Organic Chemistry. T

Total Page:16

File Type:pdf, Size:1020Kb

Organic Chemistry. T View Article Online / Journal Homepage / Table of Contents for this issue i. 369 Organic Chemistry. Nature of the Kolbe Electrochemical Synthesis of Hydrocarbons. FH. FICHTERand EDUARDKRUMMENAUHEH (Helvetica Chim. A cia, 1918, 1, 146-166).-The authors discuss the two theories put forward to explain the' mechanism of the Kolbe hydrocarbon synthesis, and draw the conclusion that the oxidation thsory is more in accord with fact than the theory based on the ionic hypothesis. It is shown that peroxides are produced by electrochemical oxidation, on platinum anodes, of solutions of saturated fatty acids and their salts. Since them peroxides may be produced by the action of hydrogen peroxide on aci6 anhydrides, it is to be assumed that the separation of the anhydride is the first step in the hydrocarbon synthesis. The anhydride is then anodic- ally oxidised, with the formation of a very unstable peroxide. The peroxide is then decomposed by the relatively high tempera- ture of the anode, with the formation of the hydrocarbon, thus: R*CO,Na + (RCO),-0 + 0 + (RCO),*O = 0 + R*R+ 2CO,, or a side reaction may also occur, thus: (R*CO),O=O 4 R-CO,*R + CO,. When th? peroxides are decomposed by heat, there is also a considerable amount of methane produced in addition to the expected hydrocarbon. These considerations are adapted to the formation and decom- position of organic peracids. Organic peracids m:by be prepared by the action of hydrogen peroxide on both acids and anhydrides, consequently the formation of these substances electrolytically on the, anode does not necessarily demand the intermediary formation Published on 01 January 1918. Downloaded 28/10/2014 00:35:27. of the anhydride. A further possibility also arises from the fact that peracids may be hydrolysed to peroxide&. The peracids also decompose at the anode surface, giving carbon dioxide and an alcohol, R*CO,H + R*OH+CO,, or carbon dioxide and an un- saturated hydrocarbon, C,&, + ,-CO,H = C,Hm + CO, + H,O. By the electrolysis of sulphonediacetic acid or its salts, tlie pro- ducts are carbon dioxide and sulphuric acid, and not the expected product, diethylene disulphone. J. F. S. Determination of the Normal Density of Ethylene. T. BATUECAS(Anal. Fis. Quim., 1918, 16, 258-281 ; flelvetica Chim. Acta, 1918, 1, 136--141).-The mean of twenty-one determinations with samples of ethylene prepared from ethyl alcohol by phosphoric acid, boric acid, sulphuric acid, and alumina gave for the normal density the value Lo= 1.26031 grams. A. J. W. Silver Acetylide. JOHNEGGERT (Zeitsch. EEektroche9nn., I 91 8, 24, 150-154. Compare A., 1918, ii, 228).-The amount of gaseous product produced by the detonation of silver acetylide depends on the method of preparation. Silver ace tylide prepared VOL. om. i. t View Article Online i. 370 ABSTRACTS OF CHEMICAL PAPERS. from an acid silver nitrate solution evolves about ten times the volume of gas, on detonation, as does material prepared in ammoniacal solution, neutral solution, or in solution of hydroiluoric acid. The material prepared in nitric acid solutim contains 78.5% of silver, and the gaseous product of detonation consists of a mix- ture of carbon monoxide, carbon dioxide, methane, hydrogen, nitrogen, nitric oxide, and water vapour. The material prepared in 2% ammoniacal solution contains 89.5% of silver, and the product of detonation consists of carbon monoxidel, carbon dioxide, methane, hydrogen, and water vapour. The analyses show that the product from nitric acid consists of 5776 of silver acetylide and 43% of silver nitrate, whilst that from ammonia consists of 86% of silver acetylide and 14% of silver hydroxide. J. F. S. Methods of Formation of Chlorohydrins . I. Glyceryl Chlorohydrins . L. SMITH(Zeitsch. physikal. Chern., 1918, 92, 717-740).-The author has found that the velocity constants for the hydrolysis of chlorohydrins steadily decrease as the action pro- ceeds and has attributed this action to the presence of two (or more) isomerides in the material employed. The nature of the chloro- hydrin prepared by the various methods is not wsll investigated, and the' usual methods are not very suitable for recognising these compounds in mixtures. The rate of hydrolysis by alkali hydroxides can be used for this purpose, and from t.he ratel with which the velocity constant changes it is possible to state which isomerides are presentl. Using this method, the products obtained by the various methods for the preparation of glyceryl chlorohydrin have been examined. (1) Glyceryl monochlorohydrin, prepared from cpichlorohydrin, consists entirely of a-monochlorohydrin. (2) Monochlorohydrin from glyce'rol by the action of hydrogen Published on 01 January 1918. Downloaded 28/10/2014 00:35:27. chloride is a mixture of the a- and 8-compounds containing a large excess of the a-derivative. (3) By the action of hypochlorous acid on allyl alcohol, a mixture of the a- and 8-chlorohydrins is pro- duced which consists mainly of the P-compound. (4) The mono- chlorohydrin produced by the action of hydrogen chloride consists of a mixture of S5-90% of the a-compound and l0-15% of the P-compound. A number of experiments are described which are designed to separate1 the constituents of the mixtures. (5) Glyceryl dichlorohydrin, prepared by the action of chlorine on allyl alcohol, contains only traces of the ay-compound. (6) The product of the action of hydrogen chloride on epkhlorohydrin contains nothing but, the pure1 ay-compound. (7) The product of the action of hypochlorite on allyl alcohol contains about one-third of its weight of ay -dichlorohydrin , The whole of the hydrolytic experiments were carried out with both baryta and sodium hydroxide. J. F. S. Methods of Formation of Chlorohydrins. 11. Propylene Chlorohydrias. LENNARTSMITH (Zeitsch. physikal. Chern., 1918, 93, 59-88. See preceding abstract).-The author has prepared the propylene chlorohydrins by various methods, and has examined View Article Online ORGANIC CHEMISTRY. i. 371 the products by the kinetic method (Eoc. cit.) with the object of ascertaining their composition, and so deciding the best methods for preparing the different isomerides. (1) The product of the action of water on ally1 chloride gives pure propylene a-chloro- hydrin; (2) by the action of sulphur chloride on propylene glycol, a product containing 25% of the P-compound and 75% of the a-com- pound is obtained; (3) propylene glycol treated with hydrogen chloride yields more @-chlorohydrin than in case (2); (4) propylene oxide treated with hydrogen chloride yields mainly the a-compound with not inconsiderable quantities of the &compound ; (5) the action of hypochlorite on propylene yields a mixture of the pro- ducts. Henry’s method (A., 1903, i, 725) for converting the a-chlorohydrin into 8-chlorohydrin has been examined, and it is shown that the product consists mainly of the a-derivative. J. F. S. Autoxidation of some Derivatives of Thioncarbonic Acid. 0. BILLETERand B. WAVRE(Hdvetica Chim. Acta, 1918, 1, 167--174).--Compounds containing the group C:S, and particu- larly those of the types CS(OR)(SR), CS(OR),, CSCl(OR), and thiocarbonyl chloride, CSCl,, are phosphorescent and rapidly absorb oxygen, being thereby oxidis’ed. These substances also emit a phosphorescent vapour. The oxidation occurs only in the presence of a catalyst such as a hydroxide of the alkali or alkaline earth metals, alkali carbonates, oxides of zinc or magnesium, and ammonia. Ethyl xanthate in the presence of excess of iV/lO- ammonia solution rapidly absorbs oxygen, and about 90% of the sulphur present is converted into sulphuric acid; some of the1 com- pound, OEt*CO*SEt, is also produced. Methyl methylxanthate in the presence of N-ammonia is oxidised very rapidly, the sulphur Published on 01 January 1918. Downloaded 28/10/2014 00:35:27. being oxidised to thiosulphate, sulphite, trithionate, and sulphate, whilst hexamethylenetetramine is also f ornied. Methyl thion- carbonate, CS(OMe),, is rapidly oxidised, 38% of the sulphur being regained as sulphuric acid, whilst the rest appears as thio- sulphuric acid, sulphurous acid, and a little trithionic acid. The ethyl ester, CS(OEt),, does not undergo autoxidation in the presence of pure oxygen, but with air 40% of the ester is oxidised and 14% of the sulphur appears as sulphuric acid, whilst the rest is obtained as thiosulphuric acid, sulphurous acid and a trace! of trithionic acid. The chloro-ester, CSCl*OMe, is oxidised so rapidly that in the first half minute 837A of the theoretical quantity of oxygen is absorbed, 16.906 of the sulphur is oxidised to sulphuric acid, and the residue to sulphurous acid. Thiocarbonyl chloride is very rapidly attacked, but only about 30% is oxidised normally, the residuel being absorbed by the ammonia to form ammonium thio- cyanate and sulphur. J. F. S. Some Metallic Salts and Complex.Metallic Derivatives of $he Cyanacarboxylic Acids and their Esters. 11. LIZZIE PETTERSON-BJORCK(J. pr. Ckem., 1918, [ii], 97, 51--58).-An t2 View Article Online i. 372 ABSTRACTS OF CHEMICAL PAPERS. extension of the earlier paper (A., 1913, i, 27) giving a description of the cobalt and silver salts of cyanoacetic acid and of the platinum derivatives of methyl and ethyl cyanoacetate. Cobalt cyanoacetate, (CN*CH,-CO,),Co,H,O, obtained by the action of cyanoacetic acid on an aqueous suspension of cobalt hydroxide, forms pale red needles, the red aqueous solution of which becomes blue on warming. Silver cyanoacetate, prepared by precipitation f rorn potassium cyanoacetate and silver nitrate in aqueous solution, forms colourless needles (compare Meves, Annalen, 1867, 143, 304). By the interaction of barium cyano- acetate and chrome alum, it is possible to obtain green, prismatic crystals of a chromium cyanoacetate analogous to the ferric salt described earlier (Zoc.
Recommended publications
  • 1 Abietic Acid R Abrasive Silica for Polishing DR Acenaphthene M (LC
    1 abietic acid R abrasive silica for polishing DR acenaphthene M (LC) acenaphthene quinone R acenaphthylene R acetal (see 1,1-diethoxyethane) acetaldehyde M (FC) acetaldehyde-d (CH3CDO) R acetaldehyde dimethyl acetal CH acetaldoxime R acetamide M (LC) acetamidinium chloride R acetamidoacrylic acid 2- NB acetamidobenzaldehyde p- R acetamidobenzenesulfonyl chloride 4- R acetamidodeoxythioglucopyranose triacetate 2- -2- -1- -β-D- 3,4,6- AB acetamidomethylthiazole 2- -4- PB acetanilide M (LC) acetazolamide R acetdimethylamide see dimethylacetamide, N,N- acethydrazide R acetic acid M (solv) acetic anhydride M (FC) acetmethylamide see methylacetamide, N- acetoacetamide R acetoacetanilide R acetoacetic acid, lithium salt R acetobromoglucose -α-D- NB acetohydroxamic acid R acetoin R acetol (hydroxyacetone) R acetonaphthalide (α)R acetone M (solv) acetone ,A.R. M (solv) acetone-d6 RM acetone cyanohydrin R acetonedicarboxylic acid ,dimethyl ester R acetonedicarboxylic acid -1,3- R acetone dimethyl acetal see dimethoxypropane 2,2- acetonitrile M (solv) acetonitrile-d3 RM acetonylacetone see hexanedione 2,5- acetonylbenzylhydroxycoumarin (3-(α- -4- R acetophenone M (LC) acetophenone oxime R acetophenone trimethylsilyl enol ether see phenyltrimethylsilyl... acetoxyacetone (oxopropyl acetate 2-) R acetoxybenzoic acid 4- DS acetoxynaphthoic acid 6- -2- R 2 acetylacetaldehyde dimethylacetal R acetylacetone (pentanedione -2,4-) M (C) acetylbenzonitrile p- R acetylbiphenyl 4- see phenylacetophenone, p- acetyl bromide M (FC) acetylbromothiophene 2- -5-
    [Show full text]
  • Underactive Thyroid
    Underactive Thyroid PDF generated using the open source mwlib toolkit. See http://code.pediapress.com/ for more information. PDF generated at: Thu, 21 Jun 2012 14:27:58 UTC Contents Articles Thyroid 1 Hypothyroidism 14 Nutrition 22 B vitamins 47 Vitamin E 53 Iodine 60 Selenium 75 Omega-6 fatty acid 90 Borage 94 Tyrosine 97 Phytotherapy 103 Fucus vesiculosus 107 Commiphora wightii 110 Nori 112 Desiccated thyroid extract 116 References Article Sources and Contributors 121 Image Sources, Licenses and Contributors 124 Article Licenses License 126 Thyroid 1 Thyroid thyroid Thyroid and parathyroid. Latin glandula thyroidea [1] Gray's subject #272 1269 System Endocrine system Precursor Thyroid diverticulum (an extension of endoderm into 2nd Branchial arch) [2] MeSH Thyroid+Gland [3] Dorlands/Elsevier Thyroid gland The thyroid gland or simply, the thyroid /ˈθaɪrɔɪd/, in vertebrate anatomy, is one of the largest endocrine glands. The thyroid gland is found in the neck, below the thyroid cartilage (which forms the laryngeal prominence, or "Adam's apple"). The isthmus (the bridge between the two lobes of the thyroid) is located inferior to the cricoid cartilage. The thyroid gland controls how quickly the body uses energy, makes proteins, and controls how sensitive the body is to other hormones. It participates in these processes by producing thyroid hormones, the principal ones being triiodothyronine (T ) and thyroxine which can sometimes be referred to as tetraiodothyronine (T ). These hormones 3 4 regulate the rate of metabolism and affect the growth and rate of function of many other systems in the body. T and 3 T are synthesized from both iodine and tyrosine.
    [Show full text]
  • Chemical Names and CAS Numbers Final
    Chemical Abstract Chemical Formula Chemical Name Service (CAS) Number C3H8O 1‐propanol C4H7BrO2 2‐bromobutyric acid 80‐58‐0 GeH3COOH 2‐germaacetic acid C4H10 2‐methylpropane 75‐28‐5 C3H8O 2‐propanol 67‐63‐0 C6H10O3 4‐acetylbutyric acid 448671 C4H7BrO2 4‐bromobutyric acid 2623‐87‐2 CH3CHO acetaldehyde CH3CONH2 acetamide C8H9NO2 acetaminophen 103‐90‐2 − C2H3O2 acetate ion − CH3COO acetate ion C2H4O2 acetic acid 64‐19‐7 CH3COOH acetic acid (CH3)2CO acetone CH3COCl acetyl chloride C2H2 acetylene 74‐86‐2 HCCH acetylene C9H8O4 acetylsalicylic acid 50‐78‐2 H2C(CH)CN acrylonitrile C3H7NO2 Ala C3H7NO2 alanine 56‐41‐7 NaAlSi3O3 albite AlSb aluminium antimonide 25152‐52‐7 AlAs aluminium arsenide 22831‐42‐1 AlBO2 aluminium borate 61279‐70‐7 AlBO aluminium boron oxide 12041‐48‐4 AlBr3 aluminium bromide 7727‐15‐3 AlBr3•6H2O aluminium bromide hexahydrate 2149397 AlCl4Cs aluminium caesium tetrachloride 17992‐03‐9 AlCl3 aluminium chloride (anhydrous) 7446‐70‐0 AlCl3•6H2O aluminium chloride hexahydrate 7784‐13‐6 AlClO aluminium chloride oxide 13596‐11‐7 AlB2 aluminium diboride 12041‐50‐8 AlF2 aluminium difluoride 13569‐23‐8 AlF2O aluminium difluoride oxide 38344‐66‐0 AlB12 aluminium dodecaboride 12041‐54‐2 Al2F6 aluminium fluoride 17949‐86‐9 AlF3 aluminium fluoride 7784‐18‐1 Al(CHO2)3 aluminium formate 7360‐53‐4 1 of 75 Chemical Abstract Chemical Formula Chemical Name Service (CAS) Number Al(OH)3 aluminium hydroxide 21645‐51‐2 Al2I6 aluminium iodide 18898‐35‐6 AlI3 aluminium iodide 7784‐23‐8 AlBr aluminium monobromide 22359‐97‐3 AlCl aluminium monochloride
    [Show full text]
  • PRIZE LIST 2010 Edited by Viral
    PRICE LIST 2013 NILE CHEMICALS pH INDICATORS , BIOLOGICAL STAINS CATALYST FOOD COLOURS CHEMICALS (LAB & BULK) REAGENTS (LAB & BULK) LABO ATORY REAGENTS & FINE CHEMICALS PRODUCT PROFILE PURE, EXTRA PURE, PURIFIED We have pure , extra pure and purified products , available as per buyers requirements and specifications. GUARANTEED REAGENTS (GR) Our Guaranteed Reagents are used for analytical and research work, where high purity is essential. This is similar to grade marketed by other International company. HPLC GRADE This are high performance chemicals , used in liquid chromatography used frequently in biochemistry and analytical chemistry to separate, identify, and quantify compounds SPECTROSCOPY GRADE These are solvents of high optical purity for UV/Visible/IR/Fluorescence/NMR and Mass spectroscopy. BIOLOGICAL STAIN Our Ph Indicators are ready to use solutions for Microbiology, Histology, Hematology and Cytology and are at par with certified grade stains as per International norms. Address : 202,Matruchhay ,378 /80 Narshi Natha Street ,Masjid , Mumbai -400 009 INDIA Email : [email protected] Tel: 91 22 66313162 : Fax : 91 22 23454828 Web site www.nilechemicals.com NILE CHEMICALS EXPLOSIVES: Certain Substances reacts exothermically, generating gases, which may explode on heating, hence storage may be required in water or suitable solvent OXIDISING:Some Substance reacts with oxygen and may cause fire hazard TOXIC:Certain substance on contact with human body may cause acute or chronic damage HARMFUL:Certain substance on contact with human body may cause acute or chronic damage FLAMABLE:Chemicals , Solvents with a flash point below zero degree and boiling point of 35 deg c are termed as flammable items CORROSIVE:Substance which causes severe damage to living tissues IRRITANT:Substance which causes irritation on contact with skin etc DANGEROUS: substance which causes damages to ecosystem RADIOACTIVE:Substance which evolves radiation in the ecosystem NILE CHEMICALS PRICE LSIT 2013 CAT.NOS.
    [Show full text]
  • (Z,Z)-Selanediylbis(2-Propenamides): Novel Class of Organoselenium Compounds with High Glutathione Peroxidase-Like Activity
    molecules Article (Z,Z)-Selanediylbis(2-propenamides): Novel Class of Organoselenium Compounds with High Glutathione Peroxidase-Like Activity. Regio- and Stereoselective Reaction of Sodium Selenide with 3-Trimethylsilyl-2-propynamides Mikhail V. Andreev, Vladimir A. Potapov * , Maxim V. Musalov and Svetlana V. Amosova A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Division of The Russian Academy of Sciences, 1 Favorsky Str., 664033 Irkutsk, Russia; [email protected] (M.V.A.); [email protected] (M.V.M.); [email protected] (S.V.A.) * Correspondence: [email protected] Academic Editor: Derek J. McPhee Received: 3 December 2020; Accepted: 14 December 2020; Published: 15 December 2020 Abstract: The efficient regio- and stereoselective synthesis of (Z,Z)-3,30-selanediylbis(2-propenamides) in 76–93% yields was developed based on the reaction of sodium selenide with 3-trimethylsilyl-2- propynamides. (Z,Z)-3,30-Selanediylbis(2-propenamides) are a novel class of organoselenium compounds. To date, not a single representative of 3,30-selanediylbis(2-propenamides) has been described in the literature. Studying glutathione peroxidase-like properties by a model reaction showed that the activity of the obtained products significantly varies depending on the organic moieties in the amide group. Divinyl selenide, which contains two lipophilic cyclohexyl substituents in the amide group, exhibits very high glutathione peroxidase-like activity and this compound is considerably superior to other products in this respect. Keywords: (Z,Z)-3,30-selanediylbis(2-propenamides); 3-trimethylsilyl-2-propynamides; sodium selenide; glutathione peroxidase-like activity; regioselective reactions; stereoselective reactions; desilylation 1. Introduction Vinyl selenides are important intermediates for organic synthesis [1–9].
    [Show full text]
  • WATER CHEMISTRY CONTINUING EDUCATION PROFESSIONAL DEVELOPMENT COURSE 1St Edition
    WATER CHEMISTRY CONTINUING EDUCATION PROFESSIONAL DEVELOPMENT COURSE 1st Edition 2 Water Chemistry 1st Edition 2015 © TLC Printing and Saving Instructions The best thing to do is to download this pdf document to your computer desktop and open it with Adobe Acrobat DC reader. Adobe Acrobat DC reader is a free computer software program and you can find it at Adobe Acrobat’s website. You can complete the course by viewing the course materials on your computer or you can print it out. Once you’ve paid for the course, we’ll give you permission to print this document. Printing Instructions: If you are going to print this document, this document is designed to be printed double-sided or duplexed but can be single-sided. This course booklet does not have the assignment. Please visit our website and download the assignment also. You can obtain a printed version from TLC for an additional $69.95 plus shipping charges. All downloads are electronically tracked and monitored for security purposes. 3 Water Chemistry 1st Edition 2015 © TLC We require the final exam to be proctored. Do not solely depend on TLC’s Approval list for it may be outdated. A second certificate of completion for a second State Agency $25 processing fee. Most of our students prefer to do the assignment in Word and e-mail or fax the assignment back to us. We also teach this course in a conventional hands-on class. Call us and schedule a class today. Responsibility This course contains EPA’s federal rule requirements. Please be aware that each state implements drinking water/wastewater/safety regulations may be more stringent than EPA’s or OSHA’s regulations.
    [Show full text]
  • Selenium Compounds Are Federal Hazardous Air Pollutants and Were Identified As Toxic Air Contaminants in April 1993 Under AB 2728
    SELENIUM COMPOUNDS Selenium compounds are federal hazardous air pollutants and were identified as toxic air contaminants in April 1993 under AB 2728. CAS Registry Number of Selenium: 7782-49-2 Se Selenium monosulfide: 7446-34-6 SeS Molecular Formula of Selenium: Se Selenium monosulfide: SSe Elemental selenium exists in several allotropic forms. The amorphous form is either red in powder form, or black in vitreous form. The crystalline monoclinic prism form is deep red and the black crystalline hexagonal form (the most stable variety) is a lustrous metallic gray. Selenium is odorless and insoluble in water and alcohol, but soluble in chloroform, methylene iodide, benzene, quinoline, nitric acid, sulfuric acid, ether, carbon disulfide, aqueous potassium cyanide and potassium sulfate solutions (HSDB, 1991; Sax, 1989). Selenium possesses photovoltaic (converts radiant energy to electrical energy) and photoconductive (where electrical resistance decreases with increased illumination) properties. There are six isotopes (Merck, 1989). The properties of selenium compounds vary with the individual selenium compound. Selenium sulfide is the only selenium compound currently shown to be carcinogenic in animals. It is a bright orange powder which emits toxic fumes of selenium and sulfur oxides when heated to decomposition (Sax, 1989). It is soluble in benzene and carbon disulfide. Examples of Selenium Compounds Selenic acid Selenium dioxide Selenourea Seleninyl bis(dimethylamide) Selenium hexafluoride Selsun Seleninyl bromide Selenium monosulfide
    [Show full text]
  • Product List 2013-14 Cat
    RANGE OF LABORATORY CHEMICALS PRODUCT LIST 2013-14 CAT. NOS. PRODUCT NAME CAS.NOS. PACKING A-00141 ABSCISIC ACID 99% (For Biochemistry) 21293-29-8 25 mg (ABA) 100 mg A-00151 ACACIA (Confirming to IP) 9000-01-05 500 gm (Gum Acacia Powder ) 10 x 500 gm A-00158 ACENAPHTHENE 96% (For Synthesis) 83-32-9 100 gm 500 gm A-00160 ACES BUFFER 99% 7365-82-4 25 gm [N-2-Acetamido-2- Aminoethane Sulphonic Acid] 100 gm A-00163 ACETALDEHYDE SOLUTION 20-30% 75-07-0 500 ml 2.5 Ltr. A-00168 ACETAMIDE 99% (For Synthesis) 60-35-5 500 gm A-00170 ACETAMIDINIUM HYDROCHLORIDE 124-42-5 100 gm (Acetamidium Chloride) A-00178 ACETANILIDE 98.5 % (For Synthesis) 103-84-4 500 gm (N-Phenyl Acetamide) 10 x 500 gm A-00180 ACETATE BUFFER SOLUTION PH 4.6 126-96-5 500 ml A-00188 ACETIC ACID GLACIAL (For Synthesis) 64-19-7 500 ml 2.5Ltr. ACETIC ACID GLACIAL 99.7% AR 64-19-7 500 ml A-00188/100 2.5 lit. A-00189 ACETIC ACID METHYLAMIDE 79-16-3 100 ml A-00190 ACETIC ACID SOLUTION 0.1N --------- 500 ml A-00191 ACETIC ACID SOLUTION 1%, 2%, 3% --------- 500ml A-00193 ACETO ACETANILIDE 98% (For Synthesis) 102-01-2 500 gm A-00199 O-ACETO ACETANISIDIDE 98% 92-15-9 100 gm A-00205 ACETO CARMINE SOLUTION --------- 100 ml (For Microscopical Staining) 500 ml A-00206 ACETO CARMINE SOLUTION AR --------- 100 ml 500 ml A-00210 ACETONE 99% (EX - PURE) 67-64-1 500 ml (For Synthesis) 25 x 500 ml 2.5Ltr.
    [Show full text]
  • 2015 WHMIS Classification : List of English Names in Alphabetical Order
    CNESST - Répertoire toxicologique Workplace Hazardous Materials Information System 2015 WHMIS classification of chemical substances List of english names in alphabetical order The classification list provided in this document was compiled in response to requests for information concerning classifications under federal legislation on hazardous products. Please note that this is not an exhaustive list of hazardous products according to WHMIS 2015. This classification was established by CNESST personnel to the best of their knowledge based on data obtained from scientific literature and it incorporates the criteria contained in the Hazardous Products Regulations (SOR/2015-17). It does not replace the supplier's classification which can be found on its Safety Data Sheet. This list contains 2425 products names. You can press on the name of products to obtain their classification. You can press the name of any product in the list to obtain his WHMIS classification. All products Product's names CAS UN Acenaphthene 83-32-9 Acenaphthoquinone 82-86-0 Acenaphthylene 208-96-8 Acepromazine 61-00-7 Acetaldehyde 75-07-0 UN1089 Acetaldehyde diethylacetal 105-57-7 Acetamide 60-35-5 Acetaminophen 103-90-2 Acetanilide 103-84-4 Acetic acid 64-19-7 UN2789 Acetic acid, C6-C8 branched alkyl esters 90438-79-2 Acetic acid, more than 80% UN2789 Acetic anhydride 108-24-7 UN1715 Acetoacetanilide 102-01-2 o-Acetoacetaniside 92-15-9 Acetone 67-64-1 UN1090 2021-08-04 List of WHMIS controlled products 1 of 79 CNESST - Répertoire toxicologique Acetonitrile 75-05-8 UN1648
    [Show full text]
  • GOVERNMENT COLLEGE UNIVERSITY FAISALABAD TENDER DOCUMENT No
    GOVERNMENT COLLEGE UNIVERSITY FAISALABAD TENDER DOCUMENT No. 614/74/2018 SUPPLY OF LABORATORY SUPPLIES / CONSUMABLES / CHEMICALS / SOLVENTS / STANDARDS / MEDIA / MOLECULAR BIOLOGY REAGENTS / KITS / GLASSWARES / PLASTICWARES / STATIONERY / ACCESSORIES ETC UNDER THE PROJECT PARF FOR GCUF Purchase Price: Rs. 1,000/- Sealed tenders / bids are invited from the well reputed firms / importers / suppliers, being active taxpayers of Sales Tax and Income Tax for “Supply of Laboratory Supplies / Consumables / Chemicals / Solvents / Standards / Media / Molecular Biology Reagents / Kits / Glasswares / Plasticwares / Stationery / Accessories etc”. Details & Specifications of which are separately attached as Annexure “A”. GENERAL TERMS & CONDITIONS 1. Tender Opening Date & Procedure: 1.1 The procurement will be completed in accordance with Punjab Procurement Rules 2014, on Single Stage - Two Envelope Bidding Procedure. 1.2 A single package containing two envelopes, separate Technical and Financial Bids (Summary Formats as a guideline are also attached as Annexures B & C) in complete conformity with terms and conditions as described in Tender Documents will be dropped in Tender Box placed at Directorate of Procurement & Inventory Control (DP & IC) of the GCUF, not later than 11:00 AM on 29-04-2019. Note: Tender Number must be mentioned on the envelopes. 1.3 Technical Bids will be opened first on same day at 11:30 AM for evaluation by the "Technical Evaluation Committee". 1.4 Financial Bids of Successful Bidders after technical evaluation will be opened as per schedule issued later on. 1.5 Financial Bids of Unsuccessful Bidders will be returned un-opened. 2. Tender Fee, Bid Security and Performance Security: 2.1 Technical Bid must be accompanied by the Tender Fee of Rs.
    [Show full text]
  • I. Precipitation by Simultaneous Addition. II. Preparation of Selenium
    I. PRECIPITATION BY SIMULTANEOUS ADDITION II. PREPARATION OR SELENIUM OXYCHLORIDE By Elton Felix Reid, Jr,, B. A, The Rice Institute A Thesis Presented to the Faculty of The Rice Institute of Houston, Texas, In Partial Fulfillment of the Requirements for the Degree of Master of Arts The Rice Institute '1932 / TABU: OF CONTENTS Part I. PRECIPITATION BY SIMULTANEOUS ADDITION Page INTRODUCTION 1 Nature of the Problem ......... 1 Scope of the Investigation ...... 2 APPARATUS AND METHOD A Balance and Weighing 4 Analytical Solution Swirler ...... 4 Method ..... 7 PREPARATION OF PURE MATERIALS ....... 8 DETERMINATION OF ADSORBED AND OCCLUDED IONS IN PRECIPITATED SILVER CHLORIDE . 20 Introduction 20 Experimental 21 Results 24 A DETERMINATION OF THE ATOMIC WEIGHT OF SODIUM, THE RATIO NaCl r Ag . 25 Introduction . 25 Method 25 Results 26 PRECIPITATION OF BARIUM SULFATE 28 Introduction . 28 Materials ... 30 Solutions . 30 Apparatus . , . 31 Method of Analysis 32 Results ... 34 DISCUSSION OF RESULTS 36 SUMMARY 38 Part II. PREPARATION OF SELENIUM OXYCHLORIDE Introduction 39 Experimental 40 Conclusions 50 Part I. PRECIPITATION BX SIMULTANEOUS ADDITION INTRODUCTION INTRODUCTION 1 NATURE OF “It Is well known that all precipitates have a THE tendency to carry down with them other sub- PROBLBM stances from the solution in which they are formed. According to the nature of the precipitate, the mechanism of this contamination varies." 1 Moreover, "very finely divided precipitates because of their very large surr face* pertinaciously adsorb in varying amount the impurities from the supernatant solution.” SubBtances from the solution carried down with the pre¬ cipitate are said to be co-precipitated or occluded* These salts are rigidly retained within the precipitate in contra-, distinction to those merely adsorbed to the surface of the precipitate.
    [Show full text]
  • Chapter 2. Selenium- and Tellurium-Halogen Reagents
    Chapter 2. Selenium- and Tellurium-Halogen Reagents Tristram Chivers a and Risto S. Laitinen b a Department of Chemistry, University of Calgrary, 2500 University Drive NW, Calgary, Alberta, Canada T2N 1N4 b Laboratory of Inorganic Chemistry, Environmental and Chemical Engineering, University of Oulu, P.O. Box 3000, 90014 Oulu, Finland Table of Contents 2.1 Scope and Introduction 2.2 Binary Chalcogen-Halogen Reagents 2.2.1 Selenium Tetrahalides 2.2.2 Selenium Oxychloride 2.2.3 Selenium Dihalides 2.2.4 Selenium Dihalides 2.2.5 Mixtures of Selenium Halides 2.2.6 Tellurium Tetrahalides 2.2.7 Tellurium Tetrahalides and Ditellurium Dihalides 2.3 Organochalcogen-Halogen Reagents 2.3.1 Organoselenium and -tellurium Trihalides 2.3.2 Diorganoselenium and -tellurium Dihalides 2.3.3 Mixed-valent State Compounds RTeX2TeR 2.3.4 Organoselenium and -tellurium Monohalides 2.4 Conclusions 2.5 References 1 Abstract Selenium and tellurium form binary halides in which the chalcogen can be in formal oxidation states (IV), (II) or (I). They are versatile reagents for the preparation of a wide range of inorganic and organic selenium and tellurium compounds taking advantage of the reactivity of the chalcogen- halogen bond. With the exception of the tetrafluorides, the tetrahalides are either commercially available or readily prepared. On the other hand, the low-valent species, EX2 (E = Se, Te; X = Cl, Br) and E2X2 (E = Se, Te; X = Cl, Br) are unstable with respect to disproportionation and must be used as in situ reagents. Organoselenium and tellurium halides are well-known in oxidation states (IV) and (II), as exemplified by REX3, R2EX2, and REX (R = alkyl, aryl; E = Se, Te; X = F, Cl, Br, I), as well as mixed-valent (IV/II) compounds of the type RTeX2TeR are also known.
    [Show full text]