SEDAR 15 Greater Amberjack Assessment

Total Page:16

File Type:pdf, Size:1020Kb

SEDAR 15 Greater Amberjack Assessment S E D A R Southeast Data, Assessment, and Review ============================================= SEDAR 15 Stock Assessment Report 2 (SAR 2) South Atlantic Greater Amberjack February 2008 SEDAR is a Cooperative Initiative of: The Caribbean Fishery Management Council The Gulf of Mexico Fishery Management Council The South Atlantic Fishery Management Council NOAA Fisheries Southeast Regional Office NOAA Fisheries Southeast Fisheries Science Center The Atlantic States Marine Fisheries Commission The Gulf States Marine Fisheries Commission SEDAR Offices The South Atlantic Fishery Management Council 4055 Faber Place #201 North Charleston, SC 29405 (843) 571-4366 Table of Contents South Atlantic Greater Amberjack Stock Assessment Report 2 South Atlantic Greater Amberjack Table of Contents Section I Introduction Section II Data Workshop Report Section III Assessment Workshop Report Section IV Review Workshop Report Section V Addenda and Post-Review Updates i Table of Contents South Atlantic Greater Amberjack ii Introduction South Atlantic Greater Amberjack Section I. Introduction Contents 1. SEDAR Overview ………………………………………………………. 3 2. Assessment History ……………………………………………….…….. 4 3. Management Review ……………………………………...…………….. 5 4. Southeast Region Maps …………………………………………………. 11 5. Summary Report ...………………………………………………………. 14 6. Stock Assessment Improvement (SAIP) Form .…………………………. 21 7. SEDAR Abbreviations ………………..………………………………… 22 SEDAR 15 SAR 2 SECTION I 1 Introduction South Atlantic Greater Amberjack SEDAR 15 SAR 2 SECTION I 2 Introduction South Atlantic Greater Amberjack 1. SEDAR Overview SEDAR (Southeast Data, Assessment and Review) was initially developed by the Southeast Fisheries Science Center and the South Atlantic Fishery Management Council to improve the quality and reliability of stock assessments and to ensure a robust and independent peer review of stock assessment products. SEDAR was expanded in 2003 to address the assessment needs of all three Fishery Management Council in the Southeast Region (South Atlantic, Gulf of Mexico, and Caribbean) and to provide a platform for reviewing assessments developed through the Atlantic and Gulf States Marine Fisheries Commissions and state agencies within the southeast. SEDAR strives to improve the quality of assessment advice provided for managing fisheries resources in the Southeast US by increasing and expanding participation in the assessment process, ensuring the assessment process is transparent and open, and providing a robust and independent review of assessment products. SEDAR is overseen by a Steering Committee composed of NOAA Fisheries representatives: Southeast Fisheries Science Center Director and the Southeast Regional Administrator; Regional Council representatives: the Executive Directors and Chairs of the South Atlantic, Gulf of Mexico, and Caribbean Fishery Management Councils; and Interstate Commissions: the Executive Directors of the Atlantic States and Gulf States Marine Fisheries Commissions. SEDAR is organized around three workshops. First is the Data Workshop, during which fisheries, monitoring, and life history data are reviewed and compiled. Second is the Assessment workshop, during which assessment models are developed and population parameters are estimated using the information provided from the Data Workshop. Third and final is the Review Workshop, during which independent experts review the input data, assessment methods, and assessment products. SEDAR workshops are organized by SEDAR staff and the lead Council. Data and Assessment Workshops are chaired by the SEDAR coordinator. Participants are drawn from state and federal agencies, non-government organizations, Council members, Council advisors, and the fishing industry with a goal of including a broad range of disciplines and perspectives. All participants are expected to contribute to the process by preparing working papers, contributing, providing assessment analyses, and completing the workshop report. SEDAR Review Workshop Panels consist of a chair, a reviewer appointed by the Council, and 3 reviewers appointed by the Center for Independent Experts (CIE), an independent organization that provides independent, expert reviews of stock assessments and related work. The Review Workshop Chair is appointed by the SEFSC director and is usually selected from a NOAA Fisheries regional science center. Participating councils may appoint representatives of their SSC, Advisory, and other panels as observers to the review workshop. SEDAR 15 was charged with assessing red snapper and greater amberjack in the US South Atlantic. This task was accomplished through workshops held between June 2007 and January 2008. SEDAR 15 SAR 2 SECTION I 3 Introduction South Atlantic Greater Amberjack 2. Assessment History In the early 1990s, a series of unnumbered reports were prepared by the SAFMC Plan Development Team (1990) and later by the Beaufort Reeffish Team (1991, 1992, 1993), in which ―snapshot‖ analyses were conducted for a list of snapper-grouper species, including greater amberjack. These analyses included the estimation of SPR (spawning potential ratio) based on a single year of data, and were intended to highlight species for future assessments. SPR was also estimated in this manner in the report by Potts and Brennan (1998). However, the only assessment conducted on this stock of greater amberjack was by Legault and Turner [Evaluations of the Atlantic Greater Amberjack, Seriola dumerili, Stock Status, July 1999, Sustainable Fisheries Division Contribution SFD-98/99-63]. Estimates of SPR found in the report by Potts and Brennan (2001) are from this assessment report. In 1999, alternative stock assessment methods (Delury depletion and ASPIC models) were applied to greater amberjack data from the Florida Atlantic coast (Nassau County to Miami) by the FL FWCC. Summary from Legault and Turner: Stock assessments and projections of acceptable biological catches for Atlantic greater amberjack were conducted over a wide range of biological parameters due to insufficient knowledge about the true values. This approach is a different from previous assessments, which used only one estimate for stock assessment and did not compute maximum sustainable yields. Given the current limited knowledge of greater amberjack biology, and the fishery catches, in the Atlantic Ocean, the resulting ranges of possible stock status and future yields are large. If improvements in the understanding of greater amberjack biology and fishery statistics can be made, these wide ranges will narrow. The stock assessments for Atlantic greater amberjack consisted of tuned virtual population analysis. The catch at age data used in the assessment are provided in Cummings (1999) and the tuning indices used are described in Cummings et al. (1999). A number of assessments were conducted using different indices, values for the natural mortality rate, and maturity ogives. Fecundity at age was set as the product of weight and maturity at age. A Monte Carlo/bootstrap approach was used to examine uncertainty within each assessment. The default control rule was used to evaluate the current stock status for each assessment. Each assessment was projected into the future to estimate acceptable biological catches (ABC) under two alternative fishing mortality rates which might be considered as proxies for FMSY : (1) F40%SPR , the fishing mortality rate which generates a 40% static spawning potential ratio, and (2) F0.1. Risk associated with selecting different ABC levels was examined across all combinations of assessments and projections. SEDAR 15 SAR 2 SECTION I 4 Introduction South Atlantic Greater Amberjack 3. Management Review Table 1. General Management Information Species Greater Amberjack (Seriola dumerili) Management Unit Southeastern US Management Unit Definition All waters within South Atlantic Fishery Management Council Boundaries Management Entity South Atlantic Fishery Management Council Management Contacts Jack McGovern/Rick DeVictor SERO / Council Current stock exploitation status Not overfishing Current stock biomass status Not overfished Table 2a. Specific Management Criteria Criteria Current Proposed Definition Value Definition Value MSST [(1-M) or 0.5 Not specified MSST = [(1- UNK (SEDAR 15) whichever is M) or 0.5 greater]*BMSY whichever is greater]*BMSY MFMT F30%SPR=FMSY Not specified FMSY UNK (SEDAR 15) MSY Yield at FMSY * Yield at FMSY UNK (SEDAR 15) FMSY F30%SPR Not specified FMSY UNK (SEDAR 15) OY Yield at FOY * Yield at FOY UNK (SEDAR 15) FOY F40%SPR * FOY =65%, UNK (SEDAR 15) 75%, 85%FMSY M n/a * SEDAR 10 UNK (SEDAR 15) *The 1998 assessment (Legault and Turner 1999) provided a range of values for M, FMSY, and MSY using FMSY proxies = F40% SPR and F0.1. See table 2b for the values. SEDAR 15 SAR 2 SECTION I 5 Introduction South Atlantic Greater Amberjack Table 2b. Maximum sustainable yield medians and inner 50% from 400 Monte Carlo/bootstrap runs of 18 combinations of tuning indices used, M, FMSY proxy, and maturity schedule (Legault and Turner 1999). MSY (million pounds) # Indices M FMSY Maturity Median Inner 50% Range Proxy Schedule one 0.2 F40%SPR Early 12.50 10.48 - 15.38 one 0.2 F40%SPR Late 11.51 9.65 - 14.14 one 0.2 F0.1 N/A 10.67 8.95 - 13.12 one 0.25 F40%SPR Early 15.54 12.61 - 18.98 one 0.25 F40%SPR Late 14.07 11.42 - 17.18 one 0.25 F0.1 N/A 12.48 10.14 - 15.24 one 0.3 F40%SPR Early 19.53 15.78 - 23.95 one 0.3 F40%SPR Late 17.42 14.08 - 21.36 one 0.3 F0.1 N/A 14.70 11.90 - 18.02 four 0.2 F40%SPR Early 4.43 4.13 - 4.78 four 0.2 F40%SPR
Recommended publications
  • A Practical Handbook for Determining the Ages of Gulf of Mexico And
    A Practical Handbook for Determining the Ages of Gulf of Mexico and Atlantic Coast Fishes THIRD EDITION GSMFC No. 300 NOVEMBER 2020 i Gulf States Marine Fisheries Commission Commissioners and Proxies ALABAMA Senator R.L. “Bret” Allain, II Chris Blankenship, Commissioner State Senator District 21 Alabama Department of Conservation Franklin, Louisiana and Natural Resources John Roussel Montgomery, Alabama Zachary, Louisiana Representative Chris Pringle Mobile, Alabama MISSISSIPPI Chris Nelson Joe Spraggins, Executive Director Bon Secour Fisheries, Inc. Mississippi Department of Marine Bon Secour, Alabama Resources Biloxi, Mississippi FLORIDA Read Hendon Eric Sutton, Executive Director USM/Gulf Coast Research Laboratory Florida Fish and Wildlife Ocean Springs, Mississippi Conservation Commission Tallahassee, Florida TEXAS Representative Jay Trumbull Carter Smith, Executive Director Tallahassee, Florida Texas Parks and Wildlife Department Austin, Texas LOUISIANA Doug Boyd Jack Montoucet, Secretary Boerne, Texas Louisiana Department of Wildlife and Fisheries Baton Rouge, Louisiana GSMFC Staff ASMFC Staff Mr. David M. Donaldson Mr. Bob Beal Executive Director Executive Director Mr. Steven J. VanderKooy Mr. Jeffrey Kipp IJF Program Coordinator Stock Assessment Scientist Ms. Debora McIntyre Dr. Kristen Anstead IJF Staff Assistant Fisheries Scientist ii A Practical Handbook for Determining the Ages of Gulf of Mexico and Atlantic Coast Fishes Third Edition Edited by Steve VanderKooy Jessica Carroll Scott Elzey Jessica Gilmore Jeffrey Kipp Gulf States Marine Fisheries Commission 2404 Government St Ocean Springs, MS 39564 and Atlantic States Marine Fisheries Commission 1050 N. Highland Street Suite 200 A-N Arlington, VA 22201 Publication Number 300 November 2020 A publication of the Gulf States Marine Fisheries Commission pursuant to National Oceanic and Atmospheric Administration Award Number NA15NMF4070076 and NA15NMF4720399.
    [Show full text]
  • Seriola Dumerili (Greater Amberjack)
    UWI The Online Guide to the Animals of Trinidad and Tobago Diversity Seriola dumerili (Greater Amberjack) Family: Carangidae (Jacks and Pompanos) Order: Perciformes (Perch and Allied Fish) Class: Actinopterygii (Ray-finned Fish) Fig. 1. Greater amberjack, Seriola dumerili. [http://portal.ncdenr.org/web/mf/amberjack_greater downloaded 20 October 2016] TRAITS. The species Seriola dumerili displays rapid growth during development as a juvenile progressing to an adult. It is the largest species of the family of jacks. At adulthood, S. dumerili would typically weigh about 80kg and reach a length of 1.8-1.9m. Sexual maturity is achieved between the age of 3-5 years, and females may live longer and grow larger than males (FAO, 2016). S. dumurili are rapid-moving predators as shown by their body form (Fig. 1) (FLMNH, 2016). The adult is silvery-bluish in colour, whereas the juvenile is yellow-green. It has a characteristic goldish side line, as well as a dark band near the eye, as seen in Figs 1 and 2 (FAO, 2016; MarineBio, 2016; NCDEQ, 2016). DISTRIBUTION. S. dumerili is native to the waters of Trinidad and Tobago. Typically pelagic, found between depths of 10-360m, the species can be described as circumglobal. In other words, it is found worldwide, as seen in Fig. 3, though much more rarely in some areas, for example the eastern Pacific Ocean (IUCN, 2016). Due to this distribution, there is no threat to the population of the species, despite overfishing in certain locations. Migrations do occur, which are thought to be linked to reproductive cycles.
    [Show full text]
  • Sharkcam Fishes
    SharkCam Fishes A Guide to Nekton at Frying Pan Tower By Erin J. Burge, Christopher E. O’Brien, and jon-newbie 1 Table of Contents Identification Images Species Profiles Additional Info Index Trevor Mendelow, designer of SharkCam, on August 31, 2014, the day of the original SharkCam installation. SharkCam Fishes. A Guide to Nekton at Frying Pan Tower. 5th edition by Erin J. Burge, Christopher E. O’Brien, and jon-newbie is licensed under the Creative Commons Attribution-Noncommercial 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc/4.0/. For questions related to this guide or its usage contact Erin Burge. The suggested citation for this guide is: Burge EJ, CE O’Brien and jon-newbie. 2020. SharkCam Fishes. A Guide to Nekton at Frying Pan Tower. 5th edition. Los Angeles: Explore.org Ocean Frontiers. 201 pp. Available online http://explore.org/live-cams/player/shark-cam. Guide version 5.0. 24 February 2020. 2 Table of Contents Identification Images Species Profiles Additional Info Index TABLE OF CONTENTS SILVERY FISHES (23) ........................... 47 African Pompano ......................................... 48 FOREWORD AND INTRODUCTION .............. 6 Crevalle Jack ................................................. 49 IDENTIFICATION IMAGES ...................... 10 Permit .......................................................... 50 Sharks and Rays ........................................ 10 Almaco Jack ................................................. 51 Illustrations of SharkCam
    [Show full text]
  • 2021 Louisiana Recreational Fishing Regulations
    2021 LOUISIANA RECREATIONAL FISHING REGULATIONS www.wlf.louisiana.gov 1 Get a GEICO quote for your boat and, in just 15 minutes, you’ll know how much you could be saving. If you like what you hear, you can buy your policy right on the spot. Then let us do the rest while you enjoy your free time with peace of mind. geico.com/boat | 1-800-865-4846 Some discounts, coverages, payment plans, and features are not available in all states, in all GEICO companies, or in all situations. Boat and PWC coverages are underwritten by GEICO Marine Insurance Company. In the state of CA, program provided through Boat Association Insurance Services, license #0H87086. GEICO is a registered service mark of Government Employees Insurance Company, Washington, DC 20076; a Berkshire Hathaway Inc. subsidiary. © 2020 GEICO CONTENTS 6. LICENSING 9. DEFINITIONS DON’T 11. GENERAL FISHING INFORMATION General Regulations.............................................11 Saltwater/Freshwater Line...................................12 LITTER 13. FRESHWATER FISHING SPORTSMEN ARE REMINDED TO: General Information.............................................13 • Clean out truck beds and refrain from throwing Freshwater State Creel & Size Limits....................16 cigarette butts or other trash out of the car or watercraft. 18. SALTWATER FISHING • Carry a trash bag in your car or boat. General Information.............................................18 • Securely cover trash containers to prevent Saltwater State Creel & Size Limits.......................21 animals from spreading litter. 26. OTHER RECREATIONAL ACTIVITIES Call the state’s “Litterbug Hotline” to report any Recreational Shrimping........................................26 potential littering violations including dumpsites Recreational Oystering.........................................27 and littering in public. Those convicted of littering Recreational Crabbing..........................................28 Recreational Crawfishing......................................29 face hefty fines and litter abatement work.
    [Show full text]
  • Standardized Catch Rate Indices for Greater Amberjack (Seriola Dumerili) During 1990-2018 by the U.S
    Standardized Catch Rate Indices for Greater Amberjack (Seriola dumerili) during 1990-2018 by the U.S. Gulf of Mexico Vertical Line and Longline Fisheries Gulf and Caribbean Branch, Sustainable Fisheries Division SEDAR70-WP-11 2 July 2020 This information is distributed solely for the purpose of pre-dissemination peer review. It does not represent and should not be construed to represent any agency determination or policy. Please cite this document as: Gulf and Caribbean Branch, Sustainable Fisheries Division. 2020. Standardized Catch Rate Indices for Greater Amberjack (Seriola dumerili) during 1990-2018 by the U.S. Gulf of Mexico Vertical Line and Longline Fisheries. SEDAR70-WP-11. SEDAR, North Charleston, SC. 34 pp. Standardized Catch Rate Indices for Greater Amberjack (Seriola dumerili) during 1990-2018 by the U.S. Gulf of Mexico Vertical Line and Longline Fisheries Gulf and Caribbean Branch Sustainable Fisheries Division NOAA Fisheries - Southeast Fisheries Science Center Corresponding Authors Emails ([email protected]; [email protected]) June 30, 2020 Keywords Catch, fishing effort, CPUE, abundance, commercial fisheries, handline, longline, U.S. GOM Greater Amberjack Abstract Standardized catch rate indices of relative abundance (Catch-per-Unit Effort; CPUE) were developed independently for the commercial handline (vertical line) and commercial longline fisheries in the U.S. Gulf of Mexico (GOM) for the SEDAR70 Operational Greater Amberjack stock assessment. Each index was developed using a delta-lognormal generalized linear model for the years 1990 to 2018 using data from the Coastal Fisheries Logbook Program. All analyses followed the same methodology used for the SEDAR33 and SEDAR33 Update stock assessments.
    [Show full text]
  • Aquaculture) (Feed-Supplied Aquaculture)
    Specified Skills Educational Textbook for the Fishing Industry Skills Proficiency Test (Aquaculture) (Feed-Supplied Aquaculture) Japan Fisheries Association (First Edition: February 2020) Table of Contents 1. Sea Aquaculture for Fish in Japan ···································································· 1 2. Natural and Artificial Seeds ············································································ 2 3. Feed ············································································································· 5 4. Breeding Environments ·················································································· 6 5. Yellowtail Aquaculture ··················································································· 7 (1) Yellowtail and Greater Amberjack Spawning Seasons and Locations ················ 8 (2) Yellowtail and Greater Amberjack Names ····················································· 9 (3) Securing Aquaculture Seeds ········································································ 9 (4) Feeding Methods ······················································································ 10 (5) Aquaculture Environments ········································································ 12 (6) Aquaculture Facilities and Density ······························································ 12 (7) Fish Diseases and Countermeasures ···························································· 12 (8) Shipping ··································································································
    [Show full text]
  • Red Snapper, Vermilion Snapper, Yellowtail Snapper Gulf of Mexico
    Red Snapper, Vermilion Snapper, Yellowtail Snapper Lutjanus campechanus, Rhomboplites aurorubens, Ocyurus chrysurus ©Monterey Bay Aquarium Gulf of Mexico/South Atlantic Vertical Line: Hydraulic/Electric Reel, Rod and Reel, Hand Line January 9, 2013 Rachelle Fisher, Consulting Researcher Disclaimer Seafood Watch® strives to ensure all our Seafood Reports and the recommendations contained therein are accurate and reflect the most up-to-date evidence available at time of publication. All our reports are peer- reviewed for accuracy and completeness by external scientists with expertise in ecology, fisheries science or aquaculture. Scientific review, however, does not constitute an endorsement of the Seafood Watch program or its recommendations on the part of the reviewing scientists. Seafood Watch is solely responsible for the conclusions reached in this report. We always welcome additional or updated data that can be used for the next revision. Seafood Watch and Seafood Reports are made possible through a grant from the David and Lucile Packard Foundation. 2 Final Seafood Recommendation Although there are many snappers caught in the U.S., only the three most commercially important species relative to landed weight and value (red snapper (Lutjanus campechanus), vermilion snapper (Rhomboplites aurorubens), and yellowtail snapper (Ocyurus chrysurus) are discussed here. This report discusses snapper caught in the South Atlantic (SA) and Gulf of Mexico (GOM) by vertical gear types including hydraulic/electric reel, rod and reel, and handline. Snapper caught by bottom longline in the GOM and SA will not be discussed since it makes up a statistically insignificant proportion of the total snapper catch in the GOM and in the SA bottom longline fishing in waters shallower than 50 fathoms, where snapper are generally caught, is prohibited.
    [Show full text]
  • Florida Recreational Saltwater Fishing Regulations
    Issued: July 2015 Florida Recreational New regulations are highlighted in red Regulations apply to state waters of the Gulf and Atlantic Saltwater Fishing Regulations (please visit: MyFWC.com/Fishing/Saltwater/Recreational for the most current regulations) All art: © Diane Rome Peebles, except snowy grouper (Duane Raver) Reef Fish Snappers General Snappers Regulations: • Within state waters of the Atlantic and Gulf, the snapper aggregate bag limit is 10 fish ● ● ● ● per harvester unless the species Snapper, Cubera Snapper, Red Snapper, Vermilion Snapper, Lane rule specifies that it is not Minimum Size Limits: Minimum Size Limits: Minimum Size Limits: Minimum Size Limits: included in the aggregate. This • Atlantic and Gulf - 12" (see remarks) • Atlantic - 20" • Atlantic - 12" • Atlantic and Gulf - 8" means that a harvester can • Gulf - 16" • Gulf - 10" retain a total of 10 snappers Daily Recreational Bag Limit: Daily Recreational Bag Limit: in any combination of species. • Atlantic and Gulf - 10 per harvester Season: Daily Recreational Bag Limit: • Atlantic - 10 per harvester • Atlantic - Open year-round • Atlantic - 5 per harvester • Gulf - 100 pounds (see remarks) Exceptions are noted below. Remarks • Gulf - May 23–July 12; Sept. 5, 6, 7; • Gulf - 10 per harvester • If no season information is • May possess no more than 2 over Remarks and every Saturday and Sunday in included, the species is open 30" per harvester or vessel per day, Remarks • Gulf not included within the snapper Sept. and Oct.; and Nov. 1 year-round. whichever is less. 30" or larger not • Not included within the snapper aggregate bag limit. included within the snapper aggregate Daily Recreational Bag Limit: aggregate bag limit.
    [Show full text]
  • Analytical Report Age, Growth, and Reproduction of Greater Amberjack
    Analytical Report Age, growth, and reproduction of greater amberjack, Seriola dumerili, in the southwestern north Atlantic. Marine Resources Research Institute South Carolina Department of Natural Resources P. O. Box 12559 Charleston, SC 29422 Contact person: Patrick J. Harris December 2004 This work represents partial fulfillment of the Marine Resources Monitoring, Assessment, and Prediction (MARMAP) Program contract (No. 50WCNF606013) sponsored by the National Marine Fisheries Service (Southeast Fisheries Center) and the South Carolina Department of Natural Resources. Introduction The greater amberjack, Seriola dumerili, is a pelagic and epibenthic member of the family Carangidae (Manooch and Potts, 1997a). This large jack is distributed from Nova Scotia through the Caribbean to Brazil, the Gulf of Mexico, and throughout the Pacific, Indian and Eastern Atlantic Oceans as well as the Mediterranean Sea (Fischer, 1978; Manooch, 1984; Shipp, 1988; Manooch and Potts, 1997a; b; Thompson et al., 1999). Greater amberjack are often found near reefs, rocky outcrops or wrecks off the southeastern United States, in depths ranging from 18-72 m (Fischer, 1978; Manooch and Potts, 1997b). Due to association with reefs and similar habitats, greater amberjack are included in the snapper-grouper complex and are managed by the South Atlantic Fishery Management Council (SAFMC) off the coast of the southeastern United States. Recreational fishing for greater amberjack began in the early 1950s from New York to Texas (Manooch and Potts, 1997a). There was not a targeted fishery until charter boat fishermen popularized this fish in the 1970s because of its aggressive fighting behavior when hooked (Manooch and Potts, 1997a; Cummings and McClellan, 1999). Commercial landings for Atlantic greater amberjack increased from 6,344 pounds in 1962 to 2,232,479 pounds in 1991 (Cummings and McClellan, 1999).
    [Show full text]
  • Fish Identification Guide Depicts More Than 50 Species of Fish Commonly Encoun- Make the Proper Identification of Every Fish Caught
    he identification of different spe- Most species of fish are distinctive in appear- ance and relatively easy to identify. However, cies of fish has become an im- closely related species, such as members of the portant concern for recreational same “family” of fish, can present problems. For these species it is important to look for certain fishermen. The proliferation of T distinctive characteristics to make a positive regulations relating to minimum identification. sizes and possession limits compels fishermen to The ensuing fish identification guide depicts more than 50 species of fish commonly encoun- make the proper identification of every fish caught. tered in Virginia waters. In addition to color illustrations of each species, the description of each species lists the distinctive characteristics which enable a positive identification. Total Length FIRST DORSAL FIN Fork Length SECOND NUCHAL DORSAL FIN BAND SQUARE TAIL NARES FORKED TAIL GILL COVER (Operculum) CAUDAL LATRAL PEDUNCLE CHIN BARBELS LINE PECTORAL CAUDAL FIN ANAL FINS FIN PELVIC FINS GILL RAKERS GILL ARCH UNDERSIDE OF GILL COVER GILL RAKER GILL FILAMENTS GILL FILAMENTS DEFINITIONS Anal Fin – The fin on the bottom of fish located between GILL ARCHES 1st the anal vent (hole) and the tail. 2nd 3rd Barbels – Slender strands extending from the chins of 4th some fish (often appearing similar to whiskers) which per- form a sensory function. Caudal Fin – The tail fin of fish. Nuchal Band – A dark band extending from behind or Caudal Peduncle – The narrow portion of a fish’s body near the eye of a fish across the back of the neck toward immediately in front of the tail.
    [Show full text]
  • Movement Patterns of Red Snapper Lutjanus Campechanus Based on Acoustic Telemetry Around Oil and Gas Platforms in the Northern Gulf of Mexico
    Movement patterns of red snapper Lutjanus campechanus based on acoustic telemetry around oil and gas platforms in the northern Gulf of Mexico Aminda G. Everett, Stephen T. Szedlmayer, Benny J. Gallaway SEDAR74-RD11 November 2020 This information is distributed solely for the purpose of pre-dissemination peer review. It does not represent and should not be construed to represent any agency determination or policy. Vol. 649: 155–173, 2020 MARINE ECOLOGY PROGRESS SERIES Published September 10 https://doi.org/10.3354/meps13448 Mar Ecol Prog Ser Movement patterns of red snapper Lutjanus campechanus based on acoustic telemetry around oil and gas platforms in the northern Gulf of Mexico Aminda G. Everett1, Stephen T. Szedlmayer1,*, Benny J. Gallaway2 1School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, 8300 State Hwy 104, Fairhope, Alabama 36532, USA 2LGL Ecological Research Associates, Inc. Bryant, Texas 77802, USA ABSTRACT: Offshore oil and gas platforms in the northern Gulf of Mexico are known aggrega- tion sites for red snapper Lutjanus campechanus. To examine habitat use and potential mortality from explosive platform removals, fine-scale movements of red snapper were estimated based on acoustic telemetry from March 2017 to July 2018. Study sites in the northern Gulf of Mexico, USA, included one platform off coastal Alabama (30.09° N, 87.88° W) and 2 platforms off Louisiana (28.81° N, 91.97° W; 28.92° N, 93.15° W). Red snapper (n = 59) showed a high affinity for platforms, with most (94%) positions being recorded within 95 m of the platforms. Home range areas were correlated with water temperature and inversely correlated with dissolved oxygen concentrations.
    [Show full text]
  • Lane Snapper
    AND Lane Snapper Lutjanus synagris ©Diane Rome Peebles United States Gulf of Mexico and South Atlantic Handline, Bottom longlines Fisheries Standard Version F2 January 6, 2017 The Safina Center Seafood Analsyts Disclaimer Seafood Watch and The Safina Center strive to ensure that all our Seafood Reports and recommendations contained therein are accurate and reflect the most up-to-date evidence available at the time of publication. All our reports are peer-reviewed for accuracy and completeness by external scientists with expertise in ecology, fisheries science or aquaculture.Scientific review, however, does not constitute an endorsement of the Seafood Watch program or of The Safina Center or their recommendations on the part of the reviewing scientists.Seafood Watch and The Safina Center are solely responsible for the conclusions reached in this report. We always welcome additional or updated data that can be used for the next revision. Seafood Watch and Seafood Reports are made possible through a grant from the David and Lucile Packard Foundation and other funders. Table of Contents About. The. Safina. Center. 3. About. Seafood. .Watch . 4. Guiding. .Principles . 5. Summary. 6. Final. Seafood. .Recommendations . 7. Introduction. 8. Assessment. 10. Criterion. 1:. .Impacts . on. the. species. .under . .assessment . .10 . Criterion. 2:. .Impacts . on. other. .species . .14 . Criterion. 3:. .Management . Effectiveness. .24 . Criterion. 4:. .Impacts . on. the. habitat. and. .ecosystem . .34 . Acknowledgements. 38. References. 39. Appendix. A:. Extra. .By . Catch. .Species . 51. 2 About The Safina Center The Safina Center (formerly Blue Ocean Institute) translates scientific information into language people can understand and serves as a unique voice of hope, guidance, and encouragement.
    [Show full text]