West Indian Whistling-Duck (<I>Dendrocygna Arborea</I>)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Cortinarius Caperatus (Pers.) Fr., a New Record for Turkish Mycobiota
Kastamonu Üni., Orman Fakültesi Dergisi, 2015, 15 (1): 86-89 Kastamonu Univ., Journal of Forestry Faculty Cortinarius caperatus (Pers.) Fr., A New Record For Turkish Mycobiota *Ilgaz AKATA1, Şanlı KABAKTEPE2, Hasan AKGÜL3 Ankara University, Faculty of Science, Department of Biology, 06100, Tandoğan, Ankara Turkey İnönü University, Battalgazi Vocational School, TR-44210 Battalgazi, Malatya, Turkey Gaziantep University, Department of Biology, Faculty of Science and Arts, 27310 Gaziantep, Turkey *Correspending author: [email protected] Received date: 03.02.2015 Abstract In this study, Cortinarius caperatus (Pers.) Fr. belonging to the family Cortinariaceae was recorded for the first time from Turkey. A short description, ecology, distribution and photographs related to macro and micromorphologies of the species are provided and discussed briefly. Keywords: Cortinarius caperatus, mycobiota, new record, Turkey Cortinarius caperatus (Pers.) Fr., Türkiye Mikobiyotası İçin Yeni Bir Kayıt Özet Bu çalışmada, Cortinariaceae familyasına mensup Cortinarius caperatus (Pers.) Fr. Türkiye’den ilk kez kaydedilmiştir. Türün kısa deskripsiyonu, ekolojisi, yayılışı ve makro ve mikro morfolojilerine ait fotoğrafları verilmiş ve kısaca tartışılmıştır. Anahtar Kelimeler: Cortinarius caperatus, Mikobiyota, Yeni kayıt, Türkiye Introduction lamellae edges (Arora, 1986; Hansen and Cortinarius is a large and complex genus Knudsen, 1992; Orton, 1984; Uzun et al., of family Cortinariaceae within the order 2013). Agaricales, The genus contains According to the literature (Sesli and approximately 2 000 species recognised Denchev, 2008, Uzun et al, 2013; Akata et worldwide. The most common features al; 2014), 98 species in the genus Cortinarius among the members of the genus are the have so far been recorded from Turkey but presence of cortina between the pileus and there is not any record of Cortinarius the stipe and cinnamon brown to rusty brown caperatus (Pers.) Fr. -
Waterfowl Collection at Slimbridge 1955-56
Annual Report 1954-56 35 WATERFOWL COLLECTION AT SLIMBRIDGE 1955-56 THE BREEDING SEASON 1955 By S. T. Johnstone T h e feature of the breeding season was the striking effect of cold weather on the well-being of the young birds. Frost in February and March may well have reduced considerably the hatchability of the Ne-Ne eggs, all 31 of which were laid during a period when the cold was so extreme that some African Black Duck eggs were split open before they could be collected. The very wet April and May caused flooding of nests and indeed several sitting boxes suffered in this way. This latter occurrence may have had a bearing on the unfortunate rise in the incidence of Aspergillosis. Pathogenic mould was found in a number of fertile eggs that failed to hatch and a relatively large number of goslings succumbed to mycosis. In 1956 the use of sawdust for nest making in the sitting boxes has been discontinued in favour of peat moss impregnated with a fungicide. The two pumping systems installed in the spring of 1954 have enabled us to provide relatively fast-flowing water through the rearing pens. By this means we have get rid of the concentration of water fleas (.Daphnia pulex). This had been the host of Acuaria uncinata, a worm inhabiting the proventriculus and causing wasting and subsequent death. We are pleased to report that not a single case of Acuaria was recorded in 1955. It was a great relief to those concerned with the rearing when cold and wet ceased and the long warm sunny days of June and July appeared as a panacea to all ills save the losses from predators. -
Waterfowl in Iowa, Overview
STATE OF IOWA 1977 WATERFOWL IN IOWA By JACK W MUSGROVE Director DIVISION OF MUSEUM AND ARCHIVES STATE HISTORICAL DEPARTMENT and MARY R MUSGROVE Illustrated by MAYNARD F REECE Printed for STATE CONSERVATION COMMISSION DES MOINES, IOWA Copyright 1943 Copyright 1947 Copyright 1953 Copyright 1961 Copyright 1977 Published by the STATE OF IOWA Des Moines Fifth Edition FOREWORD Since the origin of man the migratory flight of waterfowl has fired his imagination. Undoubtedly the hungry caveman, as he watched wave after wave of ducks and geese pass overhead, felt a thrill, and his dull brain questioned, “Whither and why?” The same age - old attraction each spring and fall turns thousands of faces skyward when flocks of Canada geese fly over. In historic times Iowa was the nesting ground of countless flocks of ducks, geese, and swans. Much of the marshland that was their home has been tiled and has disappeared under the corn planter. However, this state is still the summer home of many species, and restoration of various areas is annually increasing the number. Iowa is more important as a cafeteria for the ducks on their semiannual flights than as a nesting ground, and multitudes of them stop in this state to feed and grow fat on waste grain. The interest in waterfowl may be observed each spring during the blue and snow goose flight along the Missouri River, where thousands of spectators gather to watch the flight. There are many bird study clubs in the state with large memberships, as well as hundreds of unaffiliated ornithologists who spend much of their leisure time observing birds. -
Bird Checklists of the World Country Or Region: Myanmar
Avibase Page 1of 30 Col Location Date Start time Duration Distance Avibase - Bird Checklists of the World 1 Country or region: Myanmar 2 Number of species: 1088 3 Number of endemics: 5 4 Number of breeding endemics: 0 5 Number of introduced species: 1 6 7 8 9 10 Recommended citation: Lepage, D. 2021. Checklist of the birds of Myanmar. Avibase, the world bird database. Retrieved from .https://avibase.bsc-eoc.org/checklist.jsp?lang=EN®ion=mm [23/09/2021]. Make your observations count! Submit your data to ebird. -
Parasitic Helminths and Arthropods of Fulvous Whistling-Ducks (Dendrocygna Bicolor) in Southern Florida
J. Helminthol. Soc. Wash. 61(1), 1994, pp. 84-88 Parasitic Helminths and Arthropods of Fulvous Whistling-Ducks (Dendrocygna bicolor) in Southern Florida DONALD J. FORRESTER,' JOHN M. KINSELLA,' JAMES W. MERTiNS,2 ROGER D. PRICE,3 AND RICHARD E. TuRNBULL4 5 1 Department of Infectious Diseases, College of Veterinary Medicine, University of Florida, Gainesville, Florida 32610, 2 U.S. Department of Agriculture, Animal and Plant Health Inspection Service, Veterinary Services, National Veterinary Services Laboratories, P.O. Box 844, Ames, Iowa 50010, 1 Department of Entomology, University of Minnesota, St. Paul, Minnesota 55108, and 4 Florida Game and Fresh Water Fish Commission, Okeechobee, Florida 34974 ABSTRACT: Thirty fulvous whistling-ducks (Dendrocygna bicolor) collected during 1984-1985 from the Ever- glades Agricultural Area of southern Florida were examined for parasites. Twenty-eight species were identified and included 8 trematodes, 6 cestodes, 1 nematode, 4 chewing lice, and 9 mites. All parasites except the 4 species of lice and 1 of the mites are new host records for fulvous whistling-ducks. None of the ducks were infected with blood parasites. Every duck was infected with at least 2 species of helminths (mean 4.2; range 2- 8 species). The most common helminths were the trematodes Echinostoma trivolvis and Typhlocoelum cucu- merinum and 2 undescribed cestodes of the genus Diorchis, which occurred in prevalences of 67, 63, 50, and 50%, respectively. Only 1 duck was free of parasitic arthropods; each of the other 29 ducks was infested with at least 3 species of arthropods (mean 5.3; range 3-9 species). The most common arthropods included an undescribed feather mite (Ingrassia sp.) and the chewing louse Holomenopon leucoxanthum, both of which occurred in 97% of the ducks. -
Waterfowl of North America: WHISTLING DUCKS Tribe Dendrocygnini
University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Waterfowl of North America, Revised Edition (2010) Papers in the Biological Sciences 2010 Waterfowl of North America: WHISTLING DUCKS Tribe Dendrocygnini Paul A. Johnsgard University of Nebraska-Lincoln, [email protected] Follow this and additional works at: https://digitalcommons.unl.edu/biosciwaterfowlna Part of the Ornithology Commons Johnsgard, Paul A., "Waterfowl of North America: WHISTLING DUCKS Tribe Dendrocygnini" (2010). Waterfowl of North America, Revised Edition (2010). 8. https://digitalcommons.unl.edu/biosciwaterfowlna/8 This Article is brought to you for free and open access by the Papers in the Biological Sciences at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Waterfowl of North America, Revised Edition (2010) by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. WHISTLING DUCKS Tribe Dendrocygnini Whistling ducks comprise a group of nine species that are primarily of tropical and subtropical distribution. In common with the swans and true geese (which with them comprise the subfamily Anserinae), the included spe cies have a reticulated tarsal surface pattern, lack sexual dimorphism in plum age, produce vocalizations that are similar or identical in both sexes, form relatively permanent pair bonds, and lack complex pair-forming behavior pat terns. Unlike the geese and swans, whistling ducks have clear, often melodious whistling voices that are the basis for their group name. The alternative name, tree ducks, is far less appropriate, since few of the species regularly perch or nest in trees. All the species have relatively long legs and large feet that extend beyond the fairly short tail when the birds are in flight. -
Preliminary Descriptions of New Birds from Mexico and Guatemala in the Collection of the United States Department of Agriculture
['Auk 4 2 N•.:•sox,.Yew t3irds from Mrexh'oand Gualemala. [_Jan Leach for a genus of hymenopterousinsects of the family Tenth- ridinidm, and subsequently(•856) used by Dr. Giebel for a genus of neuropterousinsects. While I am pleasedto be able to compli- ment him upon the discoverythat this entomologicalword "has no connectionwith the original •a}i•t," he is ntistaken in saying that •lbia and 25rabiaare not the sameword in ornithology; for ,4bia is simplya variantof 25rabia,introduced by Agassizupon a mistaken notion of the etymologyand correct form of Azara's name habia. If Dr. Stejnegerwill look in the Index of Gray's• Handlist',he will find both forIns in ornithology. The literal identityof ,4bia Leach and ,4bia Agassiz is simply fortuitous; the former is of Greek origin; the latter is not. I statedthe matter correctly,,someyears ago, in the 'Century Dictionary': see under the words ,4bia, ]labia, and Zame/odia. PRELIMINARY DESCRIPTIONS OF NEW BIRDS FROM MEXICO AND GUATEMALA IN THE COLLEC- TION OF THE UNITED STATES DEPART- MENT OF AGRICULTURE. BY E. W. NELSON. T•t• present paper is based upon specimensof Mexican and Guatemalanbirds obtained mainly by myself and my assistant, Mr. E. A. Goldman, during explorations conductedfor the Bio- logical Survey of the U.S. Department of Agriculture during the last five years. In addition to this collection, numbering between four and five thousand specimens,I have had free access to the National Museuln series of Tropical American birds for purposesof comparison. In the course of our work we have traversed Mexico from one end to the other, and have crossed the countrysix times from seato sea. -
Alpha Codes for 2168 Bird Species (And 113 Non-Species Taxa) in Accordance with the 62Nd AOU Supplement (2021), Sorted Taxonomically
Four-letter (English Name) and Six-letter (Scientific Name) Alpha Codes for 2168 Bird Species (and 113 Non-Species Taxa) in accordance with the 62nd AOU Supplement (2021), sorted taxonomically Prepared by Peter Pyle and David F. DeSante The Institute for Bird Populations www.birdpop.org ENGLISH NAME 4-LETTER CODE SCIENTIFIC NAME 6-LETTER CODE Highland Tinamou HITI Nothocercus bonapartei NOTBON Great Tinamou GRTI Tinamus major TINMAJ Little Tinamou LITI Crypturellus soui CRYSOU Thicket Tinamou THTI Crypturellus cinnamomeus CRYCIN Slaty-breasted Tinamou SBTI Crypturellus boucardi CRYBOU Choco Tinamou CHTI Crypturellus kerriae CRYKER White-faced Whistling-Duck WFWD Dendrocygna viduata DENVID Black-bellied Whistling-Duck BBWD Dendrocygna autumnalis DENAUT West Indian Whistling-Duck WIWD Dendrocygna arborea DENARB Fulvous Whistling-Duck FUWD Dendrocygna bicolor DENBIC Emperor Goose EMGO Anser canagicus ANSCAN Snow Goose SNGO Anser caerulescens ANSCAE + Lesser Snow Goose White-morph LSGW Anser caerulescens caerulescens ANSCCA + Lesser Snow Goose Intermediate-morph LSGI Anser caerulescens caerulescens ANSCCA + Lesser Snow Goose Blue-morph LSGB Anser caerulescens caerulescens ANSCCA + Greater Snow Goose White-morph GSGW Anser caerulescens atlantica ANSCAT + Greater Snow Goose Intermediate-morph GSGI Anser caerulescens atlantica ANSCAT + Greater Snow Goose Blue-morph GSGB Anser caerulescens atlantica ANSCAT + Snow X Ross's Goose Hybrid SRGH Anser caerulescens x rossii ANSCAR + Snow/Ross's Goose SRGO Anser caerulescens/rossii ANSCRO Ross's Goose -
150 Problem Set 4.Pdf
CS103 Handout 15 Fall 2020 October 9, 2020 Problem Set 4 This fourth problem set explores set cardinality and graph theory. It serves as tour of the infinite (through set theory) and the finite (through graphs and their properties) and will give you a better sense for how discrete mathematical structures connect across these domains. Plus, you’ll get to see some pretty pictures and learn about why all this matters in the first place. Some of the questions on this problem set will assume you’ve read the online Guide to Cantor’s The- orem, which goes into more detail about the mechanics of the proof of Cantor’s theorem as well as some auxiliary definitions. Good luck, and have fun! Due Friday, October 16th at 12:00PM noon Pacific 2 / 6 Problem One: Cartesian Products and Set Cardinalities If A and B are sets, the Cartesian product of A and B, denoted A × B, is the set { (x, y) | x ∈ A ∧ y ∈ B }. Intuitively, A × B is the set of all ordered pairs you can make by taking one element from A and one ele- ment from B, in that order. For example, the set {1, 2} × {u, v, w} is { (1, u), (1, v), (1, w), (2, u), (2, v), (2, w) }. For the purposes of this problem, let’s have ★ and ☺ denote two arbitrary objects where ★ ≠ ☺. Over the course of this problem, we’re going to ask you to prove that |ℕ × {★, ☺}| = |ℕ|. i. Define a bijection f : ℕ × {★, ☺} → ℕ. The inputs to this function are elements of ℕ × {★, ☺}, so you can define your function by writing f(n, x) = ________________________ where n ∈ ℕ and x ∈ {★, ☺}. -
Bird Checklist
ߜ SPECIES Spr Sum Fall Win B ߜ SPECIES Spr Sum Fall Win B ߜ SPECIES Spr Sum Fall Win B ߜ SPECIES Spr Sum Fall Win B DUCKS, GEESE, & WATERFOWL Least Bittern u u r r • Killdeer u u c c • Sandwich Tern c c c c Black-bellied Whistling-Duck c c c c • Great Blue Heron c c c c • OYSTERCATCHERS Black Skimmer c c c u • Fulvous Whistling-Duck r r r Great Egret c c c c • American Oystercatcher u u u u • SKUAS & JAEGERS Snow Goose r Snowy Egret c ccc• STILTS & AVOCETS Pomarine Jaeger r r Wood Duck u u u u • Little Blue Heron c c c c • Black-necked Stilt u u u u • Parasitic Jaeger r r Gadwall r Tricolored Heron c c c c • American Avocet r r PIGEONS & DOVES American Wigeon r r Reddish Egret u u u u • SANDPIPERS & ALLIES Rock Pigeon c c c c • Mottled Duck c c c c • Cattle Egret a a a a • Spotted Sandpiper u r u u Eurasian Collared-Dove a a a a • Blue-winged Teal u r c c Green Heron u u u u • Solitary Sandpiper r u r White-winged Dove r r r r • Northern Shoveler r u u Black-crowned Night-Heron u u u u • Greater Yellowlegs u u c c Mourning Dove a a a a • Northern Pintail r Yellow-crowned Night-Heron u u u u • Willet c c c c Common Ground-Dove u u u u • Green-winged Teal r u IBISES & SPOONBILLS Lesser Yellowlegs u r c c CUCKOOS Canvasback r White Ibis a a a a • Upland Sandpiper r Yellow-billed Cuckoo u r u • Redhead r u Glossy Ibis c c c c • Whimbrel r r Mangrove Cuckoo r r r r • Ring-necked Duck u c c Roseate Spoonbill u u u u • Marbled Godwit r r Black-billed Cuckoo r Greater Scaup r NEW WORLD VULTURES Ruddy Turnstone u r c c BARN OWL Lesser Scaup r u -
Differential Use of Fresh Water Environments by Wintering Waterfowl of Coastal Texas
DIFFERENTIAL USE OF FRESH WATER ENVIRONMENTS BY WINTERING WATERFOWL OF COASTAL TEXAS DONALD H. WHITE AND DOUGLAS JAMES Species having similar life styles (Ralph 1975) characteristically occupy different ecological niches (Hutchinson 1957, 1965) within shared environ- ments. Many workers have shown that this principle seems to be operative in avian communities (MacArthur 1958, Cody 1968, James 1971, Posey 1974, Whitmore 1975). Our study was conducted to determine how feeding flocks of wintering waterfowl coexisted in feeding site selection, what environmental factors that were measured were the most important in certain aspects of niche separation, and how the niches were arranged in the aquatic community at the study site. METHODS AND MATERIALS Study area.-Data were collected from early October through late December 1973 from 2 adjacent ox-bow lakes on the grounds of the Welder Wildlife Foundation in San Patricia County near Sinton, Texas. These fresh water lakes were up to 2.5 m deep but averaged about 1.5 m in the middle. A broad zone of semi-aquatic grasses (Paspolum and Panicurn) occupied the perimeters and burhead (Echinodorus rostratus), southern cut- grass (Lee&a hexandra), and bulrush (Scirpus californicus) occurred in isolated small patches. The transition zone from emergent semi-aquatic vegetation sometimes occurred over 90 m from shore, but was quite variable in position. Extensive floating or partly sub- merged patches of aquatic vegetation were dominated by southern naiad (Noios guadalupensis), star grass (Heteranthera liebmannii), musk grass (Chara), and duck weed (Lemna perpusilla) . Large numbers of waterfowl use the coastal region of southern Texas during the fall and winter months (Bellrose 1976) therefore, references to “wintering waterfowl” and “wintering grounds” throughout this paper are made on this basis. -
Air Force Blue (Raf) {\Color{Airforceblueraf}\#5D8aa8
Air Force Blue (Raf) {\color{airforceblueraf}\#5d8aa8} #5d8aa8 Air Force Blue (Usaf) {\color{airforceblueusaf}\#00308f} #00308f Air Superiority Blue {\color{airsuperiorityblue}\#72a0c1} #72a0c1 Alabama Crimson {\color{alabamacrimson}\#a32638} #a32638 Alice Blue {\color{aliceblue}\#f0f8ff} #f0f8ff Alizarin Crimson {\color{alizarincrimson}\#e32636} #e32636 Alloy Orange {\color{alloyorange}\#c46210} #c46210 Almond {\color{almond}\#efdecd} #efdecd Amaranth {\color{amaranth}\#e52b50} #e52b50 Amber {\color{amber}\#ffbf00} #ffbf00 Amber (Sae/Ece) {\color{ambersaeece}\#ff7e00} #ff7e00 American Rose {\color{americanrose}\#ff033e} #ff033e Amethyst {\color{amethyst}\#9966cc} #9966cc Android Green {\color{androidgreen}\#a4c639} #a4c639 Anti-Flash White {\color{antiflashwhite}\#f2f3f4} #f2f3f4 Antique Brass {\color{antiquebrass}\#cd9575} #cd9575 Antique Fuchsia {\color{antiquefuchsia}\#915c83} #915c83 Antique Ruby {\color{antiqueruby}\#841b2d} #841b2d Antique White {\color{antiquewhite}\#faebd7} #faebd7 Ao (English) {\color{aoenglish}\#008000} #008000 Apple Green {\color{applegreen}\#8db600} #8db600 Apricot {\color{apricot}\#fbceb1} #fbceb1 Aqua {\color{aqua}\#00ffff} #00ffff Aquamarine {\color{aquamarine}\#7fffd4} #7fffd4 Army Green {\color{armygreen}\#4b5320} #4b5320 Arsenic {\color{arsenic}\#3b444b} #3b444b Arylide Yellow {\color{arylideyellow}\#e9d66b} #e9d66b Ash Grey {\color{ashgrey}\#b2beb5} #b2beb5 Asparagus {\color{asparagus}\#87a96b} #87a96b Atomic Tangerine {\color{atomictangerine}\#ff9966} #ff9966 Auburn {\color{auburn}\#a52a2a} #a52a2a Aureolin