Download The

Total Page:16

File Type:pdf, Size:1020Kb

Download The PROBING THE INTERACTION OF ASPERGILLUS FUMIGATUS CONIDIA AND HUMAN AIRWAY EPITHELIAL CELLS BY TRANSCRIPTIONAL PROFILING IN BOTH SPECIES by POL GOMEZ B.Sc., The University of British Columbia, 2002 A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE in THE FACULTY OF GRADUATE STUDIES (Experimental Medicine) THE UNIVERSITY OF BRITISH COLUMBIA (Vancouver) January 2010 © Pol Gomez, 2010 ABSTRACT The cells of the airway epithelium play critical roles in host defense to inhaled irritants, and in asthma pathogenesis. These cells are constantly exposed to environmental factors, including the conidia of the ubiquitous mould Aspergillus fumigatus, which are small enough to reach the alveoli. A. fumigatus is associated with a spectrum of diseases ranging from asthma and allergic bronchopulmonary aspergillosis to aspergilloma and invasive aspergillosis. Airway epithelial cells have been shown to internalize A. fumigatus conidia in vitro, but the implications of this process for pathogenesis remain unclear. We have developed a cell culture model for this interaction using the human bronchial epithelium cell line 16HBE and a transgenic A. fumigatus strain expressing green fluorescent protein (GFP). Immunofluorescent staining and nystatin protection assays indicated that cells internalized upwards of 50% of bound conidia. Using fluorescence-activated cell sorting (FACS), cells directly interacting with conidia and cells not associated with any conidia were sorted into separate samples, with an overall accuracy of 75%. Genome-wide transcriptional profiling using microarrays revealed significant responses of 16HBE cells and conidia to each other. Significant changes in gene expression were identified between cells and conidia incubated alone versus together, as well as between GFP positive and negative sorted cells. The identification of biologically relevant responses in both species validates this methodology, and motivates further work to characterize the interactions ii between A. fumigatus conidia and primary airway epithelial cells obtained from normal and asthmatic patients. iii TABLE OF CONTENTS ABSTRACT .............................................................................................................................ii TABLE OF CONTENTS........................................................................................................... iv LIST OF TABLES ................................................................................................................... vii LIST OF FIGURES ................................................................................................................ viii LIST OF ABBREVIATIONS ..................................................................................................... ix ACKNOWLEDGEMENTS ..................................................................................................... xiii DEDICATION ...................................................................................................................... xiv CHAPTER 1: INTRODUCTION ............................................................................................... 1 1.1 HOST-PATHOGEN INTERACTIONS IN MICROBIAL PATHOGENESIS ............................ 1 1.1.1 The damage-response framework of microbial pathogenesis .......................... 2 1.1.2 Transcriptional profiling of host-pathogen interactions ................................... 5 1.2 THE AIRWAY EPITHELIUM ......................................................................................... 7 1.2.1 Immune function of the airway epithelium ....................................................... 8 1.2.2 Roles of the airway epithelium in asthma pathogenesis ................................. 10 1.3 ASPERGILLUS FUMIGATUS ...................................................................................... 11 1.3.1 Virulence factors of Aspergillus fumigatus ...................................................... 12 1.3.2 Host defenses against Aspergillus fumigatus .................................................. 13 1.3.3 Diseases caused by Aspergillus fumigatus ....................................................... 14 1.4 OVERVIEW OF EXPERIMENTAL GOALS AND APPROACHES OF THE PRESENT RESEARCH ..................................................................................................................... 17 CHAPTER 2: CO-INCUBATION AND INTERNALIZATION OF ASPERGILLUS FUMIGATUS CONIDIA BY HUMAN BRONCHIAL EPITHELIAL CELLS ........................................................ 18 2.1 INTRODUCTION ....................................................................................................... 18 2.2 METHODS ................................................................................................................ 20 2.2.1 Aspergillus fumigatus strain and growth conditions ....................................... 20 2.2.2 Culture of human bronchial epithelial cells ..................................................... 21 2.2.3 Visualization of conidia uptake by 16HBE and NHBE cells by three dimensional rendering of the cell monolayer ............................................................................... 23 2.2.4 Quantification of conidia uptake by 16HBE cells by immunofluorescent staining ...................................................................................................................... 25 2.2.5 Quantification of conidia uptake by 16HBE cells by nystatin protection assay ................................................................................................................................... 26 iv 2.3 RESULTS ................................................................................................................... 28 2.3.1 Localization of Aspergillus fumigatus conidia within 16HBE and NHBE cell monolayers ............................................................................................................... 28 2.3.2 Quantification of internalization of Aspergillus fumigatus conidia by 16HBE cells by immunofluorescent staining ........................................................................ 28 2.3.3 Confirmation and determination of time course of internalization by nystatin protection assay ........................................................................................................ 31 2.4 DISCUSSION ............................................................................................................. 33 2.5 SUMMARY ............................................................................................................... 36 CHAPTER 3: FLOW CYTOMETRIC ANALYSIS AND SORTING OF HUMAN BRONCHIAL EPITHELIAL CELLS INTERACTING WITH ASPERGILLUS FUMIGATUS CONIDIA ................... 38 3.1 INTRODUCTION ....................................................................................................... 38 3.2 METHODS ................................................................................................................ 41 3.2.1 Preparation of cell culture samples for flow cytometric analysis ................... 41 3.2.2 Flow cytometric analysis of 16HBE cells and Aspergillus fumigatus conidia .. 41 3.2.3 Sorting of 16HBE cells co-incubated with conidia into negative and positive cell samples ............................................................................................................... 42 3.3 RESULTS ................................................................................................................... 44 3.3.1 Flow cytometric analysis of samples of Aspergillus fumigatus conidia, 16HBE cells, and cells and conidia co-incubated together .................................................. 44 3.3.2 Sorting and re-analysis of 16HBE cells co-incubated with Aspergillus fumigatus conidia ....................................................................................................................... 44 3.3.3 Microscopic visualization of negative and positive sorted samples of 16HBE cells ........................................................................................................................... 47 3.4 DISCUSSION ............................................................................................................. 50 3.5 SUMMARY ............................................................................................................... 52 CHAPTER 4: TRANSCRIPTIONAL ANALYSIS OF HUMAN BRONCHIAL EPITHELIAL CELLS INTERACTING WITH ASPERGILLUS FUMIGATUS CONIDIA ................................................ 53 4.1 INTRODUCTION ....................................................................................................... 53 4.2 METHODS ................................................................................................................ 55 4.2.1 Overview of experimental design for dual-species transcriptional analysis ... 55 4.2.2 Extraction of RNA from samples of 16HBE cells and Aspergillus fumigatus conidia ....................................................................................................................... 56 4.2.3 Quantitative real-time PCR analysis of human and fungal mRNA signals from co-incubated samples ............................................................................................... 60 4.2.4 Microarray analysis of human and fungal transcriptomes .............................. 61 4.2.5 Statistical analysis of 16HBE cell transcriptional responses to Aspergillus fumigatus conidia
Recommended publications
  • The Title of the Article
    Mechanism-Anchored Profiling Derived from Epigenetic Networks Predicts Outcome in Acute Lymphoblastic Leukemia Xinan Yang, PhD1, Yong Huang, MD1, James L Chen, MD1, Jianming Xie, MSc2, Xiao Sun, PhD2, Yves A Lussier, MD1,3,4§ 1Center for Biomedical Informatics and Section of Genetic Medicine, Department of Medicine, The University of Chicago, Chicago, IL 60637 USA 2State Key Laboratory of Bioelectronics, Southeast University, 210096 Nanjing, P.R.China 3The University of Chicago Cancer Research Center, and The Ludwig Center for Metastasis Research, The University of Chicago, Chicago, IL 60637 USA 4The Institute for Genomics and Systems Biology, and the Computational Institute, The University of Chicago, Chicago, IL 60637 USA §Corresponding author Email addresses: XY: [email protected] YH: [email protected] JC: [email protected] JX: [email protected] XS: [email protected] YL: [email protected] - 1 - Abstract Background Current outcome predictors based on “molecular profiling” rely on gene lists selected without consideration for their molecular mechanisms. This study was designed to demonstrate that we could learn about genes related to a specific mechanism and further use this knowledge to predict outcome in patients – a paradigm shift towards accurate “mechanism-anchored profiling”. We propose a novel algorithm, PGnet, which predicts a tripartite mechanism-anchored network associated to epigenetic regulation consisting of phenotypes, genes and mechanisms. Genes termed as GEMs in this network meet all of the following criteria: (i) they are co-expressed with genes known to be involved in the biological mechanism of interest, (ii) they are also differentially expressed between distinct phenotypes relevant to the study, and (iii) as a biomodule, genes correlate with both the mechanism and the phenotype.
    [Show full text]
  • Entrez Symbols Name Termid Termdesc 117553 Uba3,Ube1c
    Entrez Symbols Name TermID TermDesc 117553 Uba3,Ube1c ubiquitin-like modifier activating enzyme 3 GO:0016881 acid-amino acid ligase activity 299002 G2e3,RGD1310263 G2/M-phase specific E3 ubiquitin ligase GO:0016881 acid-amino acid ligase activity 303614 RGD1310067,Smurf2 SMAD specific E3 ubiquitin protein ligase 2 GO:0016881 acid-amino acid ligase activity 308669 Herc2 hect domain and RLD 2 GO:0016881 acid-amino acid ligase activity 309331 Uhrf2 ubiquitin-like with PHD and ring finger domains 2 GO:0016881 acid-amino acid ligase activity 316395 Hecw2 HECT, C2 and WW domain containing E3 ubiquitin protein ligase 2 GO:0016881 acid-amino acid ligase activity 361866 Hace1 HECT domain and ankyrin repeat containing, E3 ubiquitin protein ligase 1 GO:0016881 acid-amino acid ligase activity 117029 Ccr5,Ckr5,Cmkbr5 chemokine (C-C motif) receptor 5 GO:0003779 actin binding 117538 Waspip,Wip,Wipf1 WAS/WASL interacting protein family, member 1 GO:0003779 actin binding 117557 TM30nm,Tpm3,Tpm5 tropomyosin 3, gamma GO:0003779 actin binding 24779 MGC93554,Slc4a1 solute carrier family 4 (anion exchanger), member 1 GO:0003779 actin binding 24851 Alpha-tm,Tma2,Tmsa,Tpm1 tropomyosin 1, alpha GO:0003779 actin binding 25132 Myo5b,Myr6 myosin Vb GO:0003779 actin binding 25152 Map1a,Mtap1a microtubule-associated protein 1A GO:0003779 actin binding 25230 Add3 adducin 3 (gamma) GO:0003779 actin binding 25386 AQP-2,Aqp2,MGC156502,aquaporin-2aquaporin 2 (collecting duct) GO:0003779 actin binding 25484 MYR5,Myo1e,Myr3 myosin IE GO:0003779 actin binding 25576 14-3-3e1,MGC93547,Ywhah
    [Show full text]
  • University of Leicester, Msc Medical Statistics, Thesis, Wilmar
    Thesis MSc in Medical Statistics Department of Health Sciences University of Leicester, United Kingdom Application of Bayesian hierarchical generalized linear models using weakly informative prior distributions to identify rare genetic variant effects on blood pressure Wilmar Igl March 2015 Summary Background Currently rare genetic variants are discussed as a source of \missing heritability" of complex traits. Bayesian hierarchical models were proposed as an efficient method for the estimation and aggregation of conditional effects of rare variants. Here, such models are applied to identify rare variant effects on blood pressure. Methods Empirical data provided by the Genetic Analysis Workshop 19 (2014) included 1,851 Mexican-American individuals with diastolic blood pressure (DBP), systolic blood pressure (SBP), hypertension (HTN) and 461,868 variants from whole- exome sequencing of odd-numbered chromosomes. Bayesian hierarchical generalized linear models using weakly informative prior distributions were applied. Results Associations of rare variants chr1:204214013 (estimate = 39.6, Credible In- terval (CrI) 95% = [25.3, 53.9], Bayesian p = 6:8 × 10−8) in the PLEKHA6 gene and chr11:118518698 (estimate = 32.2, CrI95% = [20.6, 43.9], Bayesian p = 7:0 × 10−8) in the PHLEDB1 gene were identified. Joint effects of grouped rare variants on DBP in 23 genes (Bayesian p = [8:8 × 10−14, 9:3 × 10−8]) and on SBP in 21 genes (Bayesian p = [8:6 × 10−12, 7:8 × 10−8]) in pathways related to hemostasis, sodi- um/calcium transport, ciliary activity, and others were found. No association with hypertension was detected. Conclusions Bayesian hierarchical generalized linear models with weakly informa- tive priors can successfully be applied in exome-wide genetic association analyses of rare variants.
    [Show full text]
  • ZNF226 Is Over-Expressed in Brain Metastatic Breast Cancer-PDF 111920
    1 ZNF226 is over-expressed in brain metastatic breast cancer. 2 Shahan Mamoor East Islip, NY USA1 3 [email protected] 4 5 Metastasis to the brain is a clinical problem in patients with breast cancer1-3. We mined published 6 microarray data4,5 to compare primary and metastatic tumor transcriptomes to discover genes associated with brain metastasis in patients with metastatic breast cancer. We found that the zinc finger protein 226, 7 encoded by ZNF226 was among the genes whose expression was most different in the brain metastases of patients with brain metastatic breast cancer as compared to primary tumors of the breast. ZNF226 may be 8 relevant to processes underlying metastasis of primary tumor-derived cancer cells to the brain in humans 9 with metastatic breast cancer. 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Keywords: breast cancer, brain metastases, central nervous system metastases, ZNF226, systems biology 26 of breast cancer, targeted therapeutics in breast cancer. 27 28 PAGE 1 1 One report described a 34% incidence of central nervous system metastases in trastuzumab- treated patients with breast cancer2. This alarmingly high frequency of CNS metastasis events demands 2 an enhanced understanding of the transcriptional makeup of brain metastatic tissues to support identification of therapeutic targets, whether they are treatment related or not. We performed a global 3 comparative analysis of primary and metastatic tumors in patients with brain metastatic breast cancer4,5. 4 We discovered significant differential and increased expression of ZNF226 in brain metastatic tissues of patients with metastatic breast cancer.
    [Show full text]
  • 1 ICR-Geneset Gene List
    ICR-geneset Gene List. IMAGE ID UniGene Locus Name Cluster 20115 Hs.62185 SLC9A6 solute carrier family 9 (sodium/hydrogen exchanger), isoform 6 21738 21899 Hs.78353 SRPK2 SFRS protein kinase 2 21908 Hs.79133 CDH8 cadherin 8, type 2 22040 Hs.151738 MMP9 matrix metalloproteinase 9 (gelatinase B, 92kD gelatinase, 92kD type IV collagenase) 22411 Hs.183 FY Duffy blood group 22731 Hs.1787 PHRET1 PH domain containing protein in retina 1 22859 Hs.356487 ESTs 22883 Hs.150926 FPGT fucose-1-phosphate guanylyltransferase 22918 Hs.346868 EBNA1BP2 EBNA1 binding protein 2 23012 Hs.158205 BLZF1 basic leucine zipper nuclear factor 1 (JEM-1) 23073 Hs.284244 FGF2 fibroblast growth factor 2 (basic) 23173 Hs.151051 MAPK10 mitogen-activated protein kinase 10 23185 Hs.289114 TNC tenascin C (hexabrachion) 23282 Hs.8024 IK IK cytokine, down-regulator of HLA II 23353 23431 Hs.50421 RB1CC1 RB1-inducible coiled-coil 1 23514 23548 Hs.71848 Human clone 23548 mRNA sequence 23629 Hs.135587 Human clone 23629 mRNA sequence 23658 Hs.265855 SETMAR SET domain and mariner transposase fusion gene 23676 Hs.100841 Homo sapiens clone 23676 mRNA sequence 23772 Hs.78788 LZTR1 leucine-zipper-like transcriptional regulator, 1 23776 Hs.75438 QDPR quinoid dihydropteridine reductase 23804 Hs.343586 ZFP36 zinc finger protein 36, C3H type, homolog (mouse) 23831 Hs.155247 ALDOC aldolase C, fructose-bisphosphate 23878 Hs.99902 OPCML opioid binding protein/cell adhesion molecule-like 23903 Hs.12526 Homo sapiens clone 23903 mRNA sequence 23932 Hs.368063 Human clone 23932 mRNA sequence 24004
    [Show full text]
  • Cellular and Molecular Signatures in the Disease Tissue of Early
    Cellular and Molecular Signatures in the Disease Tissue of Early Rheumatoid Arthritis Stratify Clinical Response to csDMARD-Therapy and Predict Radiographic Progression Frances Humby1,* Myles Lewis1,* Nandhini Ramamoorthi2, Jason Hackney3, Michael Barnes1, Michele Bombardieri1, Francesca Setiadi2, Stephen Kelly1, Fabiola Bene1, Maria di Cicco1, Sudeh Riahi1, Vidalba Rocher-Ros1, Nora Ng1, Ilias Lazorou1, Rebecca E. Hands1, Desiree van der Heijde4, Robert Landewé5, Annette van der Helm-van Mil4, Alberto Cauli6, Iain B. McInnes7, Christopher D. Buckley8, Ernest Choy9, Peter Taylor10, Michael J. Townsend2 & Costantino Pitzalis1 1Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK. Departments of 2Biomarker Discovery OMNI, 3Bioinformatics and Computational Biology, Genentech Research and Early Development, South San Francisco, California 94080 USA 4Department of Rheumatology, Leiden University Medical Center, The Netherlands 5Department of Clinical Immunology & Rheumatology, Amsterdam Rheumatology & Immunology Center, Amsterdam, The Netherlands 6Rheumatology Unit, Department of Medical Sciences, Policlinico of the University of Cagliari, Cagliari, Italy 7Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow G12 8TA, UK 8Rheumatology Research Group, Institute of Inflammation and Ageing (IIA), University of Birmingham, Birmingham B15 2WB, UK 9Institute of
    [Show full text]
  • Analysis of Stage-Specific Gene Expression Profiles in the Uterine Endometrium During Pregnancy in Pigs
    RESEARCH ARTICLE Analysis of Stage-Specific Gene Expression Profiles in the Uterine Endometrium during Pregnancy in Pigs Mingoo Kim1, Heewon Seo1, Yohan Choi1, Inkyu Yoo1, Minseok Seo2,4, Chang-Kyu Lee3, Heebal Kim2,3,4, Hakhyun Ka1* 1 Division of Biological Science and Technology, Yonsei University, Wonju, Republic of Korea, 2 Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, Republic of Korea, 3 Department of Animal Biotechnology, Seoul National University, Seoul, Republic of Korea, 4 C&K Genomics, SNU Research Park, Seoul, Republic of Korea * [email protected] Abstract The uterine endometrium plays a critical role in regulating the estrous cycle and the estab- lishment and maintenance of pregnancy in mammalian species. Many studies have investi- OPEN ACCESS gated the expression and function of genes in the uterine endometrium, but the global Citation: Kim M, Seo H, Choi Y, Yoo I, Seo M, Lee C- expression pattern of genes and relationships among genes differentially expressed in the K, et al. (2015) Analysis of Stage-Specific Gene Expression Profiles in the Uterine Endometrium uterine endometrium during gestation in pigs remain unclear. Thus, this study investigated during Pregnancy in Pigs. PLoS ONE 10(11): global gene expression profiles using microarray in pigs. Diverse transcriptome analyses e0143436. doi:10.1371/journal.pone.0143436 including clustering, network, and differentially expressed gene (DEG) analyses were per- Editor: Eric Asselin, University of Quebec at Trois- formed to detect endometrial gene expression changes during the different gestation Rivieres, CANADA stages. In total, 6,991 genes were found to be differentially expressed by comparing genes Received: July 28, 2015 expressed on day (D) 12 of pregnancy with those on D15, D30, D60, D90 and D114 of preg- Accepted: November 4, 2015 nancy, and clustering analysis of detected DEGs distinguished 8 clusters.
    [Show full text]
  • Comparison of Orthologs Across Multiple Species by Various Strategies
    COMPARISON OF ORTHOLOGS ACROSS MULTIPLE SPECIES BY VARIOUS STRATEGIES BY HUI LIU DISSERTATION Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Biophysics and Computational Biology in the Graduate College of the University of Illinois at Urbana-Champaign, 2014 Urbana, Illinois Doctoral Committee: Professor Eric Jakobsson, Chair, Director of Research Professor Gene E. Robinson Associate Professor Saurabh Sinha Assistant Professor Jian Ma Abstract Thanks to the improvement of genome sequencing technology, abundant multi-species genomic data now became available and comparative genomics continues to be a fast prospering filed of biological research. Through the comparison of genomes of different organisms, we can understand what, at the molecular level, distinguishes different life forms from each other. It shed light on revealing the evolution of biology. And it also helps to refine the annotations and functions of individual genomes. For example, through comparisons across mammalian genomes, we can give an estimate of the conserved set of genes across mammals and correspondingly, find the species-specific sets of genes or functions. However, comparative genomics can be feasible only if a meaningful classification of genes exists. A natural way to do so is to delineate sets of orthologous genes. However, debates exist about the appropriate way to define orthologs. It is originally defined as genes in different species which derive from speciation events. But such definition is not sufficient to derive orthologous genes due to the complexity of evolutionary events such as gene duplication and gene loss. While it is possible to correctly figure out all the evolutionary events with the true phylogenetic tree, the true phylogenetic tree itself is impractical to be inferred.
    [Show full text]
  • Predicting Clinical Response to Treatment with a Soluble Tnf-Antagonist Or Tnf, Or a Tnf Receptor Agonist
    (19) TZZ _ __T (11) EP 2 192 197 A1 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: (51) Int Cl.: 02.06.2010 Bulletin 2010/22 C12Q 1/68 (2006.01) (21) Application number: 08170119.5 (22) Date of filing: 27.11.2008 (84) Designated Contracting States: (72) Inventor: The designation of the inventor has not AT BE BG CH CY CZ DE DK EE ES FI FR GB GR yet been filed HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR (74) Representative: Habets, Winand Designated Extension States: Life Science Patents AL BA MK RS PO Box 5096 6130 PB Sittard (NL) (71) Applicant: Vereniging voor Christelijk Hoger Onderwijs, Wetenschappelijk Onderzoek en Patiëntenzorg 1081 HV Amsterdam (NL) (54) Predicting clinical response to treatment with a soluble tnf-antagonist or tnf, or a tnf receptor agonist (57) The invention relates to methods for predicting a clinical response to a therapy with a soluble TNF antagonist, TNF or a TNF receptor agonist and a kit for use in said methods. EP 2 192 197 A1 Printed by Jouve, 75001 PARIS (FR) EP 2 192 197 A1 Description [0001] The invention relates to methods for predicting a clinical response to a treatment with a soluble TNF antagonist, with TNF or a TNF receptor agonist using expression levels of genes of the Type I INF pathway and a kit for use in said 5 methods. In another aspect, the invention relates to a method for evaluating a pharmacological effect of a treatment with a soluble TNF antagonist, TNF or a TNF receptor agonist.
    [Show full text]
  • Knowledge Management Enviroments for High Throughput Biology
    Knowledge Management Enviroments for High Throughput Biology Abhey Shah A Thesis submitted for the degree of MPhil Biology Department University of York September 2007 Abstract With the growing complexity and scale of data sets in computational biology and chemoin- formatics, there is a need for novel knowledge processing tools and platforms. This thesis describes a newly developed knowledge processing platform that is different in its emphasis on architecture, flexibility, builtin facilities for datamining and easy cross platform usage. There exist thousands of bioinformatics and chemoinformatics databases, that are stored in many different forms with different access methods, this is a reflection of the range of data structures that make up complex biological and chemical data. Starting from a theoretical ba- sis, FCA (Formal Concept Analysis) an applied branch of lattice theory, is used in this thesis to develop a file system that automatically structures itself by it’s contents. The procedure of extracting concepts from data sets is examined. The system also finds appropriate labels for the discovered concepts by extracting data from ontological databases. A novel method for scaling non-binary data for use with the system is developed. Finally the future of integrative systems biology is discussed in the context of efficiently closed causal systems. Contents 1 Motivations and goals of the thesis 11 1.1 Conceptual frameworks . 11 1.2 Biological foundations . 12 1.2.1 Gene expression data . 13 1.2.2 Ontology . 14 1.3 Knowledge based computational environments . 15 1.3.1 Interfaces . 16 1.3.2 Databases and the character of biological data .
    [Show full text]
  • Supplementary Table S4. FGA Co-Expressed Gene List in LUAD
    Supplementary Table S4. FGA co-expressed gene list in LUAD tumors Symbol R Locus Description FGG 0.919 4q28 fibrinogen gamma chain FGL1 0.635 8p22 fibrinogen-like 1 SLC7A2 0.536 8p22 solute carrier family 7 (cationic amino acid transporter, y+ system), member 2 DUSP4 0.521 8p12-p11 dual specificity phosphatase 4 HAL 0.51 12q22-q24.1histidine ammonia-lyase PDE4D 0.499 5q12 phosphodiesterase 4D, cAMP-specific FURIN 0.497 15q26.1 furin (paired basic amino acid cleaving enzyme) CPS1 0.49 2q35 carbamoyl-phosphate synthase 1, mitochondrial TESC 0.478 12q24.22 tescalcin INHA 0.465 2q35 inhibin, alpha S100P 0.461 4p16 S100 calcium binding protein P VPS37A 0.447 8p22 vacuolar protein sorting 37 homolog A (S. cerevisiae) SLC16A14 0.447 2q36.3 solute carrier family 16, member 14 PPARGC1A 0.443 4p15.1 peroxisome proliferator-activated receptor gamma, coactivator 1 alpha SIK1 0.435 21q22.3 salt-inducible kinase 1 IRS2 0.434 13q34 insulin receptor substrate 2 RND1 0.433 12q12 Rho family GTPase 1 HGD 0.433 3q13.33 homogentisate 1,2-dioxygenase PTP4A1 0.432 6q12 protein tyrosine phosphatase type IVA, member 1 C8orf4 0.428 8p11.2 chromosome 8 open reading frame 4 DDC 0.427 7p12.2 dopa decarboxylase (aromatic L-amino acid decarboxylase) TACC2 0.427 10q26 transforming, acidic coiled-coil containing protein 2 MUC13 0.422 3q21.2 mucin 13, cell surface associated C5 0.412 9q33-q34 complement component 5 NR4A2 0.412 2q22-q23 nuclear receptor subfamily 4, group A, member 2 EYS 0.411 6q12 eyes shut homolog (Drosophila) GPX2 0.406 14q24.1 glutathione peroxidase
    [Show full text]
  • Effet De La Cryptorchidie Sur Le Transcriptome Testiculaire Humain
    MARIE EVE BERGERON EFFET DE LA CRYPTORCHIDIE SUR LE TRANSCRIPTOME TESTICULAIRE HUMAIN Mémoire présenté à la Faculté des études supérieures et postdoctorales de l’Université Laval dans le cadre du programme de maîtrise en Physiologie-Endocrinologie pour l’obtention du grade de Maître ès sciences (M.Sc.) DÉPARTEMENT D’OBSTÉTRIQUE ET DE GYNÉCOLOGIE FACULTÉ DE MÉDECINE UNIVERSITÉ LAVAL QUÉBEC 2012 © Marie Eve Bergeron, 2012 Résumé Les niveaux d’expression de nombreux gènes peuvent être affectés par l’environnement et mener au développement de la cryptorchidie. Cette malformation congénitale est la plus commune dont une des conséquences majeures est l’infertilité masculine due au testicule non-descendu, auquel un risque plus élevé de cancer testiculaire est associé. L’expression des ARN totaux isolés à partir de biopsies testiculaires ont été analysés par micropuces, puis par une analyse bio-informatique et une validation par RT-qPCR de plusieurs gènes sélectionnés. Ces analyses m’ont permis d’identifier plus de deux milles candidats montrant une expression différente entre des sujets cryptorchides et normaux. Certains de ces gènes sélectionnés peuvent être associés à la descente testiculaire, d’autres au cancer testiculaire ou encore aux divers types cellulaires retrouvés dans cet organe. Les différences dans le transcriptome dues à la cryptorchidie vont nous aider à comprendre la cause génétique de cette maladie. ii Abstract Expression level of numerous genes may be affected by environmental condition and lead to development of cryptorchidism. The most common congenital malformation in male is cryptorchidism. One major consequence of this anomaly is infertility due to undescended testis, to which an increased risk of testicular cancer is associated.
    [Show full text]