New Type of Cortical Neuroplasticity After Nerve Repair in Brachial Plexus Lesions

Total Page:16

File Type:pdf, Size:1020Kb

New Type of Cortical Neuroplasticity After Nerve Repair in Brachial Plexus Lesions OBSERVATION New Type of Cortical Neuroplasticity After Nerve Repair in Brachial Plexus Lesions Roland Beisteiner, MD, MA; Ilse Ho¨llinger, MSc; Jakob Rath, MD; Moritz Wurnig, MSc; Markus Hilbert; Nicolaus Klinger, MSc; Alexander Geißler, MSc, PhD; Florian Fischmeister, PhD; Christian Wo¨ber, MD; Gerhard Klo¨sch, MSc; Hanno Millesi, MD; Wolfgang Grisold, MD; Eduard Auff, MD; Robert Schmidhammer, MD Background: In brachial plexus avulsion, a recent tech- Participants: Three healthy control subjects, 2 pa- nique connects the ending of the disrupted musculocu- tients with phrenic nerve end-to-side coaptation, and 1 taneous nerve to the side of the intact phrenic nerve to control patient with C7 end-to-end coaptation (same clini- regain elbow flexion. This requires the phrenic nerve to cal presentation but phrenic nerve unchanged). perform a new double function: independent control of breathing and elbow flexion. Neuroplastic changes as- Results: Clinical documentation showed that both patients sociated with acquisition of double nerve functions have with phrenic nerve end-to-side coaptation were able to con- not yet been investigated. trolthediaphragmandthebicepsindependentlyviathesame phrenic nerve. In contrast to all controls, both patients with Objective: To evaluate neuroplastic changes associ- phrenic nerve end-to-side coaptation activated the cortical ated with acquisition of double nerve functions in a mono- diaphragm areas with flexion of the diseased arm. functional nerve (phrenic nerve). Conclusion: Our functional magnetic resonance imaging Design: Clinical and functional magnetic resonance data indicate that the patient’s cortical diaphragm areas imaging investigations during arm movements, forced in- reorganize in such a way that independent control of spiration, and motor control tasks. breathing and elbow flexion is possible with the same neu- ronal population. Setting: Investigations at the Medical University of Vienna, Vienna, Austria. Arch Neurol. 2011;68(11):1467-1470 WING TO TOTAL PARESIS nerve targets: muscles originally inner- of the affected arm, vated by the contralateral C7 root or the complete brachial ipsilateral phrenic nerve are denervated. Author Affiliations: Study plexus lesions represent An alternative approach is the nerve fi- Group Clinical fMRI and MR a seriously disabling ber transfer using end-to-side nerve re- 4 Center of Excellence Oneurological condition. In cases of root pair, where the ending of the disrupted (Drs Beisteiner, Rath, Geißler, avulsion, reconstruction of nerve conti- nerve is attached to the side of an intact and Fischmeister, Ms Ho¨llinger, nuity is impossible. To regain at least nerve via an epineurial window. Re- and Messrs Wurnig, Hilbert, partial arm functions, nerve fiber trans- cently, a modified end-to-side procedure and Klinger) and Department of fers that connect axon donors from out- has been suggested where a small motor Neurology (Drs Beisteiner, side the brachial plexus with the affected branch is used to restore motor func- Rath, Geißler, Fischmeister, plexus nerves are increasingly per- tion.5 The major advantage of end-to- Wo¨ber, and Auff, Ms Ho¨llinger, formed. However, the detailed neuro- side nerve repair is preservation of donor and Messrs Wurnig, Hilbert, plastic changes associated with clinical nerve function. In brachial plexus avul- Klinger, and Klo¨sch), Medical 1 University of Vienna, Millesi recovery are yet unknown. There are 2 sion, the ending of the disrupted muscu- Center for Brachial Plexus and major nerve transfer procedures for res- locutaneous nerve can be attached to the Peripheral Nerve Surgery (and toration of elbow flexion in cases of root side of the intact phrenic nerve, thereby Rehabilitation) and Ludwig avulsion. Nerve fibers from the contralat- preserving diaphragm innervation. Such Boltzmann Institute for eral healthy C7 root and nerve fibers patients represent an interesting new Experimental and Clinical from the ipsilateral healthy phrenic model for neuroplasticity: the same Traumatology, Austrian Cluster nerve can be used for reinnervation of phrenic nerve is required to control breath- for Tissue Regeneration the musculocutaneous nerve.2,3 This ing and elbow flexion independently. Al- (Drs Millesi and allows patients to regain elbow flexion of though neuroplastic changes with bra- Schmidhammer), and the paretic arm via contralateral C7 chial plexus injury have already been Department of Neurology and 6,7 Ludwig Boltzmann Institute for inputs or via the ipsilateral phrenic reported, the neuroplastic changes as- Neurooncology, Kaiser Franz nerve. This technique, called end-to-end sociated with acquisition of an additional Josef Hospital (Dr Grisold), nerve repair, has 1 major disadvantage. nerve function are unknown. We hypoth- Vienna, Austria. There is a loss of function in the donor esized that cortical phrenic nerve (dia- ARCH NEUROL / VOL 68 (NO. 11), NOV 2011 WWW.ARCHNEUROL.COM 1467 ©2011 American Medical Association. All rights reserved. Downloaded From: https://jamanetwork.com/ on 09/28/2021 Patient 2 was a right-handed man aged 43 years at the time of Control: inspiration a traumatic left complete brachial plexus lesion. He had end-to- side coaptation of (1) the ipsilateral phrenic nerve to (2) the mus- culocutaneous nerve 5 months after trauma. Left elbow flexion was possible against medium resistance at the time of fMRI (7 years after surgery). A general case description including preliminary data analysis is included in the article by Beisteiner et al.8 In both patients with end-to-side nerve repair, the nerve fi- ber transfer from the phrenic nerve to the musculocutaneous nerve was done using 2 sural nerve grafts coapted end to side to the phrenic nerve and end to end to the musculocutaneous Patient 1: inspiration nerve. Every patient provided fully informed consent with a protocol approved by the local ethics committee. HEALTHY CONTROL SUBJECTS To be able to compare fMRI findings of the patients’ reorga- nized nervous systems with unchanged nervous systems, fMRI recordings were also performed in 3 male healthy control sub- jects aged 42, 27, and 22 years without any history of nervous system disease. Patient 2: inspiration Expiration CLINICAL DOCUMENTATION In the control patient with C7 end-to-end coaptation, chest ra- diography documented a normal bilateral diaphragm innerva- tion with deep inspiration (Figure 1). Electromyography of the affected biceps muscle demonstrated independence of muscle innervation and breathing (Figure 2B). In patient 1 with phrenic nerve end-to-side coaptation, video recording showed a lack of biceps contractions with deep in- spiration or coughing and no change of breathing patterns with elbow flexion. Chest radiography documented bilateral dia- Figure 1. Chest radiographs of participants (the left side of the images are phragm innervation with deep inspiration and no elevated dia- the right side of the participants). The control patient with C7 end-to-end phragm (Figure 1). Electromyography of the affected biceps coaptation shows normal bilateral diaphragm innervation with inspiration. Patient 1 with phrenic nerve end-to-side coaptation shows preserved bilateral muscle demonstrated independence of muscle innervation and diaphragm innervation. Patient 2 with phrenic nerve end-to-side coaptation breathing. shows preserved innervation but diaphragm elevation on the operated left In patient 2 with phrenic nerve end-to-side coaptation, video side. With inspiration, contraction of the left diaphragm produces a shift of recording and fluoroscopy of the thorax showed a lack of bi- about 2 intercostal spaces. ceps contractions with deep inspiration or coughing and a lack of diaphragm innervation with elbow flexion. Chest radiogra- phragm) representations reorganize in such a pattern that phy documented an elevated but innervated diaphragm on the independent control of breathing and elbow flexion is affected side (Figure 1). Electromyography of the affected bi- possible with the same neuronal population.8 Herein, we ceps muscle demonstrated independence of muscle innerva- present comprehensive functional magnetic resonance tion and breathing (Figure 2A). During forced inspiration and imaging (fMRI) studies of 2 patients with phrenic nerve coughing, spikes of motor activation appeared in very few parts end-to-side coaptation, 1 control patient with C7 end- of the electromyographic recordings. to-end coaptation, and 3 healthy control subjects to test this hypothesis. FUNCTIONAL MRI Investigations included 4 tasks: (1) elbow flexion of the dis- METHODS eased arm; (2) elbow flexion of the healthy arm; (3) forced ab- dominal inspiration; and (4) foot flexion on the side of the dis- PATIENTS eased arm. Patient 1 with phrenic nerve end-to-side coaptation per- The control patient was a right-handed boy aged 6 years at the formed tasks 1 through 4, patient 2 with phrenic nerve end- time of a traumatic left complete brachial plexus lesion. He had to-side coaptation and the healthy control subjects performed end-to-end coaptation of (1) contralateral root C7 to (2) the tasks 1 and 2, and the control patient with C7 end-to-end co- musculocutaneous nerve 5 months after trauma. Left elbow flex- aptation performed tasks 1 through 3. Repetitive investiga- ion was possible against light resistance at the time of fMRI (6.5 tions were performed with 3-T MRI and 7-T MRI (blood oxy- years after surgery). gen level–dependent gradient echo–echo planar imaging; 34 Patient 1 was a right-handed woman aged 29 years
Recommended publications
  • Radical Transsternal Thymectomy David Park Mason, MD
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Radical Transsternal Thymectomy David Park Mason, MD bnormalities of the thymus comprise more than half of generalized enlargement of the thymic gland caused by dif- Athe lesions found in the anterior mediastinal compart- fuse thymocyte proliferation. Thymic hyperplasia is an im- ment in adults. Greater than 95% of the tumors of the thymus munologic condition.10 In children, thymic hyperplasia can are thymomas that originate from thymic epithelial cells. be associated with a variety of endocrine disorders including They generally present as an incidental radiographic finding. hyperthyroidism. In adults, thymic hyperplasia has been as- They are of surgical importance both as isolated entities as sociated with thymoma as well as many immune dysfunction well as in association with myasthenia gravis (MG). Surgical syndromes—the most notable being myasthenia gravis. Re- excision is the cornerstone of therapy for thymoma.1 In ad- moval of the thymus gland, by a variety of surgical ap- dition, thymectomy is an integral component of the manage- proaches, appears to influence the immune dysfunction ob- ment of myasthenia gravis. served in myasthenia gravis.7 The mechanism of this Ludwig Rehn performed the first thymic operation in 1896, a influence, and the relative benefit of removing all residual or transcervical exothymopexy for a patient with an enlarged thy- ectopic thymic tissue, is unclear. 2 mus causing episodes of suffocation. He pulled the enlarged The most frequent asymptomatic indication for thymec- thymus out of the mediastinum and performed a pexy of the tomy is thymoma.
    [Show full text]
  • Of the Pediatric Mediastinum
    MRI of the Pediatric Mediastinum Dianna M. E. Bardo, MD Director of Body MR & Co-Director of the 3D Innovation Lab Disclosures Consultant & Speakers Bureau – honoraria Koninklijke Philips Healthcare N V Author – royalties Thieme Publishing Springer Publishing Mediastinum - Anatomy Superior Mediastinum thoracic inlet to thoracic plane thoracic plane to diaphragm Inferior Mediastinum lateral – pleural surface anterior – sternum posterior – vertebral bodies Mediastinum - Anatomy Anterior T4 Mediastinum pericardium to sternum Middle Mediastinum pericardial sac Posterior Mediastinum vertebral bodies to pericardium lateral – pleural surface superior – thoracic inlet inferior - diaphragm Mediastinum – MR Challenges Motion Cardiac ECG – gating/triggering Breathing Respiratory navigation Artifacts Intubation – LMA Surgical / Interventional materials Mediastinum – MR Sequences ECG gated/triggered sequences SSFP – black blood SE – IR – GRE Non- ECG gated/triggered sequences mDIXON (W, F, IP, OP), eTHRIVE, turbo SE, STIR, DWI Respiratory – triggered, radially acquired T2W MultiVane, BLADE, PROPELLER Mediastinum – MR Sequences MRA / MRV REACT – non Gd enhanced Gd enhanced sequences THRIVE, mDIXON, mDIXON XD Mediastinum – Contents Superior Mediastinum PVT Left BATTLE: Phrenic nerve Vagus nerve Structures at the level of the sternal angle Thoracic duct Left recurrent laryngeal nerve (not the right) CLAPTRAP Brachiocephalic veins Cardiac plexus Aortic arch (and its 3 branches) Ligamentum arteriosum Thymus Aortic arch (inner concavity) Trachea Pulmonary
    [Show full text]
  • The Peripheral Nervous System
    The Peripheral Nervous System Dr. Ali Ebneshahidi Peripheral Nervous System (PNS) – Consists of 12 pairs of cranial nerves and 31 pairs of spinal nerves. – Serves as a critical link between the body and the central nervous system. – peripheral nerves contain an outermost layer of fibrous connective tissue called epineurium which surrounds a thinner layer of fibrous connective tissue called perineurium (surrounds the bundles of nerve or fascicles). Individual nerve fibers within the nerve are surrounded by loose connective tissue called endoneurium. Cranial Nerves Cranial nerves are direct extensions of the brain. Only Nerve I (olfactory) originates from the cerebrum, the remaining 11 pairs originate from the brain stem. Nerve I (Olfactory)- for the sense of smell (sensory). Nerve II (Optic)- for the sense of vision (sensory). Nerve III (Oculomotor)- for controlling muscles and accessory structures of the eyes ( primarily motor). Nerve IV (Trochlear)- for controlling muscles of the eyes (primarily motor). Nerve V (Trigeminal)- for controlling muscles of the eyes, upper and lower jaws and tear glands (mixed). Nerve VI (Abducens)- for controlling muscles that move the eye (primarily motor). Nerve VII (Facial) – for the sense of taste and controlling facial muscles, tear glands and salivary glands (mixed). Nerve VIII (Vestibulocochlear)- for the senses of hearing and equilibrium (sensory). Nerve IX (Glossopharyngeal)- for controlling muscles in the pharynx and to control salivary glands (mixed). Nerve X (Vagus)- for controlling muscles used in speech, swallowing, and the digestive tract, and controls cardiac and smooth muscles (mixed). Nerve XI (Accessory)- for controlling muscles of soft palate, pharynx and larynx (primarily motor). Nerve XII (Hypoglossal) for controlling muscles that move the tongue ( primarily motor).
    [Show full text]
  • Peripheral Nervous System
    Peripheral Nervous System Nervous system consists of CNS = brain and spinal cord ~90% (90 Bil) of all neurons in body are in CNS PNS = Cranial nerves and spinal nerves ~10% (10 Bil) of all neurons in body are in PNS PNS is our link to the outside world without it CNS us useless sensory deprivation hallucinations sensory (afferent) neurons ~2-3M; 6-8x’s more sensory than motor fibers motor (efferent) neurons ~350,000 efferent fibers somatic motor neurons autonomic motor neurons these neurons are bundled into nerves difference between nerve and neuron: neuron = individual nerve cell nerve = bundle of axons outside CNS surrounded by layers of connective tissue CNS PNS Axons Tracts Nerves Cell Bodies Nuclei Ganglia Nerves consist of either sensory or motor neurons or a combination of both (=mixed nerves) mixed nerves often carry both somatic and autonomic motor fibers ganglia examples: dorsal root ganglia = cell bodies of sensory neurons autonomic chain ganglia = cell bodies, dendrites & synapses of autonomic motor neurons PNS consists of 43 pairs of nerves branching from the CNS: 12 pairs of cranial nerves 31 pairs of spinal nerves Cranial Nerves 12 pairs of cranial nerves 1 structurally originate from: cerebrum: I, II midbrain: III, IV pons: V, VI, VII,VIII (pons/medulla border) medulla: IX, X, XI, XII functionally: some are sensory only: I. Olfactory [sense of smell] II. Optic [sense of sight] VIII. Vestibulocochlear [senses of hearing and balance] -injury causes deafness some are motor only: III. Oculomotor IV. Trochlear [eye movements] VI. Abducens -injury to VI causes eye to turn inward some are mixed nerves: V.
    [Show full text]
  • Cervical Variations of the Phrenic Nerve
    The Laryngoscope VC 2011 The American Laryngological, Rhinological and Otological Society, Inc. Cervical Variations of the Phrenic Nerve Abie H. Mendelsohn, MD; Adam DeConde, MD; H. Wayne Lambert, PhD; Sean C. Dodson, BS; Blake T. Daney, BS; M. Elena Stark, MD, PhD; Gerald S. Berke, MD; Jonathan J. Wisco, PhD Objectives/Hypothesis: Selective reinnervation of the posterior cricoarytenoid muscle with a single phrenic nerve rootlet has been shown to restore physiologic motion in animal models. However, clinical translation of this work is challenged by the limited knowledge of the cervical anatomy of the phrenic nerve. Study Design: Prospective collaborative study. Methods: Dissection of 111 cadaveric necks (88 embalmed and 23 unembalmed) from 56 cadavers. Results: The mean (standard deviation) lengths of unembalmed cadaver C3, C4, and C5 nerve rootlets were 3.9 (2.4), 3.6 (2.6), and 0.5 (0.8) cm, respectively. Embalmed cadavers had shorter C3 and C4 phrenic nerve rootlet lengths than unem- balmed cadavers (P ¼ .02 and P ¼ .03, respectively). There was no difference in mean nerve rootlet length based on sex, body height or weight, or side of dissection. A total of eight unique phrenic nerve rootlet patterns were identified. The most common pattern consisted of phrenic with single C3 and C4 rootlets with an immeasurable C5 rootlet, which was present in 30 of 111 (26%) of the necks. The classic three branching pattern of single C3, C4, and C5 rootlets was found in 25 of 111 (22%) of the necks. Six of 111 (5%) of the dissections displayed accessory phrenic nerves arising from the C3, C4, or C5 anterior rami.
    [Show full text]
  • Innovative New Surgery Repairs Phrenic Nerve Injury, Restores Breathing Function
    Innovative new surgery repairs phrenic nerve injury, restores breathing function New hope for long- suffering patients While nerve decompression and nerve transplants are commonly used to treat arm or leg paralysis, the procedure had not been applied to treat diaphragm paralysis until recently. Limited treatment options include nonsurgical therapy or diaphragm plication, a procedure that surgically tightens the diaphragm in an effort to improve breathing capacity. But neither of those treatments can restore normal function to the paralyzed diaphragm, and most patients are told by their physicians that they need to learn to live with the injury. With the new nerve decom- Since January 2013, UCLA surgeons have been performing an innovative new pression and nerve transplant surgery, however, doctors have surgery to treat individuals suffering from breathing difficulties caused by phrenic reversed diaphragm paralysis nerve injury. UCLA is one of only two locations in the country offering this surgery, in the vast majority of those who and is the only one in the Western United States. have undergone the procedure. The phrenic nerve, which originates from the C3-5 cervical spinal roots in the neck, “These patients suffer tremendously and have had very few options,” travels through the chest between the heart and lungs to the diaphragm, which is says Reza Jarrahy, MD, associate the primary muscle involved in breathing. The phrenic nerve causes the diaphragm clinical professor in UCLA’s to contract, resulting in expansion of the chest cavity and inhalation of air into the Division of Plastic & Reconstructive lungs. It transmits signals from the brain and spinal cord that cause both voluntary, Surgery.
    [Show full text]
  • Superior and Posterior Mediastina Reading: 1. Gray's Anatomy For
    Dr. Weyrich G07: Superior and Posterior Mediastina Reading: 1. Gray’s Anatomy for Students, chapter 3 Objectives: 1. Subdivisions of mediastinum 2. Structures in Superior mediastinum 3. Structures in Posterior mediastinum Clinical Correlate: 1. Aortic aneurysms Superior Mediastinum (pp.181-199) 27 Review of the Subdivisions of the Mediastinum Superior mediastinum Comprises area within superior thoracic aperture and transverse thoracic plane -Transverse thoracic plane – arbitrary line from the sternal angle anteriorly to the IV disk or T4 and T5 posteriorly Inferior mediastinum Extends from transverse thoracic plane to diaphragm; 3 subdivisions Anterior mediastinum – smallest subdivision of mediastinum -Lies between the body of sternum and transversus thoracis muscles anteriorly and the pericardium posteriorly -Continuous with superior mediastinum at the sternal angle and limited inferiorly by the diaphragm -Consists of sternopericardial ligaments, fat, lymphatic vessels, and branches of internal thoracic vessels. Contains inferior part of thymus in children Middle mediastinum – contains heart Posterior mediastinum Superior Mediastinum Thymus – lies posterior to manubrium and extends into the anterior mediastinum -Important in development of immune system through puberty -Replaced by adipose tissue in adult Arterial blood supply -Anterior intercostals and mediastinal branches of internal thoracic artery Venous blood supply -Veins drain into left brachiocephalic, internal thoracic, and thymic veins 28 Brachiocephalic Veins - Formed by the
    [Show full text]
  • Brain Spinal Nerves Spinal Cord (Dura Mater)
    1 PRE-LAB EXERCISES Open the Atlas app. From the Views menu, go to System Views and scroll down to Nervous System Views. You are responsible for the identification of all bold terms. A. Nervous System Overview In the Nervous System Views section, select View 1. Nervous System. Use the systems icon to open the systems tray and deselect the two skeletal system icons to remove the bones, tendons, and ligaments from the view. Rotate the view as needed to examine the nervous system structures and answer the following questions. Brain Spinal cord (dura mater) Spinal nerves 2 1. The nervous system is anatomically separated into two parts: the central nervous system and the peripheral nervous system. The central nervous system consists of the _________________________ inside the cranium, and the _________________________________ inside the spinal column. 2. Examine the view from either side and use it to answer the following questions. a. Select any part of the outer protective connective tissue layer surrounding the spinal cord. This layer is called the _____________________________. This tough structure also protects the brain. b. Use the Hide tool to remove the outer protective layer from the view, and then select the spinal cord. Use the book icon to read its definition. The spinal cord extends from the upper border of the spinal column (atlas) to the lower border of the first, or upper border of the second, ______________________________ vertebra. c. What part of the brain is continuous with the spinal cord? 3. Paired spinal nerves exit the spinal cord along its length, forming the peripheral nervous system.
    [Show full text]
  • Head and Neck of the Mandible
    Relationships The parotid duct passes lateral (superficial) and anterior to the masseter muscle. The parotid gland is positioned posterior and lateral (superficial) to the masseter muscle. The branches of the facial nerve pass lateral (superficial) to the masseter muscle. The facial artery passes lateral (superficial) to the mandible (body). On the face, the facial vein is positioned posterior to the facial artery. The sternocleidomastoid muscle is positioned superficial to both the omohyoid muscle and the carotid sheath. The external jugular vein passes lateral (superficial) to the sternocleidomastoid muscle. The great auricular and transverse cervical nerves pass posterior and lateral (superficial) to the sternocleidomastoid muscle. The lesser occipital nerve passes posterior to the sternocleidomastoid muscle. The accessory nerve passes medial (deep) and then posterior to the sternocleidomastoid muscle. The hyoid bone is positioned superior to the thyroid cartilage. The omohyoid muscle is positioned anterior-lateral to the sternothyroid muscle and passes superficial to the carotid sheath. At the level of the thyroid cartilage, the sternothyroid muscle is positioned deep and lateral to the sternohyoid muscle. The submandibular gland is positioned posterior and inferior to the mylohyoid muscle. The digastric muscle (anterior belly) is positioned superficial (inferior-lateral) to the mylohyoid muscle. The thyroid cartilage is positioned superior to the cricoid cartilage. The thyroid gland (isthmus) is positioned directly anterior to the trachea. The thyroid gland (lobes) is positioned directly lateral to the trachea. The ansa cervicalis (inferior root) is positioned lateral (superficial) to the internal jugular vein. The ansa cervicalis (superior root) is positioned anterior to the internal jugular vein. The vagus nerve is positioned posterior-medial to the internal jugular vein and posterior-lateral to the common carotid artery.
    [Show full text]
  • Complete Thymectomy for Myasthenia Gravis
    8 Review Article Page 1 of 8 Complete thymectomy for myasthenia gravis Jens-C. Rückert1#, Hongbin Zhang1#, Feng Li1, Deniz Uluk1, Mahmoud Ismail1, Andreas Meisel2 1Department of Surgery, Competence Center of Thoracic Surgery, 2Department of Neurology Berlin, Charité University Hospital Berlin, Berlin, Germany Contributions: (I) Conception and design: H Zhang, F Li, JC Rückert, D Uluk; (II) Administrative support: JC Rückert; (III) Provision of study materials or patients: JC Rückert, D Uluk; (IV) Collection and assembly of data: None; (V) Data analysis and interpretation: None; (VI) Manuscript writing: All authors; (VII) Final approval of manuscript: All authors. #These authors contributed equally to this work. Correspondence to: Jens-C. Rückert, MD, PhD. Department of Surgery, Competence Center of Thoracic Surgery, Charité University Hospital Berlin, Charitéplatz 1, 10115 Berlin, Germany. Email: [email protected]. Abstract: The therapeutic value of transsternal extended thymectomy for patients with myasthenia gravis (MG) has been determined by the results of the Myasthenia Gravis Thymectomy Trial (MGTX). The most crucial point of thymectomy lies in the completeness of the resection with the thymus, mediastinal fat, lower cervical fat and thymoma (if any), the more complete the resection the better neurological outcome. In clinical practice, the minimally invasive approaches for thymectomy have become a “usual” approach for thymectomy in many centers worldwide. Robotic thymectomy, as the latest advance in minimally invasive thymectomy,
    [Show full text]
  • An Unusual Anatomical Variant of the Left Phrenic Nerve Encircling the Transverse Cervical Artery
    ONLINE FIRST This is a provisional PDF only. Copyedited and fully formatted version will be made available soon. ISSN: 0015-5659 e-ISSN: 1644-3284 An unusual anatomical variant of the left phrenic nerve encircling the transverse cervical artery Authors: J. H. Lee, H. T. Kim, I. J. Choi, Y. R. Heo, Y. W. Jung DOI: 10.5603/FM.a2020.0131 Article type: CASE REPORTS Submitted: 2020-07-24 Accepted: 2020-10-18 Published online: 2020-10-27 This article has been peer reviewed and published immediately upon acceptance. It is an open access article, which means that it can be downloaded, printed, and distributed freely, provided the work is properly cited. Articles in "Folia Morphologica" are listed in PubMed. Powered by TCPDF (www.tcpdf.org) An unusual anatomical variant of the left phrenic nerve encircling the transverse cervical artery Running head: Encircling of the left phrenic nerve around the transverse cervical artery J.-H. Lee1, H.-T. Kim2, I.-J. Choi1, Y.-R. Heo1, Y.-W. Jung3 1Department of Anatomy, School of Medicine, Keimyung University, 1095 Dalgubeol- daero, Daegu, 42601, Republic of Korea 2Department of Anatomy, School of Medicine, Catholic University of Daegu, Daegu, 42472, Republic of Korea 3Department of Anatomy, College of Medicine, Dongguk University, 123 Dongdae-ro, Gyeongju, 368066, Republic of Korea Address for correspondence: Dr. Yong-Wook Jung, Department of Anatomy, College of Medicine, Dongguk University, 123 Dongdae-ro, Gyeongju, 368066, Republic of Korea, tel: +82-54-770-2404, fax: +82-54-770-2402, e-mail: [email protected] Abstract During educational dissection of cadavers, we encountered anatomical variability of the left phrenic nerve.
    [Show full text]
  • The Contribution of the Left Phrenic Nerve to the Innervation Of
    Clinical Anatomy (2019) ORIGINAL COMMUNICATION The Contribution of the Left Phrenic Nerve to Innervation of the Esophagogastric Junction KATI HAENSSGEN,1 GUDRUN HERRMANN,1 ANNETTE DRAEGER,1 MANFRED ESSIG,2 1 AND VALENTIN DJONOV * 1Institute of Anatomy, University of Bern, Bern, Switzerland 2Department Gastroenterology, Tiefenau Hospital, University of Bern, Bern, Switzerland The contribution of the left phrenic nerve to innervation of the esophagogastric junction. The esophagogastric junction is part of the barrier preventing gastro- esophageal reflux. We have investigated the contribution of the phrenic nerves to innervation of the esophagogastric junction in humans and piglets by dissecting 30 embalmed human specimens and 14 piglets. Samples were microdissected and nerves were stained and examined by light and electron microscopy. In 76.6% of the human specimens, the left phrenic nerve participated in the inner- vation of the esophagogastric junction by forming a neural network together with the celiac plexus (46.6%) or by sending off a distinct phrenic branch, which joined the anterior vagal trunk (20%). Distinct left phrenic branches were always accompanied by small branches of the left inferior phrenic artery. In 10% there were indirect connections with a distinct phrenic nerve branch joining the celiac ganglion, from which celiac plexus branches to the esophagogastric junction emerged. Morphological examination of phrenic branches revealed strong similar- ities to autonomic celiac plexus branches. There was no contribution of the left phrenic nerve or accompanying arteries from the caudal phrenic artery in any of the piglets. The right phrenic nerve made no contribution in any of the human or piglet samples. We conclude that the left phrenic nerve in humans contributes to the innervation of the esophagogastric junction by providing ancillary autonomic nerve fibers.
    [Show full text]