causes deafness some are motor only: III. Oculomotor IV. Trochlear [eye movements] VI. Abducens -injury to VI causes eye to turn inward some are mixed nerves: V. -
Sympathetic Nervous System
Prof. Ahmed Fathalla Ibrahim Professor of Anatomy College of Medicine King Saud University E-mail: [email protected] OBJECTIVES At the end of the lecture, students should: . Define the autonomic nervous system. Describe the structure of autonomic nervous system . Trace the preganglionic & postganglionic neurons in both sympathetic & parasympathetic nervous system. Enumerate in brief the main effects of sympathetic & parasympathetic system DEFINITION Nerve cells located in both central & peripheral nervous system that are concerned with innervation of involuntary structures: viscera, smooth & cardiac muscles, glands. Function: maintains homeostasis of internal environment. Regulation: by hypothalamus. STRUCTURE OF AUTONOMIC NERVOUS SYSTEM SYMPATHETIC NERVOUS SYSTEM Cells of lateral horn of spinal cord (T1 – L3) Short axon .Cells of sympathetic chain .Cells of plexuses surrounding abdominal aorta (Coeliac, superior & inferior mesenteric) Long axon SYMPATHETIC NERVOUS SYSTEM SYMPATHETIC NERVOUS SYSTEM SYMPATHETIC NERVOUS SYSTEM Preganglionic sympathetic neurons: cells of the lateral horn of spinal cord in all thoracic + upper 3 lumbar segments. Preganglionic axons leave the spinal cord, join corresponding spinal nerves & reach the sympathetic chain (via the white ramus communicans). They either: 1. Synapse with cells of paravertebral ganglia located in sympathetic chain (postganglionic neurons are cells of paravertebral ganglia: postganglionic axons leave the sympathetic chain & join again the spinal nerve (via grey ramus communicans) to supply structures in head & thorax + blood vessels & sweat glands . SYMPATHETIC NERVOUS SYSTEM 2. Leave the sympathetic chain (without synapse) to reach coeliac & mesenteric plexuses (around branches of abdominal aorta) to synapse with their cells. Postganglionic neurons are cells of coeliac & mesenteric plexuses. Postganglionic axons supply abdominal & pelvic viscera. PARAVERTEBRAL GANGLIA They are interconnected to form 2 sympathetic chains, one on each side of vertebral column. -
Review of Sympathetic Blocks Anatomy, Sonoanatomy, Evidence, and Techniques
CHRONIC AND INTERVENTIONAL PAIN REVIEW ARTICLE Review of Sympathetic Blocks Anatomy, Sonoanatomy, Evidence, and Techniques Samir Baig, MD,* Jee Youn Moon, MD, PhD,† and Hariharan Shankar, MBBS*‡ Search Strategy Abstract: The autonomic nervous system is composed of the sympa- thetic and parasympathetic nervous systems. The sympathetic nervous sys- We performed a PubMed and MEDLINE search of all arti- tem is implicated in situations involving emergent action by the body and cles published in English from the years 1916 to 2015 using the “ ”“ ”“ additionally plays a role in mediating pain states and pathologies in the key words ultrasound, ultrasound guided, sympathetic block- ”“ ”“ body. Painful conditions thought to have a sympathetically mediated com- ade, sympathetically mediated pain, stellate ganglion block- ”“ ” “ ” ponent may respond to blockade of the corresponding sympathetic fibers. ade, celiac plexus blockade, , lumbar sympathetic blockade, “ ” “ ” The paravertebral sympathetic chain has been targeted for various painful hypogastric plexus blockade, and ganglion impar blockade. conditions. Although initially injected using landmark-based techniques, In order to capture the breadth of available evidence, because there fluoroscopy and more recently ultrasound imaging have allowed greater were only a few controlled trials, case reports were also included. visualization and facilitated injections of these structures. In addition to There were an insufficient number of reports to perform a system- treating painful conditions, sympathetic blockade has been used to improve atic review. Hence, we elected to perform a narrative review. perfusion, treat angina, and even suppress posttraumatic stress disorder symptoms. This review explores the anatomy, sonoanatomy, and evidence DISCUSSION supporting these injections and focuses on ultrasound-guided/assisted tech- nique for the performance of these blocks. -
Ganglion of Impar Block
Ganglion of Impar Block A ganglion of impar block is safe and easy procedure used to treat visceral, pelvic, genital, perineal and anal pain. This injection is considered to be a type of sympathetic block that can be used in the treatment of sympathetically-mediated pain, pain secondary to malignancy, neuropathic pain and post- surgical pain. Patients who will benefit from this blockade will frequently present with vague and poorly localized pain in the “seat” region, which is burning in character and frequently accompanied by sensations of urgency with urination and/or defecation.[1] The target in the procedure is the ganglion of impar – also known as the ganglion of Walther or sacrococcygeal ganglion. It is a singular retroperitoneal structure located at the level of the sacrococcygeal junction (SCJ). There are 4 or 5 small sacral ganglia with the ganglion Impar being the most caudal segment of the confluence of the sacral sympathetic chain as it passes anteromedially over the sacrum. More specifically, the ganglion Impar is the terminal fusion of the 2 sacral sympathetic chains and is located with some anatomical variability between the SCJ and the lower segment of the first coccyx. The fusion of the 2 chains typically positions the ganglion midline, which makes it relatively easy to find. However, there is a wide range of variability in the anatomical location with respect to the SCJ.[2] This structure is of particular importance when considering patients who suffer from pain in the pelvic and perineal structures as it provides nociceptive and sympathetic supply to those regions. It receives afferent innervation from: Perineum Distal rectum Anus Distal urethra Distal vagina Vulva Coccyx Scrotum The block is performed by injecting a small amount of anesthetic onto the ganglion of impar, signals of the sympathetic nervous system (SNS) and pain fibers are interrupted from multiple structures simultaneously, leading to dramatic pain relief. -
Cervical Variations of the Phrenic Nerve
The Laryngoscope VC 2011 The American Laryngological, Rhinological and Otological Society, Inc. Cervical Variations of the Phrenic Nerve Abie H. Mendelsohn, MD; Adam DeConde, MD; H. Wayne Lambert, PhD; Sean C. Dodson, BS; Blake T. Daney, BS; M. Elena Stark, MD, PhD; Gerald S. Berke, MD; Jonathan J. Wisco, PhD Objectives/Hypothesis: Selective reinnervation of the posterior cricoarytenoid muscle with a single phrenic nerve rootlet has been shown to restore physiologic motion in animal models. However, clinical translation of this work is challenged by the limited knowledge of the cervical anatomy of the phrenic nerve. Study Design: Prospective collaborative study. Methods: Dissection of 111 cadaveric necks (88 embalmed and 23 unembalmed) from 56 cadavers. Results: The mean (standard deviation) lengths of unembalmed cadaver C3, C4, and C5 nerve rootlets were 3.9 (2.4), 3.6 (2.6), and 0.5 (0.8) cm, respectively. Embalmed cadavers had shorter C3 and C4 phrenic nerve rootlet lengths than unem- balmed cadavers (P ¼ .02 and P ¼ .03, respectively). There was no difference in mean nerve rootlet length based on sex, body height or weight, or side of dissection. A total of eight unique phrenic nerve rootlet patterns were identified. The most common pattern consisted of phrenic with single C3 and C4 rootlets with an immeasurable C5 rootlet, which was present in 30 of 111 (26%) of the necks. The classic three branching pattern of single C3, C4, and C5 rootlets was found in 25 of 111 (22%) of the necks. Six of 111 (5%) of the dissections displayed accessory phrenic nerves arising from the C3, C4, or C5 anterior rami. -
Autonomic Nervous System
Autonomic nervous System Regulates activity of: Smooth muscle Cardiac muscle certain glands Autonomic- illusory (convenient)-not under direct control Regulated by: hypothalamus Medulla oblongata Divided in to two subdivisions: Sympathetic Parasympathetic Sympathetic: mobilizes all the resources of body in an emergency Parasympathetic: maintains the normal body functions Complimentary to each other. ANS Activity expressed • Regulation of Blood Pressure • Regulation of Body Temperature • Cardio-respiratory rate • Gastro-intestinal motility • Glandular Secretion Sensations • General – Hunger , Thirst , Nausea • Special -- Smell, taste and visceral pain • Location of ANS in CNS: 1. cerebral hemispheres (limbic system) 2. Brain stem (general visceral nuclei of cranial nerves) 3. Spinal cord (intermediate grey column) ANS Anatomy • Pathway: Two motor neurons 1. In CNS -->Axon-->Autonomic ganglion 2. In Autonomic ganglion-->Axon-->effector organ • Anatomy: Preganglionic neuron--->preganglionic fibre (myelinated axon)--->out of CNS as a part of cranial/spinal nerve--->fibres separate & extend to ANS ganglion-->synapse with postganglionic neuron--->postganglionic fibre (nonmyelinated)-- >effector organ Sympathetic system Components • Pair of ganglionic sympathetic trunk • Communicating rami • Branches • Plexuses • Subsidiary ganglia – collateral , terminal ganglia Sympathetic trunk (lateral ganglia) • Paravertebral in position • Extend from base of skull to coccygeal • Both trunk unite to form – ganglion impar Total Ganglia • Cervical-3 • Thoracic-11 -
New Type of Cortical Neuroplasticity After Nerve Repair in Brachial Plexus Lesions
OBSERVATION New Type of Cortical Neuroplasticity After Nerve Repair in Brachial Plexus Lesions Roland Beisteiner, MD, MA; Ilse Ho¨llinger, MSc; Jakob Rath, MD; Moritz Wurnig, MSc; Markus Hilbert; Nicolaus Klinger, MSc; Alexander Geißler, MSc, PhD; Florian Fischmeister, PhD; Christian Wo¨ber, MD; Gerhard Klo¨sch, MSc; Hanno Millesi, MD; Wolfgang Grisold, MD; Eduard Auff, MD; Robert Schmidhammer, MD Background: In brachial plexus avulsion, a recent tech- Participants: Three healthy control subjects, 2 pa- nique connects the ending of the disrupted musculocu- tients with phrenic nerve end-to-side coaptation, and 1 taneous nerve to the side of the intact phrenic nerve to control patient with C7 end-to-end coaptation (same clini- regain elbow flexion. This requires the phrenic nerve to cal presentation but phrenic nerve unchanged). perform a new double function: independent control of breathing and elbow flexion. Neuroplastic changes as- Results: Clinical documentation showed that both patients sociated with acquisition of double nerve functions have with phrenic nerve end-to-side coaptation were able to con- not yet been investigated. trolthediaphragmandthebicepsindependentlyviathesame phrenic nerve. In contrast to all controls, both patients with Objective: To evaluate neuroplastic changes associ- phrenic nerve end-to-side coaptation activated the cortical ated with acquisition of double nerve functions in a mono- diaphragm areas with flexion of the diseased arm. functional nerve (phrenic nerve). Conclusion: Our functional magnetic resonance imaging Design: Clinical and functional magnetic resonance data indicate that the patient’s cortical diaphragm areas imaging investigations during arm movements, forced in- reorganize in such a way that independent control of spiration, and motor control tasks. -
THE ANATOMY of the SYMPATHETHIC TRUNKS in MAN by MARTIN WRETE Histological Department, the University of Uppsala, Sweden
[ 448 ] THE ANATOMY OF THE SYMPATHETHIC TRUNKS IN MAN BY MARTIN WRETE Histological Department, The University of Uppsala, Sweden INTRODUCTION Even a cursory study of the anatomical descriptions of the cervical parts of the sympathetic trunks given in modern text-books or articles discloses that, now as earlier, great confusion exists with respect to terminology. This applies even to monographs and more specialized presentations. The primary cause of this confusion is the very marked variability of the trunks in the neck region, which gives wide scope for arbitrary interpretations of the arrangement; some uncertainty about the terminology and notation of other parts of the trunks also persists. It is true that the terms to be used for the sympathetic nervous system were fixed by the International Anatomical Nomenclature Committee (Nomina Anatomica, Paris, 1955). This does not, however, prevent some of the individual terms being used to denote different anatomical units, and for practical reasons (such as limiting printing costs) comprehensive explanations could not always be given in the annota- tions to the Parisian Nomina Anatomica. As one of the three members of the Sub- Committee responsible for the nomenclature of the peripheral nervous system, I wish to define more exactly my views on the terminology adopted for the sympathetic trunks. I also take this opportunity of revising a few terms I used in certain papers published some twenty years ago. In Nomina Anatomica the term truncus sympathicus is followed by the names of its ganglia, ganglia trunci sympathici, as well as of its connecting rami interganglio- nares. But, also under the heading ganglia trunci sympathici, the term ganglia intermedia is used to denote ganglia on the rami communicantes and certain ganglia on the trunks in the rami interganglionares between the other ganglia-namely the ganglion cervicale superius, ganglion cervicale medium, ganglion cervicothoracicum (s.