Safet Work Package 2 Final Recommendations for the Enhancement of Preventive Tunnel Safety

Total Page:16

File Type:pdf, Size:1020Kb

Safet Work Package 2 Final Recommendations for the Enhancement of Preventive Tunnel Safety SafeT Work package 2 D2 report V2.0 Final Recommendations for the enhancement of preventive tunnel safety Version: Novermber 2005 Author: B.Martín (SICE) S. Vogler (H/B) C. Diers (H/B) M. Martens ( TNO) J. Lacroix ( DVR) M. Steiner ( ASFINAG) P.Schmitz (MRBC) M.Serrano (ETRA) 1 Table of contents 1. Abstract........................................................................................................... 4 2. Objectives........................................................................................................ 5 3. Introduction.................................................................................................... 6 4. Data collection................................................................................................ 8 5. Data analysis and practical examples........................................................ 9 5.1 Incident detection systems and methods............................................ 10 5.1.1 Loop Detection Systems....................................................................... 11 5.1.2 Radar detectors...................................................................................... 11 5.1.3Monitoring systems (CCTV, CCVE and Automatic Incident Detection Systems)................................................................................................ 11 5.1.4 Environmental and air quality monitoring devices.......................... 13 5.1.5 Automatic Fire Detection Devices....................................................... 14 5.2 Traffic management methods................................................................ 14 5.2.1 Measures concerning construction..................................................... 14 5.2.2 Regulations............................................................................................. 20 5.2.3 Traffic control and driver behaviour with traffic controlling equipment................................................................................................................ 24 5.2.4 Tunnel Traffic Management................................................................. 29 5.2.5 Measures concerning traffic observation........................................... 43 5.2.6 Measures concerning direct driver information................................ 43 5.2.7 Conclusion............................................................................................... 44 5.3 User information and communication methods.................................. 45 5.3.1 Introduction............................................................................................ 45 5.3.2 Clear speed limits, trajectory control................................................. 47 5.3.3 Gradual transitions to tunnel............................................................... 47 5.3.4 Tunnel lighting....................................................................................... 48 5.3.5 VMS.......................................................................................................... 48 5.3.6 Traffic lights and barriers..................................................................... 49 5.3.7 Information leaflets............................................................................... 50 5.3.8 Operator voice message....................................................................... 55 5.3.9 Remote supervision of emergency niche door................................. 57 5.3.10 Assistance after accident...................................................................... 57 5.3.11 System guidance to emergency escape routes................................ 59 5.3.12 Automatic radio information................................................................ 62 5.3.13 Use of an emergency lane inside the tunnel..................................... 62 5.3.14 Design of emergency doors and exits................................................ 63 5.3.15 Camera surveillance.............................................................................. 63 5.3.16 Communication between Rescue Units and Subway Operators.... 64 5.3.17 Use of mobile phone............................................................................. 65 5.3.18 Rescue Concepts for Public Tramway Transport.............................. 66 5.3.19 Height detection systems..................................................................... 68 5.3.20 Passenger Information Systems......................................................... 69 2 6. Proposal for EU guidelines.......................................................................... 71 6.1 General recommendations...................................................................... 71 6.2 Incident detection systems and methods............................................ 71 6.3 Traffic management methods................................................................ 71 6.4 User information and communication................................................... 72 7. Limitations..................................................................................................... 74 8. Recommendations........................................................................................ 75 9. References..................................................................................................... 76 3 1. Abstract The purpose of this document is to provide recommendations for the enhancement of safety in European tunnels from the viewpoint of different parts involved in the safety chain and based in current experiences and methodologies/ systems used around European tunnels. These recommendations are focused on the EU Directive with the objective of making it more useful for users, such as road authorities, tunnel operators and planners, and increase safety in tunnels. Previous to the definition of recommendations different activities took place. Data has been collected by different means such as internet search, bibliography review, consulting to experts, international organisations such as UNECE, PIARC, World Road Association and others to provide real cases experiences. Some gaps have been identified in data collection due to lack of reliable sources, low input obtained from other countries experiences. Thus, it is important to take into account that the recommendations produced on the EU Directive are made on this basis. In Chapter 5 of this report “Data analysis”, information related to experiences, best practices and last technology used around Europe to improve the safety in tunnels is placed. This section is divided in three subparagraphs each of one related to: Incident detection systems & methods, traffic management methods and user information and communication methods as stated in the document of work where a detailed analysis of the different systems and methods, best practices in different European countries and recommendations are presented. In Chapter 6 “Proposal for EU guidelines” general recommendations and specific ones are provided to the Corrigendum to Directive 2004/54/EC of the European Parliament and of the Council of 29 April 2004 on minimum safety requirements for tunnels in the trans-European road network after its deep analysis and its comparison with the data collected. Limitations encountered during the data analysis are stated in Chapter 7.These limitations, such as reliability of data, insufficient data and other have been considered before establishing the recommendations. From the analysis of the limitations encountered some recommendations for future work are provided in Chapter 8. 4 2. Objectives The objective of this report is to provide recommendations for the enhancement of tunnel safety based on an analysis made on current systems and methods for incident detection, traffic management and user information and communication. That analysis concerned systems and methods for incident detection, traffic management methods in order to enhance preventive safety in European road tunnels and to identify information and communication methods to promote safer driver behaviour. Recommendations for the improvement of the safety of the existing tunnels will be made taking into account experiences and best practices in European countries. Cost of implementation and user acceptance as criteria of selection are provided only in the cases where possible. After the evaluation it has been checked that this is not a homogeneous criteria around Europe to establish recommendations. Gaps in the EU Directive have been identified and proposals for enhancement are based on the analysis of best practices and different experiences around Europe. These real cases and new technological developments have been compared with the EU Directive always trying to follow the international standards on safety. To elaborate this work input from WP1 related to current state of practice in tunnel safety has been taken into account and we expect that the output of this document will be useful for WP6 related to “Integrated tunnel safety management systems” and WP7 “Comprehensive guidelines on tunnels safety”. Therefore, in this WP a detailed analysis of the current existing systems and methods for incident detection, traffic management and user information and communication has been carried out. This analysis mainly consisted of real case studies, references, and literature review such as SafeT WP1 documentation, the Directive 2004/54/CE on minimum safety requirements for tunnels in trans- European networks, its corrigendum, the PIARC document about “traffic incident management
Recommended publications
  • Public-Private Partnerships Financed by the European Investment Bank from 1990 to 2020
    EUROPEAN PPP EXPERTISE CENTRE Public-private partnerships financed by the European Investment Bank from 1990 to 2020 March 2021 Public-private partnerships financed by the European Investment Bank from 1990 to 2020 March 2021 Terms of Use of this Publication The European PPP Expertise Centre (EPEC) is part of the Advisory Services of the European Investment Bank (EIB). It is an initiative that also involves the European Commission, Member States of the EU, Candidate States and certain other States. For more information about EPEC and its membership, please visit www.eib.org/epec. The findings, analyses, interpretations and conclusions contained in this publication do not necessarily reflect the views or policies of the EIB or any other EPEC member. No EPEC member, including the EIB, accepts any responsibility for the accuracy of the information contained in this publication or any liability for any consequences arising from its use. Reliance on the information provided in this publication is therefore at the sole risk of the user. EPEC authorises the users of this publication to access, download, display, reproduce and print its content subject to the following conditions: (i) when using the content of this document, users should attribute the source of the material and (ii) under no circumstances should there be commercial exploitation of this document or its content. Purpose and Methodology This report is part of EPEC’s work on monitoring developments in the public-private partnership (PPP) market. It is intended to provide an overview of the role played by the EIB in financing PPP projects inside and outside of Europe since 1990.
    [Show full text]
  • At the Elbe Tunnel Agenda
    ITA COSUF Workshop, 28th – 29th October 2015 Welcome at the Elbe Tunnel Agenda Agenda 2015 October 29th Presentations 09:00 – 11:00 Visitation – Tunnel Tube and Tunnel Control Room 11:00 – 12:45 Lunch 12:45 – 13:45 Elbe Tunnel Control Room + Tunnel Tube Bus Transfer to Hochbahn 14:00 – 14:30 Visitation – Operating Center Hochbahn 14:30 – 16:00 Bus Transfer to Main Station 16:15 – 16:30 Operating Centre (www.hochbahn.de) 2 Agenda Agenda 2015 October 29th Presentations Tunnel Operation & Large Scale Projects 1 Christina Kluge, LSBG in and around Hamburg Tunnel Safety Officer New Tunnels on Motorway A7 2 Karl-Heinz Reintjes, DEGES Traffic, Operation and Safety Head of Department Civil Engineering Structures Elbe Tunnel Hamburg 3 Christina Kluge, LSBG Basic Information, Refurbishment, Incidents Tunnel Safety Officer 4 Automatic Incident Detection at Elbe Tunnel Rainer Petersen, LSBG Senior Traffic Engineer 3 Content of the Presentation 1. Tunnel Operation in Hamburg 2. Hamburg – A major Transport Hub in Europe 3. Large Scale Projects in and around Hamburg 4 1. Tunnel Operation in Hamburg 2. Hamburg – A major Transport Hub in Europe 3. Large Scale Projects in and around Hamburg 5 Tunnel Operation in Hamburg Federal Structure in Germany • owner of German motorways is the Federal Republic of Germany • Hamburg is one of 16 Federal States • Federal States of Germany are responsible for operating the motorways on their territories • in Hamburg the LSBG is (amongst other things) responsible for operating motorways including their technical infrastructure
    [Show full text]
  • Literature Review- Resource Guide for Separating Bicyclists from Traffic
    Literature Review Resource Guide for Separating Bicyclists from Traffic July 2018 0 U.S. Department of Transportation Federal Highway Administration NOTICE This document is disseminated under the sponsorship of the U.S. Department of Transportation in the interest of information exchange. The U.S. Government assumes no liability for the use of the information contained in this document. This report does not constitute a standard, specification, or regulation. The U.S. Government does not endorse products or manufacturers. Trademarks or manufacturers’ names appear in this report only because they are considered essential to the objective of the document. Technical Report Documentation Page 1. REPORT NO. 2. GOVERNMENT ACCESSION NO. 3. RECIPIENT'S CATALOG NO. FHWA-SA-18-030 4. TITLE AND SUBTITLE 5. REPORT DATE Literature Review: Resource Guide for Separating Bicyclists from Traffic 2018 6. PERFORMING ORGANIZATION CODE 7. AUTHOR(S) 8. PERFORMING ORGANIZATION Bill Schultheiss, Rebecca Sanders, Belinda Judelman, and Jesse Boudart (TDG); REPORT NO. Lauren Blackburn (VHB); Kristen Brookshire, Krista Nordback, and Libby Thomas (HSRC); Dick Van Veen and Mary Embry (MobyCON). 9. PERFORMING ORGANIZATION NAME & ADDRESS 10. WORK UNIT NO. Toole Design Group, LLC VHB 11. CONTRACT OR GRANT NO. 8484 Georgia Avenue, Suite 800 8300 Boone Boulevard, Suite 300 DTFH61-16-D-00005 Silver Spring, MD 20910 Vienna, VA 22182 12. SPONSORING AGENCY NAME AND ADDRESS 13. TYPE OF REPORT AND PERIOD Federal Highway Administration Office of Safety 1200 New Jersey Ave., SE Washington, DC 20590 14. SPONSORING AGENCY CODE FHWA 15. SUPPLEMENTARY NOTES The Task Order Contracting Officer's Representative (TOCOR) for this task was Tamara Redmon.
    [Show full text]
  • USER GUIDE for USLIMITS2
    USER GUIDE for USLIMITS2 December 2017 Contents Contents ..................................................................................................................................................... 1 Background ................................................................................................................................................. 2 Objective of this Guide ............................................................................................................................... 2 Accessing the Expert System....................................................................................................................... 3 Getting Started ........................................................................................................................................... 3 Revise/Update Existing Projects ................................................................................................................. 3 Creating New Projects ................................................................................................................................. 4 New Route .................................................................................................................................................. 4 Existing Route: Selecting a Route and Area Type ........................................................................................ 4 Input Variables .........................................................................................................................................
    [Show full text]
  • Fire Guidelines.Pdf
    ASSOCIATION INTERNATIONALE DES TRAVAUX EN SOUTERRAIN ITA INTERNATIONAL TUNNELING AITES ASSOCIATION Towards an In Consultative Status, Category II with the improved use United Nations Economic and Social Council of underground http : //www.ita-aites.org space International Tunneling Association Association Internationale De Travaux En Souterrain GUIDELINES FOR STRUCTURAL FIRE RESISTANCE FOR ROAD TUNNELS DIRECTIVES POUR LA RESISTANCE AU FEU DES STRUCTURES DE TUNNELS ROUTIERS BY Working Group No.6 Maintenance and Repair Groupe de Travail No 6 Entretien et Repaire May, 2004 GUIDELINES FOR STRUCTURAL FIRE RESISTANC FOR ROAD TUNNELS TABLE OF CONTENTS CHAPTER DESCRIPTION PAGE NO. 1. INTRODUCTION 1-1 2. DESIGN CRITERIA 2-1 3. LINING MATERIAL BEHAVIOR 3-1 4. TUNNEL CATEGORIES 4-1 5. STRUTURAL ELEMENTS 5-1 6. SUMMARY & RECOMMENDATIONS 6-1 7. TUNNEL FIRE HISTORY 7-1 8. BIBLIOGRAPHY 8-1 9. APPENDIX A 9-1 03/05/2005 1-1 1. Introduction 1.0 General Fire resistance of tunnel structures is an important issue. If it is not properly addressed, fire in a tunnel can result in loss of life to both tunnel users and the fire and rescue services. The result- ing economic losses for both the tunnel owner/operator and to the local economy and environ- ment can be catastrophic. This document is the result of a co-operative effort between the World Road Association (PIARC) Technical Committee on Road tunnel Operation (C 3.3) and its Working Group 6 Fire and Smoke Control, and the International Tunnelling Association (ITA) Working Group 6 Re- pair and Maintenance of Underground Structures. The purpose of this co-operative effort is to develop guidelines for resistance to fire for road tunnel structures.
    [Show full text]
  • Healthy Street Pilot Projects
    ANN ARBOR HEALTHY STREET PILOT PROJECTS Summary of Findings January 14, 2021 Prepared by SmithGroup 1 HEALTHY STREET PILOT PROJECTS City Council passed R-20-158 “Resolution to Promote Safe Social Distancing Outdoors in Ann Arbor” on May 4, 2020. This resolution directed staff to (among other things) “develop recommendations and implementation strategies on comprehensive lane or street re-configurations (and report as soon as possible concerning these recommendations and strategies), including the possible cost of such options, the research conducted, and public input received, and other relevant data.” In response to this directive, City and Downtown Development Authority (DDA) staff gave a presentation on recommendations on June 15, 2020 along with two accompanying resolutions: “Resolution to Advance Healthy Streets in Downtown” and “Resolution to Advance Healthy Streets Outside Downtown.” These resolutions were passed by City Council on July 6, 2020. On August 27th the Ann Arbor DDA and the City of Ann Arbor began installing a series of healthy street pilot projects in the downtown area to provide space for safe physical distancing for bicycle and pedestrian travel. These projects, with the approval of City Council, reconfigured traffic lanes to accommodate temporary pedestrian and bicycle facilities, such as non-motorized travel lanes, two-way bikeways, and separated bike lanes. The pilot projects discussed in this report include the following locations: • Miller/Catherine Bikeway (from 1st Street to Division) • Division Street/Broadway Bikeway (from Packard to Maiden Lane) • S. Main Separated Bike Lanes (from William to Stadium) • State & North University Bikeway (from William Street to Thayer) • Packard Bike Lanes (from State to Hill) • East Packard Project (from Platt to Eisenhower) The pilot projects were designed and implemented in alignment with national guidance, City policies and plans, and the DDA’s adopted values for the People-Friendly Streets program.
    [Show full text]
  • 5. Noise Pollution
    5. Noise pollution 1. Please describe the present situation and development over the last five to ten years in relation to (max. 1,000 words): Within the scope of implementing “Directive 2002/49/EC of the European Parliament and the Council of 25 June 2002, relating to the assessment and management of environmental noise”, the proportion of Hamburg’s population subjected to noise emanations from road, railway and air traffic sources as well as industrial, commercial and port facilities has been determined in terms of the noise indicators L den, for noise levels during the day, evening and night, and L night, for noise levels at night. The assessment was calculated on the basis of national provisional computation methods; namely, the “Provisional computation method for environmental noise on roads – VBUS”, the “Provisional computation method for environmental noise on railways – VBUSch”, the “Provisional computation method for environmental noise at airports – VBUF”, the “Provisional computation method for environmental noise from industry and commercial facilities – VBUI”, and the “Provisional computation method for determining the number of individuals exposed to environmental noise – VBEB”. In terms of the industrial, commercial and port sector, in addition to plants located in the port area, only those industrial or commercial zones with one or more plants as per Appendix 1 of the “European Council Directive 96/61/EC of 24 September 1996 concerning integrated pollution prevention and control” are afforded consideration. The period of reference is 2006. Accordingly, the number of individuals affected is as follows: Affected by L den > Affected by L night > 55 dB(A) 45 dB(A) Road traffic 363600 420900 Rail traffic 56200 38900 (L night > 50 dB(A)) Air traffic 43700 5000 (L night > 50 dB(A)) Industry/commercial 4200 10200 /port facilities In line with the requirements of the EU directive, the analyses are updated at least every 5 years, from which commensurate developments regarding issues of concern can be ascertained.
    [Show full text]
  • Hamburg Hamburg Presents
    International Police Association InternationalP oliceA ssociation RegionRegionIPA Hamburg Hamburg presents: HamburgHamburg -- a a short short break break Tabel of contents 1. General Information ................................................................1 2. Hamburg history in brief..........................................................2 3. The rivers of Hamburg ............................................................8 4. Attractions ...............................................................................9 4.1 The port.................................................................................9 4.2 The Airport (Hamburg Airport .............................................10 4.3 Finkenwerder / Airbus Airport..............................................10 4.4 The Town Hall .....................................................................10 4.5 The stock exchange............................................................10 4.6 The TV Tower / Heinrich Hertz Tower..................................11 4.7 The St. Pauli Landungsbrücken with the (old) Elbtunnel.....11 4.8 The Congress Center Hamburg (CCH)...............................11 4.9 HafenCity and Speicherstadt ..............................................12 4.10 The Elbphilharmonie .........................................................12 4.11 The miniature wonderland.................................................12 4.12 The planetarium ................................................................13 5. The main churches of Hamburg............................................13
    [Show full text]
  • Tunnel and Tunnel Boring Machines
    Hong Kong, China: Rush hour traffic flows quickly through the Cross- Harbour Tunnel. It’s one of the world’s most traveled highways and connects Kowloon with Hong Kong Island (in the background) 8 Dräger review 105 | 2 / 2012 EN_08-17_Tunnel.indd 8 07.06.12 08:20 Tunnel Focus Arteries underground Tunnel construction sites are extreme places that require complex solutions to make them safe. even the later operation, of the underground facilities for transport and infrastructure, makes high demands. eep beneath the city center in transportaion tunnels.” But the new long- London, UK, gigantic machines distance roads and rail tunnels need larger Dare working their way through and greater dimensions. clay and chalk. In spring 2012 the first of As a result, not only the number of tun- eight tunnel boring machines, from the nels, but also their lengths are growing. German manufacturer Herrenknecht, One example of this is the 55-kilometer- began to drill more than 40 kilometers long Brenner Base Tunnel, whose con- of rail tunnels under the British capital. struction is soon to begin. The Brenner These tunnels are at the heart of the Cross- Pass currently the most important and rail Project, which will channel long-dis- busiest north-south connection in the Alps. tance rail transport under London in the Around two million trucks and 12 million future. The massive project is currently cars drive through this bottleneck every the biggest construction site in Europe. year. The planned base tunnel, which will be solely for rail use, will run underground Rapid Growth between Innsbruck and Franzensfeste, and Many new tunnels are being built in should greatly reduce traffic congestion.
    [Show full text]
  • The Global Magazine of Leica Geosystems 03 Revolution in Motion
    73 The Global Magazine of Leica Geosystems 03 Revolution in motion 06 From scan to plan into GIS A Message from 09 So much more than the President just the red box 12 Maximum safety for the new From preventing interruptions on metro lines to Copenhagen Metro Line ensuring fully-operational sewer systems, we are all well aware how infrastructure is central to a safe and 16 London Power Tunnels: productive community. With the global population Checking data integrity in real time increasing one major city every five days, organisa- tions that build and manage vital infrastructure face 19 Leica Captivate ushers daily challenges. in new industry era From across our global customer base, professionals CONTENTS 22 High-end laser scanning under are using a wide variety of solutions in GIS, laser the Elbe River scanning, mobile mapping and even UAVs to keep critical infrastructures in good condition. 26 3D vision of an ancient city Millions of commuters across the globe depend on 28 Building cities using UAV several modes of transportation daily. Safeguard- ing them in Copenhagen are Angermeier and SMT 32 Sustainably maintain and surveying firms using our total stations to monitor protect trees using GIS possible deformations of the new tunnel structure 35 At an unknown depth and affected buildings above ground. The California Department of Transportation employed Leica Scan- 38 Scanning a building in motion Stations to control design deviations of the ongoing improvement made to the Oakland Bay Bridge, which 40 3D laser scanning: collapsed during the 1989 San Francisco earthquake. Anticipating the uncontrollable More and more governments are embracing the con- cept of smart cities.
    [Show full text]
  • Read the Executive Summary of the Bottleneck Analysis Here
    STRING bottleneck analysis for the stretch Oslo – Hamburg Prepared by KombiConsult GmbH (lead partner), Ramboll Norway, Ramboll Sweden and Ramboll Denmark Summary February 2021 Seamless transportation is a prerequisite 1 for growth A high-quality transport infrastructure with sufficient capacity and which is managed efficiently is fundamental for the competitiveness of the economies of the Member States of the European Union (EU). The EU has been contributing to ensure the goal above, amongst other instruments1, through the trans-European transport network (TEN-T) policy. The primary objective for The EU “is to establish a complete and integrated trans-European transport network, covering all Member States and regions and providing the basis for the balanced development of all transport modes in order to facilitate their respective advantages, and thereby maximising the value added for Europe”. The STRING stretch is an integral part of the TEN-T Core Network Corridor Scandinavian-Mediterranean (Scan-Med)2 and already shows a high quality, today. However, and in particular with view on the envisaged completion of the Scan-Med corridor by 2030, still some gaps are expected to remain from today's point of view. Transport and infrastructure bottlenecks can affect the normal flow of transportation, causing unnecessarily long travel times, delays, congestions, costs etc. KombiConsult GmbH and Rambøll have analysed the existing bottlenecks in the STRING - geography outlining future recommended priorities. This paper is a summary of the main findings of the analysis. 1 The White paper 2011 “Roadmap to a single European Transport Area – towards a competitive and resource efficient transport systems with the goal of “A 50% shift of medium distance intercity passenger and freight journeys from road to rail and waterborne transport”.
    [Show full text]
  • Bicycle Facility Types and Design
    Bicycle Facility Types and Design his section serves as an introduction to the set of recommended facilities to be considered to enhance T bicycle safety, connectivity, and accessibility in Mercer County. The types of facilities are both related to the existing conditions, strengths, and constraints discussed in chapter two, and reflective of established guidelines and design recommendations. The designs and recommendations to be considered are derived from a series of design and policy manuals from both local and national contexts. These manuals aim to share standards, best practices, and strategies for design and construction of bicycle facilities. The following section outlines the guides referenced for development of these recommendations. It is important to note that many Mercer County Roads have limited right-of-way and without massive corridor improvement projects and takings, the County is mainly limited to existing road cartways & Right of Way. As such, staff will look at cost-effective benefits to the general public and utilize context-sensitive solutions for the roadway environment. It is important to note that there is significant room for flexibility in highway and roadway design and the often used AASHTO Green Book is not a detailed design manual but a guidance document to be used by users to make better informed decisions. There is a significant range of roadway conditions within Mercer County so a “one size fits all” approach will not work. Context sensitive solutions must be used to reflect the location and community. As a result, a range of design reference and guidance documents will be used to design and implement bicycle facilities throughout the County.
    [Show full text]