bioRxiv preprint doi: https://doi.org/10.1101/2020.01.20.906701; this version posted January 20, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Genome-wide discovery of SLE genetic risk variant allelic enhancer activity Xiaoming Lu*1, Xiaoting Chen*1, Carmy Forney1, Omer Donmez1, Daniel Miller1, Sreeja Parameswaran1, Ted Hong1,2, Yongbo Huang1, Mario Pujato3, Tareian Cazares4, Emily R. Miraldi3-5, John P. Ray6, Carl G. de Boer6, John B. Harley1,4,5,7,8, Matthew T. Weirauch#,1,3,5,8,9, Leah C. Kottyan#,1,4,5,9 *Contributed equally #Co-corresponding authors:
[email protected];
[email protected] 1Center for Autoimmune Genomics and Etiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA, 45229. 2Department of Pharmacology & Systems Physiology, University of Cincinnati, College of Medicine, Cincinnati, Ohio, USA, 45229. 3Division of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA, 45229. 4Division of Immunobiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA, 45229. 5Department of Pediatrics, University of Cincinnati, College of Medicine, Cincinnati, Ohio, USA, 45229. 6Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard University, Cambridge, Massachusetts, USA, 02142. 7US Department of Veterans Affairs Medical Center, Cincinnati, Ohio, USA 45229. 8Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA, 45229. 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.01.20.906701; this version posted January 20, 2020.