Dynamics of Alternative Splicing During Somatic Cell Reprogramming Reveals Functions for RNA-Binding Proteins CPSF3, Hnrnp UL1 and TIA1

Total Page:16

File Type:pdf, Size:1020Kb

Dynamics of Alternative Splicing During Somatic Cell Reprogramming Reveals Functions for RNA-Binding Proteins CPSF3, Hnrnp UL1 and TIA1 bioRxiv preprint doi: https://doi.org/10.1101/2020.09.17.299867; this version posted September 18, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Dynamics of alternative splicing during somatic cell reprogramming reveals functions for RNA-binding proteins CPSF3, hnRNP UL1 and TIA1 Claudia Vivori1,2, Panagiotis Papasaikas1,#, Ralph Stadhouders1,##, Bruno Di Stefano1,%, Clara Berenguer Balaguer1,%%, Serena Generoso1,2, Anna Mallol1, José Luis Sardina1,%%, Bernhard Payer1,2, Thomas Graf1,2 and Juan Valcárcel1,2,3* 1 Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Carrer del Dr. Aiguader 88, 08003 Barcelona, Spain 2 Universitat Pompeu Fabra (UPF), Carrer del Dr. Aiguader 88, 08003 Barcelona, Spain 3 Institució Catalana de Recerca i Estudis Avançats (ICREA), Passeig Lluís Companys 23, 08010 Barcelona, Spain * Correspondence to [email protected] # Current address: Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66 / Swiss Institute of Bioinformatics, 4058 Basel, Switzerland ## Current address: Departments of Pulmonary Medicine and Cell Biology, Erasmus MC, Rotterdam, The Netherlands % Current address: Department of Molecular Biology, Massachusetts General Hospital / Center for Regenera- tive Medicine / Center for Cancer Research, Massachusetts General Hospital / Harvard Medical School, Boston, MA, USA / Department of Stem Cell and Regenerative Biology / Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA %% Current address: Josep Carreras Leukaemia Research Institute, Carretera de Can Ruti, Camí de les Escoles, s/n, 08916 Badalona, Spain 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.09.17.299867; this version posted September 18, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Abstract in coding capacity, stability or translational efficiency, and that can be translated into pro- In contrast to the extensively studied teins with distinct structural and functional rewiring of epigenetic and transcriptional pro- properties (Pan et al. 2008; E. T. Wang et al. grams required for cell reprogramming, the 2008). AS contributes to the regulation of dynamics of post-transcriptional changes and many biological processes in multicellular eu- their associated regulatory mechanisms re- karyotes, including embryonic development - main poorly understood. Here we have stud and tissue specification (reviewed in Baralle ied the dynamics of alternative splicing (AS) and Giudice, 2017). During the last decade, changes occurring during efficient repro- progress has been made to understand the gramming of mouse B cells into induced role of post-transcriptional regulation (includ- pluripotent stem (iPS) cells. These changes, ing AS) in the maintenance of cellular pluripo- generally uncoupled from transcriptional reg- tency and cell fate decisions, discovering ulation, significantly overlapped with splicing genes differentially spliced between stem cells programs reported during reprogramming of and differentiated cells and splicing regulators mouse embryonic fibroblasts (MEFs). Correla- that control these choices (G. W. Yeo et al. tion between gene expression of potential 2009; Salomonis et al. 2010; Gabut et al. 2011; regulators and specific clusters of AS changes Han et al. 2013; Venables et al. 2013; Lu et al. enabled the identification and subsequent 2014; Yamazaki et al. 2018; Solana et al. 2016a). validation of CPSF3 and hnRNP UL1 as facilita- tors, and TIA1 as repressor of MEFs repro- During reprogramming into induced gramming. These RNA-binding proteins con- pluripotent stem (iPS) cells, somatic cells revert trol partially overlapping programs of splicing to a pluripotent state after overexpression of regulation affecting genes involved in devel- the transcription factors OCT4, SOX2, KLF4 and opmental and morphogenetic processes. Our MYC (OSKM) (Takahashi and Yamanaka 2006). results reveal common programs of splicing Substantial progress has been made to under- regulation during reprogramming of different stand the process at the transcriptional and cell types and identify three novel regulators epigenetic level, such as by identifying nu- of this process. merous roadblocks and some facilitators, but comparatively little is known about how post- transcriptional regulation impacts cell fate de- Keywords cisions. Recent work has revealed the func- tional relevance and conservation of splicing Alternative splicing, Somatic cell repro- regulation during reprogramming (Han et al. gramming, CPSF3, hnRNP UL1, TIA1, Pluripo- 2013; Ohta et al. 2013; Toh et al. 2016; Kanitz et tency al. 2019; reviewed in Zavolan and Kanitz, 2018). Previously, a conserved functional splic- Introduction ing program associated with pluripotency and repressed in differentiated cells by the RNA- Alternative splicing (AS) is a widespread binding proteins MBNL1 and MBNL2 was pre- mechanism of gene regulation that generates viously reported (Han et al. 2013). This splicing multiple mRNA isoforms from a single gene, program includes a mutually exclusive exon dramatically diversifying the transcriptome event in the transcription factor FOXP1: a (and proteome) of eukaryotic cells. 95% of switch in inclusion of Foxp1 exons 16/16b multi-exonic mammalian genes undergo AS, modulates the functions of the transcription producing mRNA isoforms which often differ factor between pluripotent and differentiated 2 bioRxiv preprint doi: https://doi.org/10.1101/2020.09.17.299867; this version posted September 18, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. cells (Gabut et al. 2011). Illustrating the com- Results plexity of such splicing program, dynamic changes of AS during cell reprogramming of mouse embryonic fibroblasts (MEFs) revealed Dynamics of alternative splicing sequential waves of exon inclusion and skip- in C/EBPα-enhanced B cell ping in reprogramming intermediates and the reprogramming occur independently from gene expression changes functional role of splicing regulators in modu- lating reprogramming, in particular during the To study the dynamics of changes in alter- initial mesenchymal-to-epithelial transition native splicing (AS) during cell reprogram- (MET) phase (Cieply et al. 2016). Given the lim- ming, primary mouse pre-B cells (hereafter ited efficiency of cell reprogramming in this referred to as “B cells”) were reprogrammed as system, subpopulations of reprogramming previously described (Di Stefano et al. 2016; intermediates had to be isolated through the Stadhouders et al. 2018; Di Stefano et al. 2014). expression of a pluripotency marker, biasing Briefly, B cells were isolated from bone marrow studies to the most prevalent and dominant of reprogrammable mice, containing a doxy- factors. cycline-inducible OSKM cassette and an OCT4- GFP reporter. These cells were infected with a Here we took advantage of the rapid, high- retroviral construct containing an inducible ly efficient and largely synchronous repro- version of C/EBPα fused to the estrogen recep- gramming of pre-B cells (hereafter referred to tor ligand-binding domain (ER). Infected cells as “B cell reprogramming”), obtained by a were selected and re-plated on a feeder layer pulse of the transcription factor C/EBPα fol- of inactivated mouse embryonic fibroblasts lowed by induced OSKM expression (Di Ste- (MEFs). This was followed by a 18h-long pulse fano et al. 2014, 2016) to study the dynamics of β-estradiol, triggering the translocation of of AS during this transition. The essentially C/EBPα-ER to the nucleus and poising the B homogeneous reprogramming of the cells in cells for efficient and homogeneous repro- this system allowed detailed temporal tran- gramming (Di Stefano et al. 2016, 2014). After scriptome analyses of the bulk population, washout of β-estradiol, reprogramming was without the need of selecting for reprogram- induced by growing the cells for 8 days in re- ming intermediates. We established clusters of programming medium containing doxycycline temporal regulation and compared these (see Methods and Stadhouders et al. 2018). changes with the ones differentially spliced in RNA was isolated every other day from dupli- MEF reprogramming (Cieply et al. 2016). Ana- cates and subjected to paired-end sequencing lyzing the dynamic expression of RNA-binding (RNA-seq), resulting in high coverage (more proteins (RBPs) during reprogramming, we than 100 million reads per sample) (Figure inferred potential AS regulators, of which three 1A). As positive controls, mouse embryonic were studied in detail. Characterization of stem (ES) cells and induced pluripotent stem these factors, namely CPSF3, hnRNP UL1 and (iPS) cells were also sequenced. TIA1, by perturbation experiments demon- strated their role as AS regulators in the induc- AS analysis was performed using vast-tools tion of pluripotency. (Tapial et al. 2017), an event-based software that quantifies Percent Spliced-In (PSI) values of annotated AS events and constitutive exons in all samples. These analyses revealed more than 14000 AS changes during the entire re- programming time course (for any possible 3 bioRxiv preprint doi: https://doi.org/10.1101/2020.09.17.299867; this version posted September 18, 2020. The copyright holder for this
Recommended publications
  • Urabe VK, Et Al. Influences on U2 Snrna Structure U2
    bioRxiv preprint doi: https://doi.org/10.1101/2021.07.05.451154; this version posted July 6, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Urabe VK, et al. Influences on U2 snRNA structure U2 snRNA structure is influenced by SF3A and SF3B proteins but not by SF3B inhibitors Veronica K. Urabe1, Meredith Stevers1, Arun K. Ghosh3 and Melissa S. Jurica1,2 * 1Department of Molecular Cell and Developmental Biology and 2Center for Molecular Biology of RNA, University of California, Santa Cruz, California, United States of America 3Department of Chemistry and Department of Medicinal Chemistry, Purdue University, West Lafayette, Indiana United States of America *Corresponding author E-mail: [email protected] (MSJ) bioRxiv preprint doi: https://doi.org/10.1101/2021.07.05.451154; this version posted July 6, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Urabe VK, et al. Influences on U2 snRNA structure Abstract U2 snRNP is an essential component of the spliceosome. It is responsible for branch point recognition in the spliceosome A-complex via base-pairing of U2 snRNA with an intron to form the branch helix. Small molecule inhibitors target the SF3B component of the U2 snRNP and interfere with A-complex formation during spliceosome assembly.
    [Show full text]
  • Whole-Genome Microarray Detects Deletions and Loss of Heterozygosity of Chromosome 3 Occurring Exclusively in Metastasizing Uveal Melanoma
    Anatomy and Pathology Whole-Genome Microarray Detects Deletions and Loss of Heterozygosity of Chromosome 3 Occurring Exclusively in Metastasizing Uveal Melanoma Sarah L. Lake,1 Sarah E. Coupland,1 Azzam F. G. Taktak,2 and Bertil E. Damato3 PURPOSE. To detect deletions and loss of heterozygosity of disease is fatal in 92% of patients within 2 years of diagnosis. chromosome 3 in a rare subset of fatal, disomy 3 uveal mela- Clinical and histopathologic risk factors for UM metastasis noma (UM), undetectable by fluorescence in situ hybridization include large basal tumor diameter (LBD), ciliary body involve- (FISH). ment, epithelioid cytomorphology, extracellular matrix peri- ϩ ETHODS odic acid-Schiff-positive (PAS ) loops, and high mitotic M . Multiplex ligation-dependent probe amplification 3,4 5 (MLPA) with the P027 UM assay was performed on formalin- count. Prescher et al. showed that a nonrandom genetic fixed, paraffin-embedded (FFPE) whole tumor sections from 19 change, monosomy 3, correlates strongly with metastatic death, and the correlation has since been confirmed by several disomy 3 metastasizing UMs. Whole-genome microarray analy- 3,6–10 ses using a single-nucleotide polymorphism microarray (aSNP) groups. Consequently, fluorescence in situ hybridization were performed on frozen tissue samples from four fatal dis- (FISH) detection of chromosome 3 using a centromeric probe omy 3 metastasizing UMs and three disomy 3 tumors with Ͼ5 became routine practice for UM prognostication; however, 5% years’ metastasis-free survival. to 20% of disomy 3 UM patients unexpectedly develop metas- tases.11 Attempts have therefore been made to identify the RESULTS. Two metastasizing UMs that had been classified as minimal region(s) of deletion on chromosome 3.12–15 Despite disomy 3 by FISH analysis of a small tumor sample were found these studies, little progress has been made in defining the key on MLPA analysis to show monosomy 3.
    [Show full text]
  • Analysis of Gene Expression Data for Gene Ontology
    ANALYSIS OF GENE EXPRESSION DATA FOR GENE ONTOLOGY BASED PROTEIN FUNCTION PREDICTION A Thesis Presented to The Graduate Faculty of The University of Akron In Partial Fulfillment of the Requirements for the Degree Master of Science Robert Daniel Macholan May 2011 ANALYSIS OF GENE EXPRESSION DATA FOR GENE ONTOLOGY BASED PROTEIN FUNCTION PREDICTION Robert Daniel Macholan Thesis Approved: Accepted: _______________________________ _______________________________ Advisor Department Chair Dr. Zhong-Hui Duan Dr. Chien-Chung Chan _______________________________ _______________________________ Committee Member Dean of the College Dr. Chien-Chung Chan Dr. Chand K. Midha _______________________________ _______________________________ Committee Member Dean of the Graduate School Dr. Yingcai Xiao Dr. George R. Newkome _______________________________ Date ii ABSTRACT A tremendous increase in genomic data has encouraged biologists to turn to bioinformatics in order to assist in its interpretation and processing. One of the present challenges that need to be overcome in order to understand this data more completely is the development of a reliable method to accurately predict the function of a protein from its genomic information. This study focuses on developing an effective algorithm for protein function prediction. The algorithm is based on proteins that have similar expression patterns. The similarity of the expression data is determined using a novel measure, the slope matrix. The slope matrix introduces a normalized method for the comparison of expression levels throughout a proteome. The algorithm is tested using real microarray gene expression data. Their functions are characterized using gene ontology annotations. The results of the case study indicate the protein function prediction algorithm developed is comparable to the prediction algorithms that are based on the annotations of homologous proteins.
    [Show full text]
  • SF3B2 Monoclonal Antibody (M01J), Clone 5D2
    SF3B2 monoclonal antibody (M01J), clone 5D2 Catalog # : H00010992-M01J 規格 : [ 100 ug ] List All Specification Application Image Product Mouse monoclonal antibody raised against a partial recombinant Western Blot (Cell lysate) Description: SF3B2. Immunogen: SF3B2 (NP_006833, 592 a.a. ~ 645 a.a) partial recombinant protein with GST tag. MW of the GST tag alone is 26 KDa. Sequence: YEGKEFETRLKEKKPGDLSDELRISLGMPVGPNAHKVPPPWLIAMQRYG PPPSY enlarge Western Blot (Cell lysate) Host: Mouse Reactivity: Human, Mouse, Rat Preparation Cell Culture Production Method: (CX Grade Antibody List) enlarge Isotype: IgG2a Kappa Western Blot (Recombinant protein) Quality Control Antibody Reactive Against Recombinant Protein. Immunofluorescence Testing: enlarge Immunohistochemistry (Formalin/PFA-fixed paraffin- embedded sections) Western Blot detection against Immunogen (31.68 KDa) . Storage Buffer: In 1x PBS, pH 7.4 Storage Store at -20°C or lower. Aliquot to avoid repeated freezing and thawing. enlarge Instruction: Sandwich ELISA (Recombinant protein) MSDS: Download Interspecies Mouse (98); Rat (98) Antigen Sequence: Datasheet: Download enlarge ELISA Applications Western Blot (Cell lysate) Page 1 of 3 2021/6/15 SF3B2 monoclonal antibody (M01J), clone 5D2. Western Blot analysis of SF3B2 expression in Hela S3 NE. Protocol Download Western Blot (Cell lysate) SF3B2 monoclonal antibody (M01J), clone 5D2. Western Blot analysis of SF3B2 expression in Jurkat. Protocol Download Western Blot (Recombinant protein) Protocol Download Immunofluorescence enlarge this image Immunofluorescence of monoclonal antibody to SF3B2 on HeLa cell . [antibody concentration 10 ug/ml] Immunohistochemistry (Formalin/PFA-fixed paraffin-embedded sections) enlarge this image Page 2 of 3 2021/6/15 Immunoperoxidase of monoclonal antibody to SF3B2 on formalin-fixed paraffin-embedded human kidney. [antibody concentration 6 ug/ml] Protocol Download Sandwich ELISA (Recombinant protein) Detection limit for recombinant GST tagged SF3B2 is 0.1 ng/ml as a capture antibody.
    [Show full text]
  • Molecular and Physiological Basis for Hair Loss in Near Naked Hairless and Oak Ridge Rhino-Like Mouse Models: Tracking the Role of the Hairless Gene
    University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Doctoral Dissertations Graduate School 5-2006 Molecular and Physiological Basis for Hair Loss in Near Naked Hairless and Oak Ridge Rhino-like Mouse Models: Tracking the Role of the Hairless Gene Yutao Liu University of Tennessee - Knoxville Follow this and additional works at: https://trace.tennessee.edu/utk_graddiss Part of the Life Sciences Commons Recommended Citation Liu, Yutao, "Molecular and Physiological Basis for Hair Loss in Near Naked Hairless and Oak Ridge Rhino- like Mouse Models: Tracking the Role of the Hairless Gene. " PhD diss., University of Tennessee, 2006. https://trace.tennessee.edu/utk_graddiss/1824 This Dissertation is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. To the Graduate Council: I am submitting herewith a dissertation written by Yutao Liu entitled "Molecular and Physiological Basis for Hair Loss in Near Naked Hairless and Oak Ridge Rhino-like Mouse Models: Tracking the Role of the Hairless Gene." I have examined the final electronic copy of this dissertation for form and content and recommend that it be accepted in partial fulfillment of the requirements for the degree of Doctor of Philosophy, with a major in Life Sciences. Brynn H. Voy, Major Professor We have read this dissertation and recommend its acceptance: Naima Moustaid-Moussa, Yisong Wang, Rogert Hettich Accepted for the Council: Carolyn R.
    [Show full text]
  • Seq2pathway Vignette
    seq2pathway Vignette Bin Wang, Xinan Holly Yang, Arjun Kinstlick May 19, 2021 Contents 1 Abstract 1 2 Package Installation 2 3 runseq2pathway 2 4 Two main functions 3 4.1 seq2gene . .3 4.1.1 seq2gene flowchart . .3 4.1.2 runseq2gene inputs/parameters . .5 4.1.3 runseq2gene outputs . .8 4.2 gene2pathway . 10 4.2.1 gene2pathway flowchart . 11 4.2.2 gene2pathway test inputs/parameters . 11 4.2.3 gene2pathway test outputs . 12 5 Examples 13 5.1 ChIP-seq data analysis . 13 5.1.1 Map ChIP-seq enriched peaks to genes using runseq2gene .................... 13 5.1.2 Discover enriched GO terms using gene2pathway_test with gene scores . 15 5.1.3 Discover enriched GO terms using Fisher's Exact test without gene scores . 17 5.1.4 Add description for genes . 20 5.2 RNA-seq data analysis . 20 6 R environment session 23 1 Abstract Seq2pathway is a novel computational tool to analyze functional gene-sets (including signaling pathways) using variable next-generation sequencing data[1]. Integral to this tool are the \seq2gene" and \gene2pathway" components in series that infer a quantitative pathway-level profile for each sample. The seq2gene function assigns phenotype-associated significance of genomic regions to gene-level scores, where the significance could be p-values of SNPs or point mutations, protein-binding affinity, or transcriptional expression level. The seq2gene function has the feasibility to assign non-exon regions to a range of neighboring genes besides the nearest one, thus facilitating the study of functional non-coding elements[2]. Then the gene2pathway summarizes gene-level measurements to pathway-level scores, comparing the quantity of significance for gene members within a pathway with those outside a pathway.
    [Show full text]
  • Molecular Basis for the Distinct Cellular Functions of the Lsm1-7 and Lsm2-8 Complexes
    bioRxiv preprint doi: https://doi.org/10.1101/2020.04.22.055376; this version posted April 23, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Molecular basis for the distinct cellular functions of the Lsm1-7 and Lsm2-8 complexes Eric J. Montemayor1,2, Johanna M. Virta1, Samuel M. Hayes1, Yuichiro Nomura1, David A. Brow2, Samuel E. Butcher1 1Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA. 2Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA. Correspondence should be addressed to E.J.M. ([email protected]) and S.E.B. ([email protected]). Abstract Eukaryotes possess eight highly conserved Lsm (like Sm) proteins that assemble into circular, heteroheptameric complexes, bind RNA, and direct a diverse range of biological processes. Among the many essential functions of Lsm proteins, the cytoplasmic Lsm1-7 complex initiates mRNA decay, while the nuclear Lsm2-8 complex acts as a chaperone for U6 spliceosomal RNA. It has been unclear how these complexes perform their distinct functions while differing by only one out of seven subunits. Here, we elucidate the molecular basis for Lsm-RNA recognition and present four high-resolution structures of Lsm complexes bound to RNAs. The structures of Lsm2-8 bound to RNA identify the unique 2′,3′ cyclic phosphate end of U6 as a prime determinant of specificity. In contrast, the Lsm1-7 complex strongly discriminates against cyclic phosphates and tightly binds to oligouridylate tracts with terminal purines.
    [Show full text]
  • Selective Induction of Apoptosis in HIV-Infected Macrophages
    Selective Induction of Apoptosis in HIV-infected Macrophages by Simon Xin Min Dong A thesis submitted in partial fulfillment of the requirements for the Doctorate in Philosophy degree in Microbiology and Immunology Department of Biochemistry, Microbiology, and Immunology Faculty of Medicine University of Ottawa © Simon Xin Min Dong, Ottawa, Canada, 2020 Abstract The eradication of Human Immunodeficiency Virus (HIV) from infected patients is one of the major medical problems of our time, primarily due to HIV reservoir formation. Macrophages play important roles in HIV reservoir formation: once infected, they shield HIV against host anti-viral immune responses and anti-retroviral therapies, help viral spread and establish infection in anatomically protected sites. Thus, it is imperative to selectively induce the apoptosis of HIV-infected macrophages for a complete cure of this disease. I hypothesize that HIV infection dysregulates the expression of some specific genes, which is essential to the survival of infected host cells, and these genes can be targeted to selectively induce the apoptosis of HIV-infected macrophages. My objective is to identify the genes that can be targeted to eradicate HIV reservoir in macrophages, and to briefly elucidate the mechanism of cell death induced by targeting one of the identified genes. A four-step strategy was proposed to reach the goal. First, 90k shRNA lentivirus pool technology and microarray analysis were employed in a genome-wide screen of genes and 28 promising genes were found. Second, siRNA silencing was applied to validate these genes with 2 different HIV-1 viruses; as a result, 4 genes, Cox7a2, Znf484, Cdk2, and Cstf2t, were identified to be novel gene targets.
    [Show full text]
  • MBNL1 Regulates Essential Alternative RNA Splicing Patterns in MLL-Rearranged Leukemia
    ARTICLE https://doi.org/10.1038/s41467-020-15733-8 OPEN MBNL1 regulates essential alternative RNA splicing patterns in MLL-rearranged leukemia Svetlana S. Itskovich1,9, Arun Gurunathan 2,9, Jason Clark 1, Matthew Burwinkel1, Mark Wunderlich3, Mikaela R. Berger4, Aishwarya Kulkarni5,6, Kashish Chetal6, Meenakshi Venkatasubramanian5,6, ✉ Nathan Salomonis 6,7, Ashish R. Kumar 1,7 & Lynn H. Lee 7,8 Despite growing awareness of the biologic features underlying MLL-rearranged leukemia, 1234567890():,; targeted therapies for this leukemia have remained elusive and clinical outcomes remain dismal. MBNL1, a protein involved in alternative splicing, is consistently overexpressed in MLL-rearranged leukemias. We found that MBNL1 loss significantly impairs propagation of murine and human MLL-rearranged leukemia in vitro and in vivo. Through transcriptomic profiling of our experimental systems, we show that in leukemic cells, MBNL1 regulates alternative splicing (predominantly intron exclusion) of several genes including those essential for MLL-rearranged leukemogenesis, such as DOT1L and SETD1A.Wefinally show that selective leukemic cell death is achievable with a small molecule inhibitor of MBNL1. These findings provide the basis for a new therapeutic target in MLL-rearranged leukemia and act as further validation of a burgeoning paradigm in targeted therapy, namely the disruption of cancer-specific splicing programs through the targeting of selectively essential RNA binding proteins. 1 Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA. 2 Cancer and Blood Diseases Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA. 3 Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA.
    [Show full text]
  • Structural Basis for DEAH-Helicase Activation by G-Patch Proteins
    Structural basis for DEAH-helicase activation by G-patch proteins Michael K. Studera, Lazar Ivanovica, Marco E. Webera, Sabrina Martia, and Stefanie Jonasa,1 aInstitute of Molecular Biology and Biophysics, Department of Biology, Swiss Federal Institute of Technology (ETH) Zürich, 8093 Zürich, Switzerland Edited by Joseph D. Puglisi, Stanford University School of Medicine, Stanford, CA, and approved February 21, 2020 (received for review August 12, 2019) RNA helicases of the DEAH/RHA family are involved in many essential RNA bases are stacked in the RNA binding channel between a long cellular processes, such as splicing or ribosome biogenesis, where β-hairpin in RecA2 (β14 to β15 in hsDHX15/scPrp43; SI Appendix, they remodel large RNA–protein complexes to facilitate transitions Fig. S1) and a conserved loop in RecA1 (termed “Hook-turn”). to the next intermediate. DEAH helicases couple adenosine tri- This means that during progression into the open state, the phosphate (ATP) hydrolysis to conformational changes of their β-hairpin and two other RNA-binding patches in RecA2 (termed catalytic core. This movement results in translocation along RNA, “Hook-loop” and “motif V”; SI Appendix, Fig. S1) have to shift 1 which is held in place by auxiliary C-terminal domains. The activity nucleotide (nt) toward the 5′ end of the RNA. Thus, when the of DEAH proteins is strongly enhanced by the large and diverse RecA domains close back up, at the start of the next hydrolysis class of G-patch activators. Despite their central roles in RNA me- cycle, the RNA is pushed by 1 nt through the RNA channel.
    [Show full text]
  • The Splicing Factor XAB2 Interacts with ERCC1-XPF and XPG for RNA-Loop Processing During Mammalian Development
    bioRxiv preprint doi: https://doi.org/10.1101/2020.07.20.211441; this version posted July 21, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. The Splicing Factor XAB2 interacts with ERCC1-XPF and XPG for RNA-loop processing during mammalian development Evi Goulielmaki1*, Maria Tsekrekou1,2*, Nikos Batsiotos1,2, Mariana Ascensão-Ferreira3, Eleftheria Ledaki1, Kalliopi Stratigi1, Georgia Chatzinikolaou1, Pantelis Topalis1, Theodore Kosteas1, Janine Altmüller4, Jeroen A. Demmers5, Nuno L. Barbosa-Morais3, George A. Garinis1,2* 1. Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology- Hellas, GR70013, Heraklion, Crete, Greece, 2. Department of Biology, University of Crete, Heraklion, Crete, Greece, 3. Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Avenida Professor Egas Moniz, 1649-028 Lisboa, Portugal, 4. Cologne Center for Genomics (CCG), Institute for Genetics, University of Cologne, 50931, Cologne, Germany, 5. Proteomics Center, Netherlands Proteomics Center, and Department of Biochemistry, Erasmus University Medical Center, the Netherlands. Corresponding author: George A. Garinis ([email protected]) *: equally contributing authors bioRxiv preprint doi: https://doi.org/10.1101/2020.07.20.211441; this version posted July 21, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Abstract RNA splicing, transcription and the DNA damage response are intriguingly linked in mammals but the underlying mechanisms remain poorly understood. Using an in vivo biotinylation tagging approach in mice, we show that the splicing factor XAB2 interacts with the core spliceosome and that it binds to spliceosomal U4 and U6 snRNAs and pre-mRNAs in developing livers.
    [Show full text]
  • Targeting Toxoplasma Gondii CPSF3 As a New Approach to Control Toxoplasmosis
    Published online: February 1, 2017 Research Article Targeting Toxoplasma gondii CPSF3 as a new approach to control toxoplasmosis Andrés Palencia1,2,*,† , Alexandre Bougdour1,**,† , Marie-Pierre Brenier-Pinchart1, Bastien Touquet1, Rose-Laurence Bertini1, Cristina Sensi2, Gabrielle Gay1, Julien Vollaire3, Véronique Josserand3, Eric Easom4, Yvonne R Freund4, Hervé Pelloux1, Philip J Rosenthal5, Stephen Cusack2 & Mohamed-Ali Hakimi1,*** Abstract Introduction Toxoplasma gondii is an important food and waterborne Toxoplasma gondii chronically infects about 30–50% of the pathogen causing toxoplasmosis, a potentially severe disease in human population (Pappas et al, 2009; Flegr et al, 2014; Parlog immunocompromised or congenitally infected humans. Available et al, 2015). Toxoplasmosis is usually an unapparent or mild therapeutic agents are limited by suboptimal efficacy and disease in immunocompetent individuals, but it is a serious threat frequent side effects that can lead to treatment discontinuation. in immunocompromised patients, who can experience lethal or Here we report that the benzoxaborole AN3661 had potent chronic cardiac, pulmonary or cerebral pathologies. Moreover, in vitro activity against T. gondii. Parasites selected to be resis- congenital toxoplasmosis can cause a range of problems including tant to AN3661 had mutations in TgCPSF3, which encodes a foetal malformations and retinochoroiditis. Current therapies for homologue of cleavage and polyadenylation specificity factor toxoplasmosis are reasonably effective, but they require long subunit 3 (CPSF-73 or CPSF3), an endonuclease involved in mRNA durations of treatment, often with toxic side effects (Farthing processing in eukaryotes. Point mutations in TgCPSF3 introduced et al, 1992; Fung & Kirschenbaum, 1996), underlining the need into wild-type parasites using the CRISPR/Cas9 system recapitu- for new classes of drugs to treat this infection (Neville et al, lated the resistance phenotype.
    [Show full text]