Catalog 129 40Th Anniversary
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Final Addendum to the CDM Accident Prevention Plan Remedial Investigation Activities Raritan Bay Slag Superfund Site
Final Addendum to the CDM Accident Prevention Plan Remedial Investigation Activities Raritan Bay Slag Superfund Site Currents and Sediment Dynamics Studies Prepared For: CDM Federal Programs Corporation 14420 Albemarle Point Place, Ste 210 Chantilly, VA 20151 Prepared By: Woods Hole Group, Inc. 81 Technology Park Drive East Falmouth, MA 02536 November 2010 Woods Hole Group, Inc. FINAL ADDENDUM TO THE CDM ACCIDENT PREVENTION PLAN Currents and Sediment Dynamics Studies for the Raritan Bay Slag Superfund Site Old Bridge and Sayreville, New Jersey Prepared for: CDM Federal Programs Corporation As an addendum to the existing Accident Prevention Plan for the Raritan Bay Slag Superfund Site Prepared by: Woods Hole Group 81 Technology Park Drive East Falmouth, MA 02536 November 22, 2010 Final Addendum to CDM APP i 2010-090 Remedial Investigation Activities, November 2010 Raritan Bay Slag Superfund Site, Old Bridge and Sayreville, NJ 110 Fieldcrest Avenue, 6th Floor Edison, New Jersey 08837 tel: 732 -225-7000 fax: 732- 225-7851 November 30, 2010 Kansas City District Corps of Engineers CENWK- PM-ED Kristine Stein 601 East 12th Street Kansas City, Missouri 64106-2896 Tanya Mitchell U.S. Environmental Protection Agency, Region 2 290 Broadway-19th Floor New York, NY 10007-1866 Project: Contract No. W912DQ-08-D-0018 Subject: Final Addendum to the CDM Acident Prevention Plan Raritan Bay Slag Superfund Site Old Bridge/Sayreville, New Jersey Dear Ms. Stein and Ms. Mitchell: CDM is pleased to submit the Final Addendum to the CDM APP for the Raritan Bay Slag Superfund Site in Old Bridge and Sayreville, New Jersey. The APP Addendum was prepared for CDM by the Woods Hole Group and addresses activities that will be performed in connection with the currents and sediment dynamics work. -
Sports and Physical Education in China
Sport and Physical Education in China Sport and Physical Education in China contains a unique mix of material written by both native Chinese and Western scholars. Contributors have been carefully selected for their knowledge and worldwide reputation within the field, to provide the reader with a clear and broad understanding of sport and PE from the historical and contemporary perspectives which are specific to China. Topics covered include: ancient and modern history; structure, administration and finance; physical education in schools and colleges; sport for all; elite sport; sports science & medicine; and gender issues. Each chapter has a summary and a set of inspiring discussion topics. Students taking comparative sport and PE, history of sport and PE, and politics of sport courses will find this book an essential addition to their library. James Riordan is Professor and Head of the Department of Linguistic and International Studies at the University of Surrey. Robin Jones is a Lecturer in the Department of PE, Sports Science and Recreation Management, Loughborough University. Other titles available from E & FN Spon include: Sport and Physical Education in Germany ISCPES Book Series Edited by Ken Hardman and Roland Naul Ethics and Sport Mike McNamee and Jim Parry Politics, Policy and Practice in Physical Education Dawn Penney and John Evans Sociology of Leisure A reader Chas Critcher, Peter Bramham and Alan Tomlinson Sport and International Politics Edited by Pierre Arnaud and James Riordan The International Politics of Sport in the 20th Century Edited by James Riordan and Robin Jones Understanding Sport An introduction to the sociological and cultural analysis of sport John Home, Gary Whannel and Alan Tomlinson Journals: Journal of Sports Sciences Edited by Professor Roger Bartlett Leisure Studies The Journal of the Leisure Studies Association Edited by Dr Mike Stabler For more information about these and other titles published by E& FN Spon, please contact: The Marketing Department, E & FN Spon, 11 New Fetter Lane, London, EC4P 4EE. -
Participant Guide
Participant Guide National High Adventure Sea Base, BSA Sea Base Scuba Programs Islamorada, Florida Scuba Adventure Scuba Certification Scuba Live Aboard Revised Date: 2.23.2021 Mission of the Boy Scouts of America The mission of the Boy Scouts of America is to prepare young people to make ethical and moral choices over their lifetime by instilling in them the values of the Scout Oath and Law. Scout Oath On my honor I will do my best to do my duty to God and my country and to obey the Scout Law; to help other people at all times; to keep myself physically strong, mentally awake, and morally straight. Scout Law A Scout is: Trustworthy. Loyal. Helpful. Friendly. Courteous. Kind. Obedient. Cheerful. Thrifty. Brave. Clean. Reverent. Mission Statement of Sea Base, BSA It is the mission of Sea Base to serve councils and units by providing an outstanding high adventure experience for older Boy Scouts, Varsity Scouts, Venturers, Sea Scouts and their leaders. Sea Base programs are designed to achieve the principal aims of the Boy Scouts of America: • To build character • To foster citizenship • To develop physical, mental, and emotional fitness Keys Blessing Bless the creatures of the Sea Bless this person I call me Bless the Keys, you make so grand Bless the sun that warms the land Bless the fellowship we feel As we gather for this meal Amen Page | 2 Table of Contents General Eligibility Requirements ................................................................................................................. 4 General Eligibility at a Glance -
Nfpa 1983 - Hardware Performance Requirements
CMC RESCUE, INC. PO BOX 6870 SANTA BARBARA, CA 93160 (800) 235-5741 / (805) 562-9120 WWW.CMCRESCUE.COM NFPA 1983 - HARDWARE PERFORMANCE REQUIREMENTS What is “3σ MBS?” You might think that answering the question, “How strong is that carabiner (or other item of rescue equipment)?” would be relatively easy. Yet, even with modern, high-tech alloys, two identical carabiners will break at slightly different forces. So a randomly selected sample from a population will perform within some range of break strengths. But to determine how wide that range is and, more importantly, what the lowest strength is, you would have to break every unit in the population. This would be an expensive project, and you’d end up with no useable units! The scientific solution is to use a statistical formula, referred to as three sigma (3σ). Sigma is the Greek letter used to denote standard deviation, a measure of how far a set of numbers (in this case, breaking strengths) is spread out around the mean. To determine a product’s minimum breaking strength (MBS), a sample size is chosen and tested and the results analyzed. The MBS for the entire population is then calculated by subtracting three times the standard deviation (3σ) from the mean result of the tested samples. This provides an MBS that is very near the true lower limit of the population. The larger the sample size, the higher the level of confidence that any individual from the population will meet or exceed the calculated MBS. For testing rescue equipment the NFPA has selected a sample size of five. -
Carabiner Testing
Analysis of Fatigue Failure in D-shaped Carabiners Massachusetts Institute of Technology Center for Sports Innovation K Blair, D Custer, J Graham, M Okal Introduction • Current standard: Single pull to failure test (SPTF) • Climbers need rating reflecting in-field use – Cyclic & Dynamic loads result from falling, hanging and lowering – Typical Load Range: 2- 10 kN – Only most severe falls approach minimum SPTF ratings • Continued cyclic loading can result in fatigue failure of carabiners • Current carabiner retirement guidelines do not address fatigue life April 5, 2002 © MIT Center for Sports Innovation 2 Objective • This study characterizes the lifetime of carabiners under cyclic loads – Loads reflect in-field use – Controlled laboratory environment April 5, 2002 © MIT Center for Sports Innovation 3 Carabiner Load Analysis Carabiners 20 kN • Worst case scenario is factor 2 fall 12 kN – Factor = Distance climber falls/length of belayed rope Falling Climber • Dynamic rope stretches to absorb 1/3 of the force of the Dynamic Rope climber’s fall for the belayer 8 kN • Top carabiner loaded to 20 kN Belayer April 5, 2002 © MIT Center for Sports Innovation 4 Background: Climbing Loads • Empirical studies have shown close correlation between in-field loads and those predicted by models • Single cycle period (0.5 seconds) is in the middle of typical field-load duration • Forces used in study are in the middle to high range of expected field loading – Low forces unlikely to pose danger to climbers – Testing at low forces prohibitively time consuming -
The Complete Diving System 2 Divator Product Overview
PRODUCT OVERVIEW DIVATOR THE COMPLETE DIVING SYSTEM 2 DIVATOR PRODUCT OVERVIEW A tragic bus accident in Sweden after the Second World War raised the concern that divers could not be quickly deployed to the crash site. The Swedish government asked Interspiro (“AGA” at that time) if they could provide a rapid deployment diving device for search and rescue operations. Interspiro began an extensive research program and in 1948 the Worlds first underwater breathing apparatus for search and rescue was presented to the Swedish authorities. The device, commonly referred to as the “iron bed” (because of the shape of the carrying frame), featured a breathing valve with inhalation and exhalation in the same diaphragm. The first of many Interspiro innovations in the field of diving. Today, over 60 years later, the latest generation of Interspiro SCUBA – DIVATOR – is still the preferred choice for professional divers around the World. The Interspiro diving philosophy is a system approach. The reason is simple and obvious, to obtain the highest possible safety level for professional divers. © 2015 Interspiro AB, Sweden. This publication contains or refers to proprietary information which is protected by copyright. All rights are reserved. Interspiro® and DIVATOR® are registered trademarks of Interspiro. This publication may not be copied, photocopied, reproduced, translated, or con- verted to any electronic or machine-readable form in whole or in part without prior written approval from Interspiro. Changes or updates to this publication may be made -
Chapter 571 Underway Replenishment
S9086-TK-STM-010/CH-571R3 REVISION 3 NAVAL SHIPS’ TECHNICAL MANUAL CHAPTER 571 UNDERWAY REPLENISHMENT THIS CHAPTER SUPERSEDES CHAPTER 571 REVISION 2 DATED 31 DECEMBER 2000 DISTRIBUTION STATEMENT C: DISTRIBUTION AUTHORIZED TO GOVERNMENT AGEN- CIES AND THEIR CONTRACTORS; ADMINISTRATIVE AND OPERATIONAL USE (1 AUGUST 1990). OTHER REQUESTS FOR THIS DOCUMENT WILL BE REFERRED TO THE NAVAL SEA SYSTEMS COMMAND (SEA-03P8). DESTRUCTION NOTICE: DESTROY BY ANY METHOD THAT WILL PREVENT DISCLO- SURE OF CONTENTS OR RECONSTRUCTION OF THE DOCUMENT. PUBLISHED BY DIRECTION OF COMMANDER, NAVAL SEA SYSTEMS COMMAND. 1 DEC 2001 TITLE-1 / (TITLE-2 Blank)@@FIpgtype@@TITLE@@!FIpgtype@@ @@FIpgtype@@TITLE@@!FIpgtype@@ TITLE-2 @@FIpgtype@@BLANK@@!FIpgtype@@ S9086-TK-STM-010/CH-571R3 TABLE OF CONTENTS Chapter/Paragraph Page 571 UNDERWAY REPLENISHMENT ........................... 571-1 SECTION 1. INTRODUCTION .................................... 571-1 571-1.1 PURPOSE AND SCOPE ................................. 571-1 571-1.2 INTERFACE ........................................ 571-1 571-1.3 APPLICABILITY ..................................... 571-3 571-1.4 BACKGROUND AND DEFINITIONS ......................... 571-3 571-1.4.1 GENERAL. .................................... 571-3 571-1.4.2 REPLENISHMENT-AT-SEA OR UNDERWAY REPLENISHMENT (UNREP). .................................... 571-3 571-1.4.3 CONNECTED REPLENISHMENT (CONREP). ................ 571-3 571-1.4.4 VERTICAL REPLENISHMENT (VERTREP). ................. 571-3 571-1.5 UNREP SAFETY ..................................... 571-3 571-1.6 UNREP STANDARDIZATION .............................. 571-4 SECTION 2. LIQUID CARGO TRANSFER SYSTEMS ...................... 571-5 571-2.1 DEFINITIONS ....................................... 571-5 571-2.1.1 LIQUID CARGO TRANSFER STATION. ................... 571-5 571-2.1.2 STANDARD TENSIONED REPLENISHMENT ALONGSIDE METHOD (STREAM) TRANSFER RIG. ........................ 571-5 571-2.2 METHODS OF TRANSFER, ALONGSIDE ....................... 571-5 571-2.2.1 STREAM TRANSFER RIGS ......................... -
Guide Changes 4-2003
Changes to the National Tree Climbing Field Guide adopted by the National Tree Climbing Technical Advisory Group and approved by the Deputy Program Manager, 4/17 2003. KEY: highlighted turquoise = delete; red font = add; dark yellow font = note (Changes are referenced by page number in Guide and, when appropriate, (sub)section number. Some portions of existing text may be included to enable locating additions or deletions) Page iii About the Author Project Leader ____________________________________ iv 2.4 Climbing Trees With Hazards…………………….8 Page iv About the Author Project Leader Page 2 Carabiner (Biners, Locking Carabiners) An oblong metal ring with a spring-loaded gate on one side used for various purposes in climbing, such as attaching equipment to the climber or securing the climber to a rappel system. Carabiners are normally produced from bar stock that is formed into the desired shape. This Guide refers to locking carabiners when the term is used . Locking carabiners come in two types: screw-lock and automatic lock.Carabiners used in life support applications shall be the self-closing, positive locking type. Climbing Line. A rope used in tree climbing that may be used for ascending into a tree, descending from a tree, and/or working aloft in a tree. Page 3 Secured. When the climber is safeguarded from unintended movement utilizing a climbing system that is attached to the climber and connected to the tree. Examples of being secured include, but are not limited to: (1) when tied in (2) when using a lanyard (3) when on belay (4) when ascending a climbing line using the footlock technique while utilizing a Prusik loop or ascenders. -
Shallow-Water Messenger-Line Recovery System
Shallow-Water Messenger-Line Recovery System Albert J. Williams 3rd and Archie T. Morrison III Woods Hole Oceanographic Institution Woods Hole, MA 02543 USA Abstract - Shelf and estuarine deployments of bottom mounted instruments generally require complete recovery of the Recovery of bottom tripods in shelf and coastal instrument, including anchors. Subsurface instruments may waters presents a greater problem than recovery of these have lift lines for recovery, often on acoustically commanded tripods in the deep sea. Lift lines are impractical at depths release of a float. The lift line and float are large for heavy greater than several hundred meters but bottom fishing by instruments and this creates a flow disturbance that distorts the dragging is not a problem at these depths, so we have environment being measured. When redundancy in recovery lines is added, the volume of lines and floats may become jettisoned weighted tripod bases to recover tripods in the deep unacceptable. Light weight messenger lines with small sea, leaving about 180 kg (400 lb) of iron structure on the messenger floats are less flow disturbing and can be added to bottom. The tripod floats to the surface with 45 kg (100 lb) provide redundancy with less compromise to the measurement. of net buoyancy produced by glass balls or syntactic foam A set of four messenger lines with floats was used in floats. In about forty tripod deployments at depths from 600 the Hudson River in 1995 to recover a massive quadrapod m to 5000 m, only one tripod was lost (acoustic relocation deployed on the bottom for several weeks. -
Title - Sujet RETOURNER LES SOUMISSIONS À: Emergency Towing Vessels Bid Receiving - PWGSC / Réception Des Soumissions Solicitation No
1 1 RETURN BIDS TO: Title - Sujet RETOURNER LES SOUMISSIONS À: Emergency Towing Vessels Bid Receiving - PWGSC / Réception des soumissions Solicitation No. - N° de l'invitation Amendment No. - N° modif. – TPSGC F7017-160056/B 006 11 Laurier St. / 11, rue Laurier Place du Portage , Phase III Client Reference No. - N° de référence du client Date Core 0B2 / Noyau 0B2 F7017-160056 2017-12-15 Gatineau GETS Reference No. - N° de référence de SEAG Quebec PW-$$MB-003-26383 K1A 0S5 Bid Fax: (819) 997-9776 File No. - N° de dossier CCC No./N° CCC - FMS No./N° VME 003mb.F7017-160056 Time Zone SOLICITATION AMENDMENT Solicitation Closes - L'invitation prend fin at - à 05:00 PM Fuseau horaire MODIFICATION DE L'INVITATION Eastern Daylight Saving on - le 2018-01-31 Time EDT F.O.B. - F.A.B. Specified Herein - Précisé dans les présentes The referenced document is hereby revised; unless otherwise Plant-Usine: Destination: Other-Autre: indicated, all other terms and conditions of the Solicitation remain the same. Address Enquiries to: - Adresser toutes questions à: Buyer Id - Id de l'acheteur Aubin, Marc A. 003mb Ce document est par la présente révisé; sauf indication contraire, Telephone No. - N° de téléphone FAX No. - N° de FAX les modalités de l'invitation demeurent les mêmes. (819) 420-5452 ( ) ( ) - Destination - of Goods, Services, and Construction: Destination - des biens, services et construction: Comments - Commentaires Instructions: See Herein Vendor/Firm Name and Address Raison sociale et adresse du Instructions: Voir aux présentes fournisseur/de l'entrepreneur Delivery Required - Livraison exigée Delivery Offered - Livraison proposée Vendor/Firm Name and Address Raison sociale et adresse du fournisseur/de l'entrepreneur Issuing Office - Bureau de distribution Telephone No. -
University of Wisconsin-Milwaukee Explorer Class
“PantheROV III” ROV Team at University of Wisconsin-Milwaukee Explorer Class MATE International ROV Competition Spring 2007 Mentor: Dr. Tom Consi Korey Verhein Computer Science and EE Senior Dec 2007 Chris Chudy Mechanical Engineer Senior May 2008 Dan Kiedrowski Materials Engineer Senior Dec 2007 Don Murray Electrical Engineering and CS Senior Dec 2007 Greg Oswald Materials Engineer Senior May 2008 Andy Schneider Computer Science and EE Senior Dec 2007 Dave Bogdan Materials Engineer Senior May 2008 Matt Henriksen Electrical Engineer Senior May 2008 ROV Team at University of Wisconsin-Milwaukee -1- Table of Contents 2. Abstract 3. Design Rationale 14. Troubleshooting 14. Challenges 15. Lessons learned 15. Future Improvements 15. Reflections 16. Polar Exploration 17. Acknowledgements 18. References 19. Budget 20. Appendix – Electrical Schematics Abstract The main goal of this project is to engineer a Remotely Operated Vehicle (ROV) capable of operating under simulated polar conditions at the Marine Institute in St. Johns, Newfoundland, Canada. The ROV must complete three missions with tasks that resemble those in industry. First, the ROV must attach a messenger line to a buoy anchor for retrieval. Second, the ROV must complete several oceanographic tasks including obtaining biological samples and deploying a Passive Acoustic Sensor (PAS). Lastly, the vehicle must perform a task seen in the oil industry; replacing a gasket on an underwater wellhead. PantheROV III is a redesign of last year's entry, PantheROV II. The main aluminum dry hull is now anodized for corrosion protection; the thruster housings are adapted from relatively problematic dynamic seals to strong magnetically coupled systems. The frame is upgraded from PVC components to corrosion resistant aluminum piping with SpeedRail(R) interconnects. -
25 Owner's Manual 2009.Pdf
HUNTER OWNER’S MANUAL TABLE OF CONTENTS INTRODUCTION PAGE • Warranty Registration Form……………………………………… 1 • Hunter Warranty………………………………………….………… 2-4 • Brief History…………………………………………………………. 5 • Glossary of Sailing Terms….……………………………………… 6-9 • Explanation of Symbols and Labels……………………………… 10 GENERAL HANDLING AND OPERATION • Safe Boating Tips………………………………………………….. 11-12 • Preliminary Care and Inspection Worksheet……………………. 13A • Pre-Departure Check List…………………………………………. 13B • Certification Details………………………………………………… 13C • Float Plan…………………………………………………………… 14 • After Sailing Check List………………………………….………… 15 • Docking and Anchoring……………………………………………. 16 • Mast Raising and Lowering System……………………………… 17 • Launching and Retrieving Procedures…………………………… 18 • Getting Ready to Sail………………………………………………. 19-21 • Cook Stove………………………………………………………….. 22 • Toilet…….…………………………………………………………… 22 • Pumps…………….…………………………………………………. 23 • Water System Operation………………………………….………. 23 • Outboard Engine and Motoring…………………………………… 24 • Electrical System…………………………………………………… 24 • Environmental Considerations……………………………………. 25 MAINTENANCE • Instructions for Preparation for Bottom Painting………………... 26 • Engine Maintenance…………………..…………………………… 27 • Electrical Systems…………………………………………………. 27 • Plumbing Systems…………………………………………………. 27 • Protecting Your Rigging…………………………………………… 28 • Trailer Maintenance……………………………………………….. 29 • General Care……………………………………………………….. 30 • General Hardware Maintenance…………………………………. 30 • Vinyl and Fabric Care……………………………………………… 31 • Electrolysis and Galvanic