Inhibiting PARP1 Splicing Along with Inducing DNA Damage As Potential Breast Cancer Therapy

Total Page:16

File Type:pdf, Size:1020Kb

Inhibiting PARP1 Splicing Along with Inducing DNA Damage As Potential Breast Cancer Therapy Reem Alsayed 3/26/21 03-545, S21 Professor Ihab Younis Inhibiting PARP1 Splicing along with Inducing DNA Damage as Potential Breast Cancer Therapy Student: Reem Alsayed Spring 2021 Professor: Ihab Younis 1 Reem Alsayed 3/26/21 03-545, S21 Professor Ihab Younis Abstract: Triple negative breast cancer is a deadly cancer and once it has metastasized it is deemed incurable. The need for an effective therapy is rising, and recent therapies include targeting the DNA damage response pathway. PARP1 is one of the first responders to DNA damage, and has been targeted for inhibition along with the stimulation of DNA damage as a treatment for breast cancer. However, such treatments lack in specificity, and only target one or two domains of the PARP1 protein, whereas PARP1 has other functions pertaining to multiple cancer hallmarks such as promoting angiogenesis, metastasis, inflammation, life cycle regulation, and regulation of tumorigenic genes. In this project, we hypothesize that by inhibiting the PARP1 protein production, we will be able to effectively inhibit all cancer hallmarks that are facilitated by PARP1, and we achieve this by inhibiting the splicing of PARP1. Splicing is the removal of intervening sequences (introns) in the pre-mRNA and the joining of the expressed sequences (exons). For PARP1, we blocked intron 22 splicing by introducing an Antisense Morpholino Oligonucleotide (AMO) that blocks the binding of the spliceosome. The results obtained demonstrate that 50uM PARP1 AMO inhibits PARP1 splicing >88%, as well as inhibits protein production. Additionally, the combination of PARP1 AMO and Doxorubicin lead to a loss in cell proliferation. 2 Reem Alsayed 3/26/21 03-545, S21 Professor Ihab Younis Introduction: Breast cancer is the deadliest cancer for women in Qatar (Doenelly et al., 2011), and the second worldwide (Harbeck et al., 2019). The rate of breast cancer incidence globally is rising alarmingly, from having 641,000 patients in 1980 to >1.6million in 2010, and a rising trend is expected (Harbeck et al., 2019). Triple negative TN breast cancer is considered to be a challenging cancer to target due to its lack of HER2, Estrogen, and Progesterone receptors that could have been targets for therapy (Godet & Gikes, 2017). Furthermore, metastasized cancers are considered to be incurable according to the therapies available today (Godet & Gikes, 2017), creating a pressing need for an innovative solution and therapy. Splicing is one of the many pre-mRNA processing steps that help the conversion of pre-mRNA into mRNA (El Marabti & Younis, 2018). It occurs in the nucleus and involves removing the interfering sequences of a pre-mRNA, known as introns, and joining the expressed sequences, known as exons (National Cancer Institute, n.d.). This is a crucial step in preparing the mRNA for export out of the nucleus to be translated (El Marabti & Younis, 2018). Alternative splicing occurs when a variable combination of exons and introns are removed/joined, and this forms different isoforms of the mRNA transcript, in turn forming proteins with different function and structure (El Marabti & Younis, 2018). This process has been known to have significance in cancer, because the cancer cells might modify the ratio of the spliced isoforms in a way that would favor cancer progression (El Marabti & Younis, 2018). Splicing is carried out by snRNPs (small nuclear ribonucleo proteins) called U1, U2, U4, U5, and U6 which form the major spliceosome (El Marabti & Younis, 2018). However, a specific set of 770 introns are spliced by a different machinery called the minor spliceosome, and this consists of U11, U12, U4atac, U5, and U6atac snRNPs. These introns are referred to as minor introns due to their splicing by a machinery that is not as widely used as the major spliceosome (Olthof et al., 2019). Additionally, it is important to mention that minor introns are highly conserved and regulated in cancer, and can serve very important roles (Olthof et al., 2019). PARP1 is overexpressed in breast carcinoma that are BRCA1/2-mutated, triple negative as well as receptor-positive (Wang et al., 2017). PARP1 is poly ADP-ribose polymerase 1, and its main functions include using NAD+ as a substrate to catalyze the synthesis of Poly ADP ribose, as well as transferring this molecule onto other proteins (Wang et al., 2017). The domain responsible for the catalytic ability lies at the C-terminus of the protein (Wang et al., 2017). In addition, this function is an essential part of recognizing damaged DNA, and marking it for repair. As such, PARP1 is the very first response to single and double stranded DNA damage (Wang et al., 2017). Specifically, the single stranded DNA breaks that are recognized by PARP1 are either those occurring due to disintegration of oxidize deoxyribose (DNA sugar damage) or as natural intermediates of base excision and repair (Caldecott, 2008). Marking a damaged segment of DNA for repair would trigger a cascade of proteins that will carry out the end processing, gap filling and ligation of the previously damaged area (Caldecott, 2008). Due to its key function in DNA damage repair, PARP1 plays an essential role in cancer. Generally speaking, cancer cells produce more mutations than healthy cells, which is important for mutagenesis and maintaining and creating adaptive genes (Zhivotovsky & Kroemer, 2004). However, excessive unrepaired mutations lead to death and senescence. Cancer cells avoid this by making sure by balancing their mutation level: enough for mutagenesis to occur but not excessive as not to induce senescence. For this balance to occur, DNA damage repair has to take place in order to prevent cancer cells from creating a level of DNA damage that would lead to their apoptosis (Zhivotovsky & Kroemer, 2004). Therefore many cases of cancer, PARP1 protein is over expressed (Wang et al., 2017). Interestingly, excessive DNA lesions lead to apoptosis despite the presence of PARP1 (Wang et al., 2017). PARP1 manages to repair normal amounts of DNA damage, but with excessive DNA lesions and regular amount of PARP1 expression, PARP1 will not be able to bind every lesion, and signal for repair in a timely manner. Based on this, past research has focused on inducing excessive DNA damage and blocking PARP1 activity in order to trigger apoptosis (Vascotto et al., 2016). The most prevalent PARP1 inhibitors work by blocking the NAD+ binding site, otherwise 3 Reem Alsayed 3/26/21 03-545, S21 Professor Ihab Younis known as the active site, and this inhibits the Poly ADP ribose synthesis catalysis (Caldecott, 2008). However, a problem faced with some PARP1 inhibitors is that they display off-target binding, for example, they could bind to certain kinases (Atolín & Mestres, 2014). Another drawback of PARP1 inhibitors is that they only block the Poly- ADP riposylation catalytic activity, when in reality PARP1 is involved in multiple hallmarks of cancer that are not necessarily related to DNA damage repair or Poly-ADP ribosylation (Wang et al., 2017). In addition to its key role in DNA damage repair, PARP1 has been shown to have additional functions that can aid in tumorigenesis, including regulation of gene transcription, upregulating inflammatory signals, regulating cell cycle, and promoting angiogenesis and metastasis (Wang et al., 2017). Gene transcription regulation does not require the catalytic domain, and the rest of the functions mentioned have not yet been listed under a specific domain. An example for gene regulation is that PARP1 was shown to activate vascular endothelial growth factor receptor 1 (VEGFR1) gene, hypoxia-inducible factor 1α and 2A (HIP1α and HIF2A), melanocyte-lineage survival oncogene (MITF), and it suppresses tumor suppressor genes such as p53 and APC. For inflammation, PARP1 was shown to activate NF-κB, which is an inflammatory signal (Wang et al., 2017). Cell cycle modulation and promoting angiogenesis and metastasis is regulated by PARP1 via over activating ERK, which blocks apoptosis and stimulates VEGF and other pro-angiogenic factors (Wang et al., 2017). Among these functions, chromatin remodeling requires the PAR-binding domain, and can function without the catalytic domain (Pines et al. 2012). Moreover, some genes that are activated by PARP1 are activated by the center (automodification) domain (Simbulan-Rosenthal et al., 2003). Ultimately, this tells us that blocking the catalytic domain alone may not be a sufficient form of treatment if PARP1 continues to facilitate other cancer hallmarks. Hence, PARP1 could be inhibited through the blocking of its protein production, and this might be able to block all PARP1 functions. The splicing of PARP1 could be inhibited in several ways. Firstly, it is important to note that PARP1 pre-mRNA consists of 23 exons, and the last one being the one that codes for the catalytic domain of the protein (UniProt, n.d.). Moreover, intron 22 is a minor intron (MIDB, n.d,), and as mentioned previously, minor introns are highly regulated in cancer. Hence, if the splicing of exon 23 is inhibited, this might lead to the inhibition of its protein production. The first method is to inhibit PARP1 intron 22 splicing by adding an AMO (antisense morpholino oligonucleotide) at the junction of exon 22 and intron 23, and this will block the spliceosome from binding there and splicing the intron. Another method is to introduce the AMO at the site of an RNA binding protein that is in charge of aiding the splicing, so this will also be a way to inhibit the splicing of the intron. Inhibiting PARP1 in the past either through chemical means or by siRNA treatment has resulted in apoptosis, G2 cell cycle arrest, and chromatid breaks (Do & Chen, 2013). In this project, we hypothesize that by inhibiting PARP1 splicing we will inhibit PARP1 protein synthesis and all functions related to PARP1, which is expected to be more efficient and specific than the known chemical inhibitors of PARP1 catalytic domain.
Recommended publications
  • Large-Scale Analysis of Genome and Transcriptome Alterations in Multiple Tumors Unveils Novel Cancer-Relevant Splicing Networks
    Downloaded from genome.cshlp.org on September 28, 2021 - Published by Cold Spring Harbor Laboratory Press Research Large-scale analysis of genome and transcriptome alterations in multiple tumors unveils novel cancer-relevant splicing networks Endre Sebestyén,1,5 Babita Singh,1,5 Belén Miñana,1,2 Amadís Pagès,1 Francesca Mateo,3 Miguel Angel Pujana,3 Juan Valcárcel,1,2,4 and Eduardo Eyras1,4 1Universitat Pompeu Fabra, E08003 Barcelona, Spain; 2Centre for Genomic Regulation, E08003 Barcelona, Spain; 3Program Against Cancer Therapeutic Resistance (ProCURE), Catalan Institute of Oncology (ICO), Bellvitge Institute for Biomedical Research (IDIBELL), E08908 L’Hospitalet del Llobregat, Spain; 4Catalan Institution for Research and Advanced Studies, E08010 Barcelona, Spain Alternative splicing is regulated by multiple RNA-binding proteins and influences the expression of most eukaryotic genes. However, the role of this process in human disease, and particularly in cancer, is only starting to be unveiled. We system- atically analyzed mutation, copy number, and gene expression patterns of 1348 RNA-binding protein (RBP) genes in 11 solid tumor types, together with alternative splicing changes in these tumors and the enrichment of binding motifs in the alter- natively spliced sequences. Our comprehensive study reveals widespread alterations in the expression of RBP genes, as well as novel mutations and copy number variations in association with multiple alternative splicing changes in cancer drivers and oncogenic pathways. Remarkably, the altered splicing patterns in several tumor types recapitulate those of undifferen- tiated cells. These patterns are predicted to be mainly controlled by MBNL1 and involve multiple cancer drivers, including the mitotic gene NUMA1. We show that NUMA1 alternative splicing induces enhanced cell proliferation and centrosome am- plification in nontumorigenic mammary epithelial cells.
    [Show full text]
  • METTL3-Mediated M6a Modification Is Required for Cerebellar Development
    RESEARCH ARTICLE METTL3-mediated m6A modification is required for cerebellar development Chen-Xin Wang1,2☯, Guan-Shen Cui3,4☯, Xiuying Liu5☯, Kai Xu1,2☯, Meng Wang5☯, Xin- Xin Zhang1, Li-Yuan Jiang1, Ang Li2,3, Ying Yang3, Wei-Yi Lai2,6, Bao-Fa Sun2,3,7, Gui- Bin Jiang6, Hai-Lin Wang6, Wei-Min Tong8, Wei Li1,2,7, Xiu-Jie Wang2,5,7*, Yun- Gui Yang2,3,7*, Qi Zhou1,2,7* 1 State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China, 2 University of Chinese Academy of Sciences, Beijing, China, 3 Key Laboratory of Genomic and Precision Medicine, Collaborative Innovation Center of Genetics and Development, Beijing a1111111111 Institute of Genomics, Chinese Academy of Sciences, Beijing, China, 4 Sino-Danish College, University of a1111111111 Chinese Academy of Sciences, Beijing, China, 5 Key Laboratory of Genetic Network Biology, Institute of a1111111111 Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China, 6 State Key Laboratory a1111111111 of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese a1111111111 Academy of Sciences, Beijing, China, 7 Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China, 8 Department of Pathology, Center for Experimental Animal Research, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China ☯ These authors contributed equally to this work. OPEN ACCESS * [email protected] (XJW); [email protected] (YGY); [email protected] (QZ) Citation: Wang C-X, Cui G-S, Liu X, Xu K, Wang M, Zhang X-X, et al.
    [Show full text]
  • Overlap of Quantitative Trait Loci for Early Growth Rate, and for Body
    REPRODUCTIONRESEARCH Functional reconstruction of NANOS3 expression in the germ cell lineage by a novel transgenic reporter reveals distinct subcellular localizations of NANOS3 Masashi Yamaji1, Takashi Tanaka2, Mayo Shigeta1, Shinichiro Chuma2, Yumiko Saga3 and Mitinori Saitou1,4,5 1Laboratory for Mammalian Germ Cell Biology, RIKEN Center for Developmental Biology, 2-2-3 Minatojima- Minamimachi, Chuo-ku, Kobe 650-0047, Japan, 2Department of Development and Differentiation, Institute for Frontier Medical Sciences, Kyoto University, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan, 3Department of Genetics and Division of Mammalian Development, National Institute of Genetics, SOKENDAI, 1111 Yata, Mishima, Shizuoka 411-8540, Japan, 4Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University, Yoshida- Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan and 5JST, CREST, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan Correspondence should be addressed to M Saitou at Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University; Email: [email protected] Abstract Mutations of RNA-binding proteins such as NANOS3, TIAL1, and DND1 in mice have been known to result in the failure of survival and/or proliferation of primordial germ cells (PGCs) soon after their fate is specified (around embryonic day (E) 8.0), leading to the infertility of these animals. However, the mechanisms of actions of these RNA-binding proteins remain largely unresolved. As a foundation to explore the role of these RNA-binding proteins in germ cells, we established a novel transgenic reporter strain that expresses NANOS3 fused with EGFP under the control of Nanos3 regulatory elements. NANOS3–EGFP exhibited exclusive expression in PGCs as early as E7.25, and continued to be expressed in female germ cells until around E14.5 and in male germ cells throughout the fetal period with declining expression levels after E16.5.
    [Show full text]
  • Effects of Changes in TIA1 on Stress Granule Formation
    Effects of changes in TIA1 on stress granule formation Master’s thesis Lydia Sagath University of Helsinki Faculty of Biological and Environmental Sciences Genetics August 2015 Tiedekunta – Fakultet – Faculty Laitos – Institution– Department Bio- och miljövetenskapliga fakulteten Biovetenskapliga institutionen Tekijä – Författare – Author Lydia Johanna Sagath Työn nimi – Arbetets titel – Title Effects of changes in TIA1 on stress granule formation Oppiaine – Läroämne – Subject Humangenetik Työn laji – Arbetets art – Level Aika – Datum – Month and year Sivumäärä – Sidoantal – Number of pages Pro gradu Augusti 2015 63 Tiivistelmä – Referat – Abstract Welanders distala myopati (WDM) orsakas av mutationen p.E384K i genen TIA1. Mutationen antas vara sjukdomsalstrande på grund av en ökad produktion av protein, som relaterats till formationen av stressgranuler (Hackman et al. 2013). Även omgivningsfaktorer har föreslagits verka i sjukdomens utveckling: en ökad mängd stressgranuler har observerats i celler som behandlats med köldshock jämfört med celler som förvarats i 37°C (Hofmann et al. 2012). I patienter med WDM-liknande symptom som undersökts för förändringar i TIA1 har en p.N357S-förändring noterats förrikad. Denna förändring har tidigare anmälts som en polymorfism. Förändringen i fråga ligger i samma prionliknande domän i exon 5 som WDM-orsakande förändringen p.E384K. Därmed kunde p.N357S-förändringen öka predispositionen till aggregering. Pro gradu –arbetet är uppdelat i två delar: • p.N357S-polymorfismens effekt på stressgranulsbildningen i arsenitbehandle celler • Köldshockens effekt på stressgranulsbildningen Resultaten påvisar, att förändringen p.N357S i TIA1 orsakar en förändring i det translaterade proteinets beteende. I likhet med p.E384K-förändringen orsakar även p.N357S en ökad mängd stressgranuler i arsenitbehandlade celler. Däremot tyder resultaten på att stressgranulerna återbildas snabbare i fluorescence recovery after photobleaching-studier (FRAP) I p.N357S-transfekterade celler än i celler som transfekterats med TIA1 p.E384K och vildtyp.
    [Show full text]
  • A Comprehensive Analysis of 3' End Sequencing Data Sets Reveals Novel
    bioRxiv preprint doi: https://doi.org/10.1101/033001; this version posted November 26, 2015. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. A comprehensive analysis of 3’ end sequencing data sets reveals novel polyadenylation signals and the repressive role of heterogenous ribonucleoprotein C on cleavage and polyadenylation 1 1 1 1 1 Andreas J. Gruber , Ralf Schmidt​ , Andreas R. Gruber​ , Georges Martin​ , Souvik Ghosh​ , ​ ​ 1,2 ​ 1 1,§ ​ ​ ​ Manuel Belmadani , Walter Keller​ , Mihaela Zavolan​ ​ ​ ​ 1 Computational and Systems Biology, Biozentrum, University of Basel, Klingelbergstrasse ​ 50­70, 4056 Basel, Switzerland 2 Current address: University of British Columbia, 177 Michael Smith Laboratories, 2185 East ​ Mall Vancouver BC V6T 1Z4 § To whom correspondence should be addressed ([email protected]) ​ Abstract Alternative polyadenylation (APA) is a general mechanism of transcript diversification in mammals, which has been recently linked to proliferative states and cancer. Different 3’ untranslated region (3’ UTR) isoforms interact with different RNA binding proteins (RBPs), which modify the stability, translation, and subcellular localization of the corresponding transcripts. Although the heterogeneity of pre­mRNA 3’ end processing has been established with high­throughput approaches, the mechanisms that underlie systematic changes in 3’ UTR lengths remain to be characterized. Through a uniform analysis of a large number of 3’ end sequencing data sets we have uncovered 18 signals, 6 of which novel, whose positioning with respect to pre­mRNA cleavage sites indicates a role in pre­mRNA 3’ end processing in both mouse and human.
    [Show full text]
  • Genetic Variant in 3' Untranslated Region of the Mouse Pycard Gene
    bioRxiv preprint doi: https://doi.org/10.1101/2021.03.26.437184; this version posted March 26, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 1 2 3 Title: 4 Genetic Variant in 3’ Untranslated Region of the Mouse Pycard Gene Regulates Inflammasome 5 Activity 6 Running Title: 7 3’UTR SNP in Pycard regulates inflammasome activity 8 Authors: 9 Brian Ritchey1*, Qimin Hai1*, Juying Han1, John Barnard2, Jonathan D. Smith1,3 10 1Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, 11 Cleveland, OH 44195 12 2Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 13 44195 14 3Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western 15 Reserve University, Cleveland, OH 44195 16 *, These authors contributed equally to this study. 17 Address correspondence to Jonathan D. Smith: email [email protected]; ORCID ID 0000-0002-0415-386X; 18 mailing address: Cleveland Clinic, Box NC-10, 9500 Euclid Avenue, Cleveland, OH 44195, USA. 19 1 bioRxiv preprint doi: https://doi.org/10.1101/2021.03.26.437184; this version posted March 26, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 20 Abstract 21 Quantitative trait locus mapping for interleukin-1 release after inflammasome priming and activation 22 was performed on bone marrow-derived macrophages (BMDM) from an AKRxDBA/2 strain intercross.
    [Show full text]
  • Dysregulated Expression of Lipid Storage and Membrane Dynamics Factors in Tia1 Knockout Mouse Nervous Tissue
    Neurogenetics DOI 10.1007/s10048-014-0397-x ORIGINAL ARTICLE Dysregulated expression of lipid storage and membrane dynamics factors in Tia1 knockout mouse nervous tissue Melanie Vanessa Heck & Mekhman Azizov & Ta n j a S t e h n i n g & Michael Walter & Nancy Kedersha & Georg Auburger Received: 28 January 2014 /Accepted: 3 March 2014 # The Author(s) 2014. This article is published with open access at Springerlink.com Abstract During cell stress, the transcription and translation decreased levels for Bid and Inca1 transcripts. Novel and sur- of immediate early genes are prioritized, while most other mes- prisingly strong expression alterations were detected for fat stor- senger RNAs (mRNAs) are stored away in stress granules or age and membrane trafficking factors, with prominent +3-fold degraded in processing bodies (P-bodies). TIA-1 is an mRNA- upregulations of Plin4, Wdfy1, Tbc1d24,andPnpla2 vs. a −2.4- binding protein that needs to translocate from the nucleus to seed fold downregulation of Cntn4 transcript, encoding an axonal the formation of stress granules in the cytoplasm. Because other membrane adhesion factor with established haploinsufficiency. stress granule components such as TDP-43, FUS, ATXN2, In comparison, subtle effects on the RNA processing machinery SMN, MAPT, HNRNPA2B1, and HNRNPA1 are crucial for included up to 1.2-fold upregulations of Dcp1b and Tial1.The the motor neuron diseases amyotrophic lateral sclerosis (ALS)/ effect on lipid dynamics factors is noteworthy, since also the gene spinal muscular atrophy (SMA) and for the frontotemporal de- deletion of Ta rd b p (encoding TDP-43) and Atxn2 ledtofat mentia (FTD), here we studied mouse nervous tissue to identify metabolism phenotypes in mouse.
    [Show full text]
  • 'Next- Generation' Sequencing Data Analysis
    Novel Algorithm Development for ‘Next- Generation’ Sequencing Data Analysis Agne Antanaviciute Submitted in accordance with the requirements for the degree of Doctor of Philosophy University of Leeds School of Medicine Leeds Institute of Biomedical and Clinical Sciences 12/2017 ii The candidate confirms that the work submitted is her own, except where work which has formed part of jointly-authored publications has been included. The contribution of the candidate and the other authors to this work has been explicitly given within the thesis where reference has been made to the work of others. This copy has been supplied on the understanding that it is copyright material and that no quotation from the thesis may be published without proper acknowledgement ©2017 The University of Leeds and Agne Antanaviciute The right of Agne Antanaviciute to be identified as Author of this work has been asserted by her in accordance with the Copyright, Designs and Patents Act 1988. Acknowledgements I would like to thank all the people who have contributed to this work. First and foremost, my supervisors Dr Ian Carr, Professor David Bonthron and Dr Christopher Watson, who have provided guidance, support and motivation. I could not have asked for a better supervisory team. I would also like to thank my collaborators Dr Belinda Baquero and Professor Adrian Whitehouse for opening new, interesting research avenues. A special thanks to Dr Belinda Baquero for all the hard wet lab work without which at least half of this thesis would not exist. Thanks to everyone at the NGS Facility – Carolina Lascelles, Catherine Daley, Sally Harrison, Ummey Hany and Laura Crinnion – for the generation of NGS data used in this work and creating a supportive and stimulating work environment.
    [Show full text]
  • Snapshot: the Splicing Regulatory Machinery Mathieu Gabut, Sidharth Chaudhry, and Benjamin J
    192 Cell SnapShot: The Splicing Regulatory Machinery Mathieu Gabut, Sidharth Chaudhry, and Benjamin J. Blencowe 133 Banting and Best Department of Medical Research, University of Toronto, Toronto, ON M5S 3E1, Canada Expression in mouse , April4, 2008©2008Elsevier Inc. Low High Name Other Names Protein Domains Binding Sites Target Genes/Mouse Phenotypes/Disease Associations Amy Ceb Hip Hyp OB Eye SC BM Bo Ht SM Epd Kd Liv Lu Pan Pla Pro Sto Spl Thy Thd Te Ut Ov E6.5 E8.5 E10.5 SRp20 Sfrs3, X16 RRM, RS GCUCCUCUUC SRp20, CT/CGRP; −/− early embryonic lethal E3.5 9G8 Sfrs7 RRM, RS, C2HC Znf (GAC)n Tau, GnRH, 9G8 ASF/SF2 Sfrs1 RRM, RS RGAAGAAC HipK3, CaMKIIδ, HIV RNAs; −/− embryonic lethal, cond. KO cardiomyopathy SC35 Sfrs2 RRM, RS UGCUGUU AChE; −/− embryonic lethal, cond. KO deficient T-cell maturation, cardiomyopathy; LS SRp30c Sfrs9 RRM, RS CUGGAUU Glucocorticoid receptor SRp38 Fusip1, Nssr RRM, RS ACAAAGACAA CREB, type II and type XI collagens SRp40 Sfrs5, HRS RRM, RS AGGAGAAGGGA HipK3, PKCβ-II, Fibronectin SRp55 Sfrs6 RRM, RS GGCAGCACCUG cTnT, CD44 DOI 10.1016/j.cell.2008.03.010 SRp75 Sfrs4 RRM, RS GAAGGA FN1, E1A, CD45; overexpression enhances chondrogenic differentiation Tra2α Tra2a RRM, RS GAAARGARR GnRH; overexpression promotes RA-induced neural differentiation SR and SR-Related Proteins Tra2β Sfrs10 RRM, RS (GAA)n HipK3, SMN, Tau SRm160 Srrm1 RS, PWI AUGAAGAGGA CD44 SWAP Sfrs8 RS, SWAP ND SWAP, CD45, Tau; possible asthma susceptibility gene hnRNP A1 Hnrnpa1 RRM, RGG UAGGGA/U HipK3, SMN2, c-H-ras; rheumatoid arthritis, systemic lupus
    [Show full text]
  • TIAL1 (NM 003252) Human Recombinant Protein Product Data
    OriGene Technologies, Inc. 9620 Medical Center Drive, Ste 200 Rockville, MD 20850, US Phone: +1-888-267-4436 [email protected] EU: [email protected] CN: [email protected] Product datasheet for TP760477 TIAL1 (NM_003252) Human Recombinant Protein Product data: Product Type: Recombinant Proteins Description: Purified recombinant protein of Human TIA1 cytotoxic granule-associated RNA binding protein-like 1 (TIAL1), transcript variant 1, full length, with N-terminal HIS tag, expressed in E.Coli, 50ug Species: Human Expression Host: E. coli Tag: N-His Predicted MW: 41.4 kDa Concentration: >50 ug/mL as determined by microplate BCA method Purity: > 80% as determined by SDS-PAGE and Coomassie blue staining Buffer: 25mM Tris, pH8.0, 150 mM NaCl, 10% glycerol, 1 % Sarkosyl. Storage: Store at -80°C. Stability: Stable for 12 months from the date of receipt of the product under proper storage and handling conditions. Avoid repeated freeze-thaw cycles. RefSeq: NP_003243 Locus ID: 7073 UniProt ID: Q01085, Q49AS9 RefSeq Size: 1436 Cytogenetics: 10q26.11 RefSeq ORF: 1125 Synonyms: TCBP; TIAR Summary: The protein encoded by this gene is a member of a family of RNA-binding proteins, has three RNA recognition motifs (RRMs), and binds adenine and uridine-rich elements in mRNA and pre-mRNAs of a wide range of genes. It regulates various activities including translational control, splicing and apoptosis. Alternate transcriptional splice variants, encoding different isoforms, have been characterized. The different isoforms have been show to function differently with respect to post-transcriptional silencing. [provided by RefSeq, Jul 2008] This product is to be used for laboratory only.
    [Show full text]
  • Promoter-Bound METTL3 Maintains Myeloid Leukaemia Via M6a-Dependent Translation Control
    1 2 Promoter-bound METTL3 maintains myeloid leukaemia 3 via m6A-dependent translation control 4 5 6 Isaia Barbieri1*, Konstantinos Tzelepis2*, Luca Pandolfini1*, Junwei Shi3♯, Gonzalo Millán- 7 Zambrano1, Samuel C. Robson1¶, Demetrios Aspris2, Valentina Migliori1, Andrew J. 8 Bannister1, Namshik Han1, Etienne De Braekeleer2, Hannes Ponstingl2, Alan Hendrick4, 9 Christopher R. Vakoc3, George S. Vassiliou2§ & Tony Kouzarides1§. 10 11 1The Gurdon Institute and Department of Pathology, University of Cambridge, Tennis Court Road, 12 Cambridge, CB2 1QN, UK. 13 2 Haematological Cancer Genetics, Wellcome Trust Sanger Institute, Cambridge, CB10 1SA, UK. 14 3 Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA. 15 4 Storm Therapeutics Ltd, Moneta building (B280), Babraham Research Campus, Cambridge CB22 3AT, UK. 16 17 ♯ Present address: Department of Cancer Biology, Abramson Family Cancer Research Institute, Perelman 18 School of Medicine, University of Pennsylvania, 421 Curie Boulevard, Philadelphia, Pennsylvania 19104, 19 USA. 20 ¶Present address: School of Pharmacy & Biomedical Science, St Michael's Building, University of 21 Portsmouth, White Swan Road, Portsmouth, UK" 22 *These authors contributed equally to the work. 23 §Corresponding authors ([email protected]; [email protected]) 24 25 26 27 Abstract 28 29 N6-methyladenosine (m6A) is an abundant internal RNA modification in both coding1 and 30 non-coding RNAs2,3, catalysed by the METTL3/METTL14 methyltransferase complex4. 31 Here we define a novel pathway specific for METTL3, implicated in the maintenance of the 32 leukaemic state. We identify METTL3 as an essential gene for growth of acute myeloid 33 leukaemia (AML) cells in two distinct genetic screens.
    [Show full text]
  • The Devil Is in the Domain: Understanding Protein Recognition of Multiple RNA Targets
    The devil is in the domain: understanding protein recognition of multiple RNA targets Glen R. Gronland1 and Andres Ramos1 1. Institute of Structural and Molecular Biology, University College London, London WC1E 6XA, UK Correspondence to Andres Ramos: [email protected] Abstract: RNA regulation provides a finely-tuned and highly-coordinated control of gene expression. Regulation is mediated by hundreds to thousands of multi-functional RNA-binding proteins which often interact with large sets of RNAs. In this brief review, we focus on recent work that highlights how the proteins use multiple RNA-binding domains to interact selectively with the different RNA targets. De-convoluting the molecular complexity of the RNA regulatory network is essential to understanding cell differentiation and function, and requires accurate models for protein-RNA recognition and protein target selectivity. We discuss that the structural and molecular understanding of the key determinant of recognition, together with the availability of methods to examine protein-RNA interactions at the transcriptome level, may provide an avenue to establish these models. Abbreviations list: CSD, Cold shock domain dsRBD, Double-stranded RNA-binding domain KH, hnRNP K-homology mRNA, Messenger RNA ncRNA, Non-coding RNA RBD, RNA-binding domain RBP, RNA-binding protein RRM, RNA-recognition motif ZnF, Zinc finger Introduction The combined regulation of the various steps in the metabolism and transport of messenger RNAs (mRNAs) and non-coding RNAs (ncRNAs) multiplies genomic potential, and allows cellular differentiation and the development of complex organisms. In the cell, functional RNAs are associated with a fluctuating assortment of multi-domain RNA-binding proteins (RBPs), forming integrated complexes, whose composition directs the fate of the transcript1,2.
    [Show full text]