The Global Magazine of Leica Geosystems 03 Revolution in Motion

Total Page:16

File Type:pdf, Size:1020Kb

The Global Magazine of Leica Geosystems 03 Revolution in Motion 73 The Global Magazine of Leica Geosystems 03 Revolution in motion 06 From scan to plan into GIS A Message from 09 So much more than the President just the red box 12 Maximum safety for the new From preventing interruptions on metro lines to Copenhagen Metro Line ensuring fully-operational sewer systems, we are all well aware how infrastructure is central to a safe and 16 London Power Tunnels: productive community. With the global population Checking data integrity in real time increasing one major city every five days, organisa- tions that build and manage vital infrastructure face 19 Leica Captivate ushers daily challenges. in new industry era From across our global customer base, professionals CONTENTS 22 High-end laser scanning under are using a wide variety of solutions in GIS, laser the Elbe River scanning, mobile mapping and even UAVs to keep critical infrastructures in good condition. 26 3D vision of an ancient city Millions of commuters across the globe depend on 28 Building cities using UAV several modes of transportation daily. Safeguard- ing them in Copenhagen are Angermeier and SMT 32 Sustainably maintain and surveying firms using our total stations to monitor protect trees using GIS possible deformations of the new tunnel structure 35 At an unknown depth and affected buildings above ground. The California Department of Transportation employed Leica Scan- 38 Scanning a building in motion Stations to control design deviations of the ongoing improvement made to the Oakland Bay Bridge, which 40 3D laser scanning: collapsed during the 1989 San Francisco earthquake. Anticipating the uncontrollable More and more governments are embracing the con- cept of smart cities. Improving urban development, IngenieurTeam GEO GmbH used the Aibot X6 UAV to model new construction in 3D for Waldshut-Tiengen, Germany. Without blocking the busy M6 motorway in the United Kingdom, the surveying agency Severn Imprint Partnership collected road assets with our mobile mapping solution Leica Pegasus:Two. Reporter: Leica Geosystems customer magazine Published by: Leica Geosystems AG, CH-9435 Heerbrugg Every day, our customers are demonstrating how to Editorial office: Leica Geosystems AG, 9435 Heerbrugg, Switzerland, Phone +41 71 727 31 31, solve the world’s infrastructure challenges. They are [email protected] shaping this changing world, and I’m honoured we Contents responsible: Konrad Saal are a part of that. I hope you enjoy reading this (Manager Marketing Communications) edition. Editors: Konrad Saal, Katherine Lehmuller, Monica Miller-Rodgers Publication details: The Reporter is published in English, German, French, Spanish, and Russian, twice a year. Reprints and translations, including excerpts, are subject to the editor’s prior permission in writing. © Leica Geosystems AG, Heerbrugg (Switzerland), August 2015. Printed in Switzerland Cover: © Severn Partnerhsip Juergen Dold A Leica Pegasus:Two captures road infrastructure President, Hexagon Geosystems and relating assets. Read the story on page 3. 2 | Reporter 73 © Severn Partnership Severn © Revolution in motion by Natalie Binder reservation, bridge structures and lamp posts. The survey was needed to improve the overall Severn Partnership strives to provide services layout of the motorway ensuring regular main- to its customers using the very latest and tenance checks can be maintained eradicating innovative solutions. Since acquiring the Leica pot holes and maintaining a smooth and safe Pegasus:Two, the firm of Chartered Geomatics road surface for drivers. (Land) surveyors based in Shrewsbury, England, has utilised this cutting-edge technology in vari- The challenges of surveying a section of the M6 ous infrastructure and construction projects for motorway are vast, and closing this section of the their customers. Keen to pass on the benefits busy motorway was not an option. Restrictions to of this new technology, Severn Partnership was access were a serious issue as the motorway needed delighted to be commissioned to survey a sec- to remain open whilst the data was collected. The vast tion of the M6 to collect important assets for volume of assets to be surveyed on a motorway in a their risk and maintenance strategy plan. A full short period of time was also important to remem- detailed survey of a 17-kilometre (10-mile) sec- ber. Using traditional total station instruments to car- tion of the M6 in the Midlands area included car- ry out this project would have taken twice the time riageway limits, crash barriers, assets such as of using a Leica Pegasus:Two, collecting thousands road signs and SOS phones, centre lines, central of points of survey data per day. Logistically and >> The Global Magazine of Leica Geosystems | 3 Severn Partnership Established more than 30 years ago, Severn Part- nership is a firm of Chartered Land Surveyors based in Shrewsbury, England. Working throughout the UK and overseas, Severn Partnership uses the latest robotic survey equipment, 3D laser scanning technol- ogy and 3D modelling software. They offer profes- sional services in geomatics, railway survey services, utilities survey to 3D and building information model- ling (BIM), and mixed in a wealth of survey expertise and experience. In 2014, Severn Partnership made a significant investment in the Leica Pegasus:Two, the new mobile mapping solution from Leica Geosystems, becoming the second company worldwide to adopt this new technology. The Leica Pegasus:Two enables Severn Partnership to scan an impressive 1 million points per second with 120 metre (390 foot) range, resulting in survey grade data being captured in a fraction of the conventional survey time. The use of mobile mapping has allowed Severn Partnership to capture calibrated imagery and point cloud data together, making for higher accuracy and faster data collection. © Severn Partnership Severn © practically speaking, it is dangerous for surveyors to tres (0.08 inches). All this is combined into a sin- collect data in the middle of a motorway. The overall gle cloud creating a 3D model. The result is a direct cost of the project increases with the need for active mapping of features without the need for complex traffic management throughout the project cycle. post-processing of observed data, saving time and A more efficient collection process was needed. resources. The best solution for mapping A world of opportunity the M6 motorway The Leica Pegasus:Two and the mobile mapping pro- Severn Partnership used mobile mapping – the pro- cess have revolutionised the world of surveying. cess of collecting 3D geospatial information from a There are huge benefits for using mobile mapping moving vehicle – to quickly and accurately provide systems, especially for infrastructure projects such customers with 2D and 3D CAD plans as well as fully as the M6 motorway. Access to the motorway is registered point clouds of the entire route section. left clear, with no need to close off roads, as the These point clouds are millions of individual coordi- Pegasus:Two acts in the same way as any other pub- nates measured on anything the laser reflects off, lic vehicles, only it is collecting 3D geospatial data. such as bridges and roads and can be used to extract Safety is drastically improved using mobile mapping even more information, such as GIS datasets. The because surveyors no longer need to stand in the device is attached to the roof of a moving vehicle and road working under time pressure in critical envi- seven cameras then capture a full 360° dome image ronments to complete projects. All data is now cap- every 2 metres (6.5 feet). Simultaneously, a LiDAR tured from the safety of a vehicle travelling the same scanner records cross section data every 2 millime- speed as the rest of the traffic. 4 | Reporter 73 © Severn Partnership Severn © With no need to close roadways, the Leica Pegasus:Two safely captures assets and surroundings. The speed and accuracy of the data collected is also “We will be transferring it between mobile vehicles, improved. Using traditional static laser scanning cars, vans, roadrailers, trolleys and other vehicles to methods, two teams would spend several months scan data across all number of terrain.” to survey the highway and other assets along the 17-kilometre (10-mile) section of the M6. Using The world of surveying is changing and the combin- the Leica Pegasus:Two, Severn Partnership provid- ing and marriage of multiple technologies has been a ed the customer with detailed deliverables in just giant leap, one which Severn Partnership has openly two weeks. Reducing the speed of data collection embraced and serenely adopted for its customers. means a cost saving for customers of 60 percent Mobile mapping has provided a rapid data capture when compared with the traditional static laser scan- solution, minimising cost, reducing safety risk and ning. Also, larger circumferences were covered, giv- maximising value. ing more accurate, efficient and complete data using combined LiDAR and photogrammetry. About the author: Natalie Binder is marketing and communications “At Severn Partnership, we understand the need to manager at Leica Geosystems Ltd. based in Milton invest in the latest technology in order to continue Keynes, UK. to offer the highest level of service to our custom- [email protected] ers. Pegasus:Two is one of the most accurate mobile mapping unit on the market and does not need sur- vey ground control installed ahead of it,” said Mark Combes, managing director at Severn Partnership. The Global Magazine of Leica Geosystems | 5 From scan to plan into GIS © Epp by Ulrich Epp documented in many projects. Leica CloudWorx for AutoCAD not only supplied the client with New uses for 3D laser scanners are constantly as-built drawings in all their detail, the scans being uncovered. Many underground structures, also enabled the photo-realistic representation especially in sewer construction, are so cramped of the point cloud and dimensions to be provid- or inaccessible that total station and manu- ed over the Internet and to be delivered directly al measuring is practically impossible.
Recommended publications
  • Public-Private Partnerships Financed by the European Investment Bank from 1990 to 2020
    EUROPEAN PPP EXPERTISE CENTRE Public-private partnerships financed by the European Investment Bank from 1990 to 2020 March 2021 Public-private partnerships financed by the European Investment Bank from 1990 to 2020 March 2021 Terms of Use of this Publication The European PPP Expertise Centre (EPEC) is part of the Advisory Services of the European Investment Bank (EIB). It is an initiative that also involves the European Commission, Member States of the EU, Candidate States and certain other States. For more information about EPEC and its membership, please visit www.eib.org/epec. The findings, analyses, interpretations and conclusions contained in this publication do not necessarily reflect the views or policies of the EIB or any other EPEC member. No EPEC member, including the EIB, accepts any responsibility for the accuracy of the information contained in this publication or any liability for any consequences arising from its use. Reliance on the information provided in this publication is therefore at the sole risk of the user. EPEC authorises the users of this publication to access, download, display, reproduce and print its content subject to the following conditions: (i) when using the content of this document, users should attribute the source of the material and (ii) under no circumstances should there be commercial exploitation of this document or its content. Purpose and Methodology This report is part of EPEC’s work on monitoring developments in the public-private partnership (PPP) market. It is intended to provide an overview of the role played by the EIB in financing PPP projects inside and outside of Europe since 1990.
    [Show full text]
  • At the Elbe Tunnel Agenda
    ITA COSUF Workshop, 28th – 29th October 2015 Welcome at the Elbe Tunnel Agenda Agenda 2015 October 29th Presentations 09:00 – 11:00 Visitation – Tunnel Tube and Tunnel Control Room 11:00 – 12:45 Lunch 12:45 – 13:45 Elbe Tunnel Control Room + Tunnel Tube Bus Transfer to Hochbahn 14:00 – 14:30 Visitation – Operating Center Hochbahn 14:30 – 16:00 Bus Transfer to Main Station 16:15 – 16:30 Operating Centre (www.hochbahn.de) 2 Agenda Agenda 2015 October 29th Presentations Tunnel Operation & Large Scale Projects 1 Christina Kluge, LSBG in and around Hamburg Tunnel Safety Officer New Tunnels on Motorway A7 2 Karl-Heinz Reintjes, DEGES Traffic, Operation and Safety Head of Department Civil Engineering Structures Elbe Tunnel Hamburg 3 Christina Kluge, LSBG Basic Information, Refurbishment, Incidents Tunnel Safety Officer 4 Automatic Incident Detection at Elbe Tunnel Rainer Petersen, LSBG Senior Traffic Engineer 3 Content of the Presentation 1. Tunnel Operation in Hamburg 2. Hamburg – A major Transport Hub in Europe 3. Large Scale Projects in and around Hamburg 4 1. Tunnel Operation in Hamburg 2. Hamburg – A major Transport Hub in Europe 3. Large Scale Projects in and around Hamburg 5 Tunnel Operation in Hamburg Federal Structure in Germany • owner of German motorways is the Federal Republic of Germany • Hamburg is one of 16 Federal States • Federal States of Germany are responsible for operating the motorways on their territories • in Hamburg the LSBG is (amongst other things) responsible for operating motorways including their technical infrastructure
    [Show full text]
  • Fire Guidelines.Pdf
    ASSOCIATION INTERNATIONALE DES TRAVAUX EN SOUTERRAIN ITA INTERNATIONAL TUNNELING AITES ASSOCIATION Towards an In Consultative Status, Category II with the improved use United Nations Economic and Social Council of underground http : //www.ita-aites.org space International Tunneling Association Association Internationale De Travaux En Souterrain GUIDELINES FOR STRUCTURAL FIRE RESISTANCE FOR ROAD TUNNELS DIRECTIVES POUR LA RESISTANCE AU FEU DES STRUCTURES DE TUNNELS ROUTIERS BY Working Group No.6 Maintenance and Repair Groupe de Travail No 6 Entretien et Repaire May, 2004 GUIDELINES FOR STRUCTURAL FIRE RESISTANC FOR ROAD TUNNELS TABLE OF CONTENTS CHAPTER DESCRIPTION PAGE NO. 1. INTRODUCTION 1-1 2. DESIGN CRITERIA 2-1 3. LINING MATERIAL BEHAVIOR 3-1 4. TUNNEL CATEGORIES 4-1 5. STRUTURAL ELEMENTS 5-1 6. SUMMARY & RECOMMENDATIONS 6-1 7. TUNNEL FIRE HISTORY 7-1 8. BIBLIOGRAPHY 8-1 9. APPENDIX A 9-1 03/05/2005 1-1 1. Introduction 1.0 General Fire resistance of tunnel structures is an important issue. If it is not properly addressed, fire in a tunnel can result in loss of life to both tunnel users and the fire and rescue services. The result- ing economic losses for both the tunnel owner/operator and to the local economy and environ- ment can be catastrophic. This document is the result of a co-operative effort between the World Road Association (PIARC) Technical Committee on Road tunnel Operation (C 3.3) and its Working Group 6 Fire and Smoke Control, and the International Tunnelling Association (ITA) Working Group 6 Re- pair and Maintenance of Underground Structures. The purpose of this co-operative effort is to develop guidelines for resistance to fire for road tunnel structures.
    [Show full text]
  • 5. Noise Pollution
    5. Noise pollution 1. Please describe the present situation and development over the last five to ten years in relation to (max. 1,000 words): Within the scope of implementing “Directive 2002/49/EC of the European Parliament and the Council of 25 June 2002, relating to the assessment and management of environmental noise”, the proportion of Hamburg’s population subjected to noise emanations from road, railway and air traffic sources as well as industrial, commercial and port facilities has been determined in terms of the noise indicators L den, for noise levels during the day, evening and night, and L night, for noise levels at night. The assessment was calculated on the basis of national provisional computation methods; namely, the “Provisional computation method for environmental noise on roads – VBUS”, the “Provisional computation method for environmental noise on railways – VBUSch”, the “Provisional computation method for environmental noise at airports – VBUF”, the “Provisional computation method for environmental noise from industry and commercial facilities – VBUI”, and the “Provisional computation method for determining the number of individuals exposed to environmental noise – VBEB”. In terms of the industrial, commercial and port sector, in addition to plants located in the port area, only those industrial or commercial zones with one or more plants as per Appendix 1 of the “European Council Directive 96/61/EC of 24 September 1996 concerning integrated pollution prevention and control” are afforded consideration. The period of reference is 2006. Accordingly, the number of individuals affected is as follows: Affected by L den > Affected by L night > 55 dB(A) 45 dB(A) Road traffic 363600 420900 Rail traffic 56200 38900 (L night > 50 dB(A)) Air traffic 43700 5000 (L night > 50 dB(A)) Industry/commercial 4200 10200 /port facilities In line with the requirements of the EU directive, the analyses are updated at least every 5 years, from which commensurate developments regarding issues of concern can be ascertained.
    [Show full text]
  • Hamburg Hamburg Presents
    International Police Association InternationalP oliceA ssociation RegionRegionIPA Hamburg Hamburg presents: HamburgHamburg -- a a short short break break Tabel of contents 1. General Information ................................................................1 2. Hamburg history in brief..........................................................2 3. The rivers of Hamburg ............................................................8 4. Attractions ...............................................................................9 4.1 The port.................................................................................9 4.2 The Airport (Hamburg Airport .............................................10 4.3 Finkenwerder / Airbus Airport..............................................10 4.4 The Town Hall .....................................................................10 4.5 The stock exchange............................................................10 4.6 The TV Tower / Heinrich Hertz Tower..................................11 4.7 The St. Pauli Landungsbrücken with the (old) Elbtunnel.....11 4.8 The Congress Center Hamburg (CCH)...............................11 4.9 HafenCity and Speicherstadt ..............................................12 4.10 The Elbphilharmonie .........................................................12 4.11 The miniature wonderland.................................................12 4.12 The planetarium ................................................................13 5. The main churches of Hamburg............................................13
    [Show full text]
  • Tunnel and Tunnel Boring Machines
    Hong Kong, China: Rush hour traffic flows quickly through the Cross- Harbour Tunnel. It’s one of the world’s most traveled highways and connects Kowloon with Hong Kong Island (in the background) 8 Dräger review 105 | 2 / 2012 EN_08-17_Tunnel.indd 8 07.06.12 08:20 Tunnel Focus Arteries underground Tunnel construction sites are extreme places that require complex solutions to make them safe. even the later operation, of the underground facilities for transport and infrastructure, makes high demands. eep beneath the city center in transportaion tunnels.” But the new long- London, UK, gigantic machines distance roads and rail tunnels need larger Dare working their way through and greater dimensions. clay and chalk. In spring 2012 the first of As a result, not only the number of tun- eight tunnel boring machines, from the nels, but also their lengths are growing. German manufacturer Herrenknecht, One example of this is the 55-kilometer- began to drill more than 40 kilometers long Brenner Base Tunnel, whose con- of rail tunnels under the British capital. struction is soon to begin. The Brenner These tunnels are at the heart of the Cross- Pass currently the most important and rail Project, which will channel long-dis- busiest north-south connection in the Alps. tance rail transport under London in the Around two million trucks and 12 million future. The massive project is currently cars drive through this bottleneck every the biggest construction site in Europe. year. The planned base tunnel, which will be solely for rail use, will run underground Rapid Growth between Innsbruck and Franzensfeste, and Many new tunnels are being built in should greatly reduce traffic congestion.
    [Show full text]
  • Read the Executive Summary of the Bottleneck Analysis Here
    STRING bottleneck analysis for the stretch Oslo – Hamburg Prepared by KombiConsult GmbH (lead partner), Ramboll Norway, Ramboll Sweden and Ramboll Denmark Summary February 2021 Seamless transportation is a prerequisite 1 for growth A high-quality transport infrastructure with sufficient capacity and which is managed efficiently is fundamental for the competitiveness of the economies of the Member States of the European Union (EU). The EU has been contributing to ensure the goal above, amongst other instruments1, through the trans-European transport network (TEN-T) policy. The primary objective for The EU “is to establish a complete and integrated trans-European transport network, covering all Member States and regions and providing the basis for the balanced development of all transport modes in order to facilitate their respective advantages, and thereby maximising the value added for Europe”. The STRING stretch is an integral part of the TEN-T Core Network Corridor Scandinavian-Mediterranean (Scan-Med)2 and already shows a high quality, today. However, and in particular with view on the envisaged completion of the Scan-Med corridor by 2030, still some gaps are expected to remain from today's point of view. Transport and infrastructure bottlenecks can affect the normal flow of transportation, causing unnecessarily long travel times, delays, congestions, costs etc. KombiConsult GmbH and Rambøll have analysed the existing bottlenecks in the STRING - geography outlining future recommended priorities. This paper is a summary of the main findings of the analysis. 1 The White paper 2011 “Roadmap to a single European Transport Area – towards a competitive and resource efficient transport systems with the goal of “A 50% shift of medium distance intercity passenger and freight journeys from road to rail and waterborne transport”.
    [Show full text]
  • Road Safety on Three Continents
    Proceedings of the Conference Road Safety on Three Continents International Conference in Moscow, Russia, 19–21 September, 2001 VTI konferens 18A, 2001 18A, VTI konferens Part 2 VTI konferens 18A · 2001 Proceedings of the Conference Traffic Safety on Three Continents International Conference in Moscow, Russia, 19–21 September, 2001 Preface The international conference Traffic Safety on Three Continents in Moscow, 19–21 September 2001, was organised jointly by the Swedish National Road and Transport Research Institute (VTI), the State Scientific and Research Institute of Motor Transport in Moscow (NIIAT), U.S. Transportation Research Board (TRB), the South African Council for Scientific Industrial Research (CSIR), South Africa, and Forum of European Road Safety Research Institutes (FERSI). The Moscow conference was the 12th in this conference series. Earlier annual conferences have been held in Sweden, Germany, France, the United Kingdom, the Netherlands, Czech Republic, Portugal and South Africa. Conference sessions covered a number of road traffic safety issues: - Advanced road safety technology - Road safety audits - Policy and programmes - Traffic engineering - Vulnerable and old road users - Alcohol, drugs and enforcement - Human performance and education - Behaviour and attention - Data and models - Cost and environment - Speed and speed management Linköping in November 2001 Kenneth Asp VTI konferens 18A CONTENTS Session 1. ROAD SAFETY ON DIFFERENT CONTINENTS National road safety strategy in Ghana Per Mathiasen, Carl Bro a/s, Denmark Relationship between accidents and geometric characteristics for four lanes median separated roads Ciro Caliendo, University of Naples, Italy The main problems of road safety in St. Petersburg and ways of their solution Andrey Gorev, Automobile and Road Institute, Russia Safer guardrail to bridge rail transitions Charles F McDevitt, Federal Highway Administration, USA Session 2.
    [Show full text]
  • Environment Has a History
    How Hamburg became European Green Capital... Environment has a history Exhibition Catalogue 1 „ Hamburg, the winner 2011, has shown major achievements in the past years and at present, has also achieved excellent environmental standards across the board. The city has set very ambitious future plans which promise additional improvements. „ The European Commission’s reasons for selecting Hamburg as European Green Capital 2011 2 Contents Why Hamburg became European Green Capital... 04 Civil Involvement Waste Transport Belief in the Future 16 Waste Warning 31 Early Rail Connection 47 Against Smoke and Noise 17 Early Progress 32 From “Hochbahn” to “HVV” 48 The Well-Off Are the First to Oppose 18 Family Dirty 33 Competitor Car 49 Authorities React to Complaints 19 Creating Awareness 34 Compromise 1919 20 Waste Activists 35 Energy and Climate Problem Case Boehringer 21 Hamburg Cleans Up 36 Brave New Electricity 50 Model Boehringer 22 “Bulky Waste Days“ Are No Solution! 37 Nuclear Power – No Thanks 51 From Landfills to Recycling 38 Search for Alternatives 52 Air Quality Saving Energy 53 Macabre Beginnings 23 Water Let the Chimneys Smoke! 24 Pure Alster Water 39 Green Urban Planning All-dominant Coal 25 Suitable for Bathing 40 Spleen for Green 54 Air Quality Becomes a Locational Factor 26 Waterworks 41 Public Parks 55 Cholera and Consequences 42 Sanierung als Chance 56 Noise Protection Main Sewer Completed 43 Godsend Schumacher 57 Noise Is Not Sexy 27 Dead Elbe River Fish 44 Godsend Brauer 58 City Airport Hamburg 28 Alster Problems 45 Opportunity Alster 59 Aviation Noise Decreases 29 Clear Target 46 Opportunity Hafencity 60 Fighting for a Roof 30 Hamburg European Green Capital 2011 61 3 Why Hamburg became European Green Capital..
    [Show full text]
  • Large Tunnels for Transportation Purposes and Face Stability of Mechanically Driven Tunnels in Soft Ground
    Copyright by Seung Han Kim 2010 The Dissertation Committee for Seung Han Kim Certifies that this is the approved version of the following dissertation: Large Tunnels for Transportation Purposes and Face Stability of Mechanically Driven Tunnels in Soft Ground Committee: Fulvio Tonon, Supervisor Karin Bäppler Chadi El Mohtar Loukas Kallivokas Jorge G. Zornberg Large Tunnels for Transportation Purposes and Face Stability of Mechanically Driven Tunnels in Soft Ground by Seung Han Kim, B.S.; M.S. Dissertation Presented to the Faculty of the Graduate School of The University of Texas at Austin in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy The University of Texas at Austin August 2010 Dedication To my family. Acknowledgements I would like to express sincere gratitude to my supervisor Dr. Fulvio Tonon for his guidance, support, and encouragement throughout this research. I would also appreciate to other dissertation committee members, Dr. Jorge Zornberg, Dr. Chadi El Mohtar, Dr. Loukas Kallivokas and Dr. Karin Bäppler. v Large Tunnels for Transportation Purposes and Face Stability of Mechanically Driven Tunnels in Soft Ground Publication No._____________ Seung Han Kim, Ph.D. The University of Texas at Austin, 2010 Supervisor: Fulvio Tonon With the advent of the large diameter tunnel boring machine (TBM), mechanically driven large diameter tunnel is becoming a more attractive option. During operation, a large diameter tube allows for stacked deck configuration with shafts dropped to platform level (no station caverns). The extensive information has been compiled on innovative TBM tunneling projects such as the Barcelona Line 9, where the concept of continuous station has been used for the first time, stormwater management and roadway tunnel in Malaysia, where the floodwater bypass tunnel and the road tunnel are incorporated in a single bore tunnel.
    [Show full text]
  • Comparison Paper on International Bridges and Tunnels
    Information Note Project: Forth Replacement Crossing Study Job No: 49550TEDT Subject: Comparison of other Tunnels and Bridges Date: 3rd November 2007 Checked by: Simon James and Chris Dulake Date: 2nd November 2007 Approved by: Ian Dudgeon Date: 6th November 2007 1.0 Introduction As part of the Forth Replacement Crossing Study, Transport Scotland has requested Faber Maunsell to prepare a report with a comparison of tunnels and bridges across the world with the options proposed in Report 4: Appraisal Report. This study will briefly examine the following items: • Location of tunnel or bridge • Date of construction • Length and size • Construction duration • Cost • Multi-modal capacity • Comparisons with the proposed tunnel or bridge • Photographs 2.0 Tunnels Sections 2.1 and 2.2 set out project data from bored and immersed tube highways tunnels. Table 1 below provides comparative data for the possible options suggested for the Firth of Forth tunnel crossing. Section 2.3 provides a discussion of key points. Immersed Tunnel - Corridor C2 Construction Section Location Section Size Duration Type Length Northern Cut & Cover W:30m H:10m 300m Approach W:28m H:10m Forth Crossing Immersed Tube 2425m L:120m/unit 5.5years Southern Tidal Cut & Cover W:30m H:10m 600m Zone Southern 2 SCL 100m , 12m wide 2825m Approach Information Note Bored Tunnel - Corridor C Construction Section Location Section Size Duration Type Length Northern Portal Cut & Cover W:30m H:10m 200m Northern 2 SCL 100m , 12m wide 1300m Approach 7.5years Forth Crossing TBM 12m Ext Dia 4400m Southern 2 SCL 100m , 12m wide 2600m Approach Bored Tunnel - Corridor D Construction Section Location Section Size Duration Type Length Northern 2 SCL 100m , 12m wide 2150m Approach Forth Crossing TBM 12m Ext Dia 3600m 7.5years Southern 2 SCL 100m , 12m wide 1550m Approach Table 1 – Option Data for Firth of Forth Tunnel Crossing 2.1.
    [Show full text]
  • Safet Work Package 2 Final Recommendations for the Enhancement of Preventive Tunnel Safety
    SafeT Work package 2 D2 report V2.0 Final Recommendations for the enhancement of preventive tunnel safety Version: Novermber 2005 Author: B.Martín (SICE) S. Vogler (H/B) C. Diers (H/B) M. Martens ( TNO) J. Lacroix ( DVR) M. Steiner ( ASFINAG) P.Schmitz (MRBC) M.Serrano (ETRA) 1 Table of contents 1. Abstract........................................................................................................... 4 2. Objectives........................................................................................................ 5 3. Introduction.................................................................................................... 6 4. Data collection................................................................................................ 8 5. Data analysis and practical examples........................................................ 9 5.1 Incident detection systems and methods............................................ 10 5.1.1 Loop Detection Systems....................................................................... 11 5.1.2 Radar detectors...................................................................................... 11 5.1.3Monitoring systems (CCTV, CCVE and Automatic Incident Detection Systems)................................................................................................ 11 5.1.4 Environmental and air quality monitoring devices.......................... 13 5.1.5 Automatic Fire Detection Devices....................................................... 14 5.2 Traffic management methods...............................................................
    [Show full text]