Valence Bond Theory, Its History, Fundamentals, and Applications. A
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
More Insight in Multiple Bonding with Valence Bond Theory K
More insight in multiple bonding with valence bond theory K. Hendrickx, B. Braida, P. Bultinck, P.C. Hiberty To cite this version: K. Hendrickx, B. Braida, P. Bultinck, P.C. Hiberty. More insight in multiple bonding with va- lence bond theory. Computational and Theoretical Chemistry, Elsevier, 2015, 1053, pp.180–188. 10.1016/j.comptc.2014.09.007. hal-01627698 HAL Id: hal-01627698 https://hal.archives-ouvertes.fr/hal-01627698 Submitted on 21 Nov 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. More insight in multiple bonding with valence bond theory ⇑ ⇑ K. Hendrickx a,b,c, B. Braida a,b, , P. Bultinck c, P.C. Hiberty d, a Sorbonne Universités, UPMC Univ Paris 06, UMR 7616, LCT, F-75005 Paris, France b CNRS, UMR 7616, LCT, F-75005 Paris, France c Department of Inorganic and Physical Chemistry, Ghent University, Krijgslaan 281 (S3), 9000 Gent, Belgium d Laboratoire de Chimie Physique, UMR CNRS 8000, Groupe de Chimie Théorique, Université de Paris-Sud, 91405 Orsay Cédex, France abstract An original procedure is proposed, based on valence bond theory, to calculate accurate dissociation ener- gies for multiply bonded molecules, while always dealing with extremely compact wave functions involving three valence bond structures at most. -
Theoretical Methods That Help Understanding the Structure and Reactivity of Gas Phase Ions
International Journal of Mass Spectrometry 240 (2005) 37–99 Review Theoretical methods that help understanding the structure and reactivity of gas phase ions J.M. Merceroa, J.M. Matxaina, X. Lopeza, D.M. Yorkb, A. Largoc, L.A. Erikssond,e, J.M. Ugaldea,∗ a Kimika Fakultatea, Euskal Herriko Unibertsitatea, P.K. 1072, 20080 Donostia, Euskadi, Spain b Department of Chemistry, University of Minnesota, 207 Pleasant St. SE, Minneapolis, MN 55455-0431, USA c Departamento de Qu´ımica-F´ısica, Universidad de Valladolid, Prado de la Magdalena, 47005 Valladolid, Spain d Department of Cell and Molecular Biology, Box 596, Uppsala University, 751 24 Uppsala, Sweden e Department of Natural Sciences, Orebro¨ University, 701 82 Orebro,¨ Sweden Received 27 May 2004; accepted 14 September 2004 Available online 25 November 2004 Abstract The methods of the quantum electronic structure theory are reviewed and their implementation for the gas phase chemistry emphasized. Ab initio molecular orbital theory, density functional theory, quantum Monte Carlo theory and the methods to calculate the rate of complex chemical reactions in the gas phase are considered. Relativistic effects, other than the spin–orbit coupling effects, have not been considered. Rather than write down the main equations without further comments on how they were obtained, we provide the reader with essentials of the background on which the theory has been developed and the equations derived. We committed ourselves to place equations in their own proper perspective, so that the reader can appreciate more profoundly the subtleties of the theory underlying the equations themselves. Finally, a number of examples that illustrate the application of the theory are presented and discussed. -
Theory and Technique
Lawrence Berkeley National Laboratory Lawrence Berkeley National Laboratory Title COMPUTATIONAL METHODS FOR MOLEUCLAR STRUCTURE DETERMINATION: THEORY AND TECHNIQUE Permalink https://escholarship.org/uc/item/3b7795px Author Lester, W.A. Publication Date 1980-03-14 Peer reviewed eScholarship.org Powered by the California Digital Library University of California CONTENTS Foreword v List of Invited Speakers vii Workshop Participants viii LECTURES 1 Introduction to Computational Quantum Chemistry Ernest R. Davidson 1-1 2/3 Introduction to SCF Theory Ernest R. Davidson 2/3-1 4 Semi-Empirical SCF Theory Michael C. Zerner 4-1 5 An Introduction to Some Semi-Empirical and Approximate Molecular Orbital Methods Miehael C. Zerner 5-1 6/7 Ab Initio Hartree Fock John A. Pople 6/7-1 8 SCF Properties Ernest R. Davidson 8-1 9/10 Generalized Valence Bond William A, Goddard, III 9/10-1 11 Open Shell KF and MCSCF Theory Ernest R. Davidson 11-1 12 Some Semi-Empirical Approaches to Electron Correlation Miahael C. Zerner 12-1 13 Configuration Interaction Method Ernest R. Davidson 13-1 14 Geometry Optimization of Large Systems Michael C. Zerner 14-1 15 MCSCF Calculations: Results Boaen Liu 15-1 lfi/18 Empirical Potentials, Semi-Empirical Potentials, and Molecular Mechanics Norman L. Allinger 16/18-1 iv 17 CI Calculations: Results Bowen Liu 17-1 19 Computational Quantum Chemistry: Future Outlook Ernest R. Davidson 19-1 V FOREWORD The National Resource for Computation in Chemistry (NRCC) was established as a Division of Lawrence Berkeley Laboratory (LBL) in October 1977. The functions of the NRCC may be broadly categorized as follows: (1) to make information on existing and developing computa tional methodologies available to all segments of the chemistry community, (2) to make state-of-the-art computational facilities (both hardware and software] accessible to the chemistry community, and (3) to foster research and development of new computational methods for application to chemical problems. -
An Experimental Chemist's Guide to Ab Initio Quantum Chemistry
J. Phys. Chem. 1991, 95, 1017-1029 1017 FEATURE ARTICLE An Experimental Chemist’s Guide to ab Initio Quantum Chemistry Jack Simons Chemistry Department, University of Utah, Salt Lake City, Utah 84112 (Received: October 5, 1990) This article is not intended to provide a cutting edge, state-of-the-art review of ab initio quantum chemistry. Nor does it offer a shopping list of estimates for the accuracies of its various approaches. Unfortunately, quantum chemistry is not mature or reliable enough to make such an evaluation generally possible. Rather, this article introduces the essential concepts of quantum chemistry and the computationalfeatures that differ among commonly used methods. It is intended as a guide for those who are not conversant with the jargon of ab initio quantum chemistry but who are interested in making use of these tools. In sections I-IV, readers are provided overviews of (i) the objectives and terminology of the field, (ii) the reasons underlying the often disappointing accuracy of present methods, (iii) and the meaning of orbitals, configurations, and electron correlation. The content of sections V and VI is intended to serve as reference material in which the computational tools of ab initio quantum chemistry are overviewed. In these sections, the Hartree-Fock (HF), configuration interaction (CI), multiconfigurational self-consistent field (MCSCF), Maller-Plesset perturbation theory (MPPT), coupled-cluster (CC), and density functional methods such as X, are introduced. The strengths and weaknesses of these methods as well as the computational steps involved in their implementation are briefly discussed. 1. What Does ab Initio Quantum Chemistry Try To Do? quantitative predictions to be made. -
B3.1 Quantum Structural Methods for Atoms and Molecules
Quantum structural methods for atoms and molecules 1907 B3.1 Quantum structural methods for atoms and molecules Jack Simons B3.1.1 What does quantum chemistry try to do? Electronic structure theory describes the motions of the electrons and produces energy surfaces and wave- functions. The shapes and geometries of molecules, their electronic, vibrational and rotational energy levels, as well as the interactions of these states with electromagnetic fields lie within the realm of quantum structure theory. B3.1.1.1 The underlying theoretical basis—the Born–Oppenheimer model In the Born–Oppenheimer [1] model, it is assumed that the electrons move so quickly that they can adjust their motions essentially instantaneously with respect to any movements of the heavier and slower atomic nuclei. In typical molecules, the valence electrons orbit about the nuclei about once every 10−15 s (the inner-shell electrons move even faster), while the bonds vibrate every 10−14 s, and the molecule rotates approximately every 10−12 s. So, for typical molecules, the fundamental assumption of the Born–Oppenheimer model is valid, but for loosely held (e.g. Rydberg) electrons and in cases where nuclear motion is strongly coupled to electronic motions (e.g. when Jahn–Teller effects are present) it is expected to break down. This separation-of-time-scales assumption allows the electrons to be described by electronic wavefunc- tions that smoothly ‘ride’ the molecule’s atomic framework. These electronic functions are found by solving ˆ a Schrodinger¨ equation whose Hamiltonian He contains the kinetic energy Te of the electrons, the Coulomb repulsions among all the molecule’s electrons Vee, the Coulomb attractions Ven among the electrons and all of the molecule’s nuclei, treated with these nuclei held clamped, and the Coulomb repulsions Vnn among all of these nuclei, but it does not contain the kinetic energy TN of all the nuclei. -
Bsc Chemistry
____________________________________________________________________________________________________ Subject Chemistry Paper No and Title 2 and Physical Chemistry-I Module No and Title 27 and Valence Bond Theory I Module Tag CHE_P2_M27 SUBJECT PAPER : 2, Physical Chemistry I MODULE : 27, Valence Bond Theory I ____________________________________________________________________________________________________ TABLE OF CONTENTS 1. Learning Outcomes 2. Introduction 3. Valence Bond Theory (VBT) 3.1 Postulates of VBT 3.2 VBT of Hydrogen molecule 4. Summary 1. SUBJECT PAPER : 2, Physical Chemistry I MODULE : 27, Valence Bond Theory I ____________________________________________________________________________________________________ 1. Learning Outcomes After studying this module, you shall be able to: Learn about electronic structure of molecules using VBT Understand the postulates of VBT The VBT of Hydrogen molecule 2. Introduction Now, at this point we know that the Schrodinger equation cannot be solved exactly for multi-electron system even if the inter-nuclear distances are held constant. This is due to the presence of electron-electron repulsion terms in the Hamiltonian operator. Consequently, various approaches have been developed for the approximate solution of Schrodinger equation. Of these, Molecular Orbital Theory (MOT) and Valence Bond Theory (VBT) have been widely used. These two approaches differ in the choice of trial/approximate wave-function which is optimized via variation method for the system under consideration. Of these, we have already discussed MOT in earlier modules. In this module, we will take up the formalism of VBT in detail. 3. Valence Bond Theory Valence Bond Theory was the first quantum mechanical treatment to account for chemical bonding. This theory was first introduced by Heitler and London in 1927 and subsequently by Slater and Pauling in 1930s. -
Valence Bond Theory
Valence Bond Theory • A bond is a result of overlapping atomic orbitals from two atoms. The overlap holds a pair of electrons. • Normally each atomic orbital is bringing one electron to this bond. But in a “coordinate covalent bond”, both electrons come from the same atom • In this model, we are not creating a new orbital by the overlap. We are simply referring to the overlap between atomic orbitals (which may or may not be hybrid) from two atoms as a “bond”. Valence Bond Theory Sigma (σ) Bond • Skeletal bonds are called “sigma” bonds. • Sigma bonds are formed by orbitals approaching and overlapping each other head-on . Two hybrid orbitals, or a hybrid orbital and an s-orbital, or two s- orbitals • The resulting bond is like an elongated egg, and has cylindrical symmetry. Acts like an axle • That means the bond shows no resistance to rotation around a line that lies along its length. Pi (π) Bond Valence Bond Theory • The “leftover” p-orbitals that are not used in forming hybrid orbitals are used in making the “extra” bonds we saw in Lewis structures. The 2 nd bond in a double bond nd rd The 2 and 3 bonds in a triple bond /~harding/IGOC/P/pi_bond.html • Those extra bonds form only after the atoms are brought together by the formation of the skeletal bonds made by www.chem.ucla.edu hybrid orbitals. • The “extra” π bonds are always associated with a skeletal bond around which they form. • They don’t form without a skeletal bond to bring the p- orbitals together and “support” them. -
Visualizing Molecules - VSEPR, Valence Bond Theory, and Molecular Orbital Theory
Copyright ©The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Visualizing Molecules - VSEPR, Valence Bond Theory, and Molecular Orbital Theory Nestor S. Valera 1 Copyright ©The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Visualizing Molecules 1. Lewis Structures and Valence-Shell Electron-Pair Repulsion Theory 2. Valence Bond Theory and Hybridization 3. Molecular Orbital Theory 2 Copyright ©The McGraw-Hill Companies, Inc. Permission required for reproduction or display. The Shapes of Molecules 10.1 Depicting Molecules and Ions with Lewis Structures 10.2 Valence-Shell Electron-Pair Repulsion (VSEPR) Theory and Molecular Shape 10.3 Molecular Shape and Molecular Polarity 3 Copyright ©The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Figure 10.1 The steps in converting a molecular formula into a Lewis structure. Place atom Molecular Step 1 with lowest formula EN in center Atom Add A-group Step 2 placement numbers Sum of Draw single bonds. Step 3 valence e- Subtract 2e- for each bond. Give each Remaining Step 4 atom 8e- valence e- (2e- for H) Lewis structure 4 Copyright ©The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Molecular formula For NF3 Atom placement : : N 5e- : F: : F: : Sum of N F 7e- X 3 = 21e- valence e- - : F: Total 26e Remaining : valence e- Lewis structure 5 Copyright ©The McGraw-Hill Companies, Inc. Permission required for reproduction or display. SAMPLE PROBLEM 10.1 Writing Lewis Structures for Molecules with One Central Atom PROBLEM: Write a Lewis structure for CCl2F2, one of the compounds responsible for the depletion of stratospheric ozone. -
Acronyms Used in Theoretical Chemistry
Pure & Appl. Chem., Vol. 68, No. 2, pp. 387-456, 1996. Printed in Great Britain. INTERNATIONAL UNION OF PURE AND APPLIED CHEMISTRY PHYSICAL CHEMISTRY DIVISION WORKING PARTY ON THEORETICAL AND COMPUTATIONAL CHEMISTRY ACRONYMS USED IN THEORETICAL CHEMISTRY Prepared for publication by the Working Party consisting of R. D. BROWN* (Australia, Chiman);J. E. BOWS (USA); R. HILDERBRANDT (USA); K. LIM (Australia); I. M. MILLS (UK); E. NIKITIN (Russia); M. H. PALMER (UK). The focal point to which to send comments and suggestions is the coordinator of the project: RONALD D. BROWN Chemistry Department, Monash University, Clayton, Victoria 3 168, Australia. Responses by e-mail would be particularly appreciated, the number being: rdbrown @ vaxc.cc .monash.edu.au another alternative is fax at: +61 3 9905 4597 Acronyms used in theoretical chemistry synogsis An alphabetic list of acronyms used in theoretical chemistry is presented. Some explanatory references have been added to make acronyms better understandable but still more are needed. Critical comments, additional references, etc. are requested. INTRODUC'IION The IUPAC Working Party on Theoretical Chemistry was persuaded, by discussion with colleagues, that the compilation of a list of acronyms used in theoretical chemistry would be a useful contribution. Initial lists of acronyms drawn up by several members of the working party have been augmented by the provision of a substantial list by Chemical Abstract Service (see footnote below). The working party is particularly grateful to CAS for this generous help. It soon became apparent that many of the acron ms needed more than mere spelling out to make them understandable and so we have added expr anatory references to many of them. -
Chapter 9 Covalent Bonding: Orbitals the Localized Electron Model Valence Bond Theory Hybridization
The Localized Electron Model Chapter 9 Covalent Bonding: Draw the Lewis structure(s) Orbitals Determine the arrangement of electron pairs (VSEPR model). Specify the necessary hybrid orbitals. Hybridization Valence Bond Theory • Valence bond theory or hybrid orbital theory is an approximate theory to explain the covalent bond from a quantum mechanical • The mixing of atomic orbitals to form special orbitals for bonding. view. • According to this theory, a bond forms between • The atoms are responding as needed to two atoms when the following conditions are met. (see Figures 10.21 and 10.22) give the minimum energy for the molecule. 1. Two atomic orbitals “overlap” 2. The total number of electrons in both orbitals is no more than two. 1 Figure 10.20: Formation of H2. Figure 10.21: Bonding in HCl. Bond formed between two s orbitals Bond formed between an s and p orbital Figure 9.1: (a) The Lewis structure of the methane molecule. (b) The Hybrid Orbitals tetrahedral molecular geometry of • One might expect the number of bonds formed the methane molecule. by an atom would equal its unpaired electrons. • Chlorine, for example, generally forms one bond and has one unpaired electron. • Oxygen, with two unpaired electrons, usually forms two bonds. • However, carbon, with only two unpaired electrons, generally forms four bonds. For example, methane, CH4, is well known. 2 Hybrid Orbitals • The bonding in carbon might be explained as 2p 2p follows: • Four unpaired electrons are formed as an electron from the 2s orbital is promoted 2s 2s (excited) to the vacant 2p orbital. • The following slide illustrates this excitation. -
Chemistry 2000 Slide Set 8: Valence Bond Theory
Chemistry 2000 Slide Set 8: Valence bond theory Marc R. Roussel January 23, 2020 Marc R. Roussel Valence bond theory January 23, 2020 1 / 26 MO theory: a recap A molecular orbital is a one-electron wavefunction which, in principle, extends over the whole molecule. Two electrons can occupy each MO. MOs have nice connections to a number of experiments, e.g. photoelectron spectroscopy, Lewis acid-base properties, etc. However, correlating MO calculations to bond properties is less straightforward. Marc R. Roussel Valence bond theory January 23, 2020 2 / 26 Valence-bond theory Valence-bond (VB) theory takes a different approach, designed to agree with the chemist's idea of a chemical bond as a shared pair of electrons between two particular atoms. Bonding is described in terms of overlap between orbitals from adjacent atoms. This \overlap" gives a two-electron bond wavefunction, nota one-electron molecular orbital. There are no molecular orbitals in valence-bond theory. The description of bonding in VB theory is a direct counterpart to Lewis diagrams. Marc R. Roussel Valence bond theory January 23, 2020 3 / 26 Example: H2 For diatomic molecules, the VB and MO descriptions of bonding are superficially similar. In VB theory, we start with the Lewis diagram, which for H2 is H|H We need to make a single bond. We take one 1s orbital from each H atom, and \overlap" them to make a valence bond: Two electrons occupy this valence bond. The overlap operation is not the same as the linear combinations of LCAO-MO theory. Marc R. Roussel Valence bond theory January 23, 2020 4 / 26 Polyatomic molecules In traditional chemical theory (e.g. -
Valence Bond Theory: Hybridization
Exercise 13 Page 1 Illinois Central College CHEMISTRY 130 Name:___________________________ Laboratory Section: _______ Valence Bond Theory: Hybridization Objectives To illustrate the distribution of electrons and rearrangement of orbitals in covalent bonding. Background Hybridization: In the formation of covalent bonds, electron orbitals overlap in order to form "molecular" orbitals, that is, those that contain the shared electrons that make up a covalent bond. Although the idea of orbital overlap allows us to understand the formation of covalent bonds, it is not always simple to apply this idea to polyatomic molecules. The observed geometries of polyatomic molecules implies that the original "atomic orbitals" on each of the atoms actually change their shape, or "hybridize" during the formation of covalent bonds. But before we can look at how the orbitals actually "reshape" themselves in order to form stable covalent bonds, we must look at the two mechanisms by which orbitals can overlap. Sigma and Pi bonding Two orbitals can overlap in such a way that the highest electron "traffic" is directly between the two nuclei involved; in other words, "head-on". This head-on overlap of orbitals is referred to as a sigma bond. Examples include the overlap of two "dumbbell" shaped "p" orbitals (Fig.1) or the overlap of a "p" orbital and a spherical "s" orbital (Fig. 2). In each case, the highest region of electron density lies along the "internuclear axis", that is, the line connecting the two nuclei. o o o o o o "p" orbital "p" orbital sigma bond "s" orbital "p" orbital sigma bond Sigma Bonding Sigma Bonding Figure 1.