Visualizing Molecules - VSEPR, Valence Bond Theory, and Molecular Orbital Theory

Total Page:16

File Type:pdf, Size:1020Kb

Visualizing Molecules - VSEPR, Valence Bond Theory, and Molecular Orbital Theory Copyright ©The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Visualizing Molecules - VSEPR, Valence Bond Theory, and Molecular Orbital Theory Nestor S. Valera 1 Copyright ©The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Visualizing Molecules 1. Lewis Structures and Valence-Shell Electron-Pair Repulsion Theory 2. Valence Bond Theory and Hybridization 3. Molecular Orbital Theory 2 Copyright ©The McGraw-Hill Companies, Inc. Permission required for reproduction or display. The Shapes of Molecules 10.1 Depicting Molecules and Ions with Lewis Structures 10.2 Valence-Shell Electron-Pair Repulsion (VSEPR) Theory and Molecular Shape 10.3 Molecular Shape and Molecular Polarity 3 Copyright ©The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Figure 10.1 The steps in converting a molecular formula into a Lewis structure. Place atom Molecular Step 1 with lowest formula EN in center Atom Add A-group Step 2 placement numbers Sum of Draw single bonds. Step 3 valence e- Subtract 2e- for each bond. Give each Remaining Step 4 atom 8e- valence e- (2e- for H) Lewis structure 4 Copyright ©The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Molecular formula For NF3 Atom placement : : N 5e- : F: : F: : Sum of N F 7e- X 3 = 21e- valence e- - : F: Total 26e Remaining : valence e- Lewis structure 5 Copyright ©The McGraw-Hill Companies, Inc. Permission required for reproduction or display. SAMPLE PROBLEM 10.1 Writing Lewis Structures for Molecules with One Central Atom PROBLEM: Write a Lewis structure for CCl2F2, one of the compounds responsible for the depletion of stratospheric ozone. PLAN: Follow the steps outlined in Figure 10.1 . SOLUTION: Cl Step 1: Carbon has the lowest EN and is the central atom. Cl C F The other atoms are placed around it. F Steps 2-4: C has 4 valence e-, Cl and F each have 7. The : : Cl : sum is 4 + 4(7) = 32 valence e-. : : :Cl C F : Make bonds and fill in remaining valence : : electrons placing 8e- around each atom. : F : : 6 Copyright ©The McGraw-Hill Companies, Inc. Permission required for reproduction or display. SAMPLE PROBLEM 10.2 Writing Lewis Structure for Molecules with More than One Central Atom PROBLEM: Write the Lewis structure for methanol (molecular formula CH4O), an important industrial alcohol that is being used as a gasoline alternative in car engines. SOLUTION: Hydrogen can have only one bond so C and O must be next to each other with H filling in the bonds. There are 4(1) + 4 + 6 = 14 valence e-. C has 4 bonds and O has 2. O has 2 pair of nonbonding e-. H : H C O H : H 7 Copyright ©The McGraw-Hill Companies, Inc. Permission required for reproduction or display. SAMPLE PROBLEM 10.3 Writing Lewis Structures for Molecules with Multiple Bonds. PROBLEM: Write Lewis structures for the following: (a) Ethylene (C2H4), the most important reactant in the manufacture of polymers (b) Nitrogen (N2), the most abundant atmospheric gas PLAN: For molecules with multiple bonds, there is a Step 5 which follows the other steps in Lewis structure construction. If a central atom does not have 8e-, an octet, then two e- (either single or nonbonded pair)can be moved in to form a multiple bond. SOLUTION: (a) There are 2(4) + 4(1) = 12 valence e-. H can have only one bond per atom. H : H H H C C C C H H H H - (b) N2 has 2(5) = 10 valence e . Therefore a triple bond is required to make the octet around each N. : : : : : : N N N N N N . 8 Copyright ©The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Here are some helpful generalizations used in constructing Lewis structures • H atoms form one bond • Carbon atoms form four bonds • Nitrogen atoms form three bonds • Oxygen atoms form two bonds • Halogen atoms form one bond when they are “surrounding” atoms; but more than one bond when they are “central” atoms. Fluorine is always a “surrounding” atom. • The “central” atom is usually large and of low EN • The “octet” rule may be violated by almost all atoms except those that belong to the second period. 9 Copyright ©The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Writing Lewis Structures for Molecules with One Central Atom PROBLEM: Write a Lewis structure for CCl2F2, one of the compounds responsible for the depletion of stratospheric ozone. SOLUTION: Cl Step 1: Carbon has the lowest EN and is the central atom. Cl C F The other atoms are placed around it. F Steps 2-4: C has 4 valence e-, Cl and F each have 7. The : : Cl : sum is 4 + 4(7) = 32 valence e-. : : :Cl C F : Make bonds and fill in remaining valence : : electrons placing 8e- around each atom. F : : : 10 Copyright ©The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Writing Lewis Structure for Molecules with More than One Central Atom PROBLEM: Write the Lewis structure for methanol (molecular formula CH4O), an important industrial alcohol that is being used as a gasoline alternative in car engines. SOLUTION: Hydrogen can have only one bond so C and O must be next to each other with H filling in the bonds. There are 4(1) + 4 + 6 = 14 valence e-. C has 4 bonds and O has 2. O has 2 pair of nonbonding e-. H : H C O H : H 11 Copyright ©The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Writing Lewis Structures for Molecules with Multiple Bonds. Write Lewis structures for the following: (a) Ethylene (C2H4), the most important reactant in the manufacture of polymers (b) Nitrogen (N2), the most abundant atmospheric gas - SOLUTION: (a) There are 2(4) + 4(1) = 12 valence e . H can have only one bond per atom. H H H H C : C C C H H H H - (b) N2 has 2(5) = 10 valence e . Therefore a triple bond is required to make the octet around each N. : : : : : : N N N N N N . 12 Copyright ©The McGraw-Hill Companies, Inc. Permission required for reproduction or display. It is possible to have more than one satisfactory Lewis structure. O can be drawn in 2 ways - 3 O O O O O O Neither structure is actually correct but can be drawn to represent a structure which is a hybrid of the two - a resonance structure. Resonance structures are NOT capable of independent existence. B B O O O O O O O O O A C A C Resonance structures have the same relative atom placement but a difference in the locations of bonding and nonbonding electron pairs. is used to indicate that resonance occurs. 13 Copyright ©The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Can you see the “resonance” or “canonical” figures? 14 Copyright ©The McGraw-Hill Companies, Inc. Permission required for reproduction or display. - PROBLEM: Write resonance structures for the nitrate ion, NO3 . SOLUTION: Nitrate has 1(5) + 3(6) + 1 = 24 valence e- O O O N does not have an octet; a pair of e- N N N will move in to form O O O O O O a double bond. O O O N N N O O O O O O 15 Copyright ©The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Some resonance structures are more “important” or dominant than others. 16 Copyright ©The McGraw-Hill Companies, Inc. Permission required for reproduction or display. The formal charge helps us selecting the best resonance structure. Formal charge is the charge an atom would have if the bonding electrons were shared equally. An atom “owns” all of its nonbonding electrons and half of its bonding electrons. Formal charge of atom = # valence e- - (# unshared electrons + 1/2 # shared electrons) B For OC For OA O # valence e- = 6 # valence e- = 6 O O # nonbonding e- = 6 # nonbonding e- = 4 A C For OB # bonding e- = 2 X 1/2 = 1 # bonding e- = 4 X 1/2 = 2 - # valence e = 6 Formal charge = -1 Formal charge = 0 # nonbonding e- = 2 # bonding e- = 6 X 1/2 = 3 Formal charge = +1 17 Copyright ©The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Resonance (continued) Three criteria for choosing the more important resonance structure: Smaller formal charges (either positive or negative) are preferable to larger charges. Avoid like charges (+ + or - - ) on adjacent atoms. A more negative formal charge should exist on an atom with a larger EN value. 18 Copyright ©The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Resonance (continued) EXAMPLE: NCO- has 3 possible resonance forms - N C O N C O N C O A B C formal charges -2 0 +1 -1 0 0 0 0 -1 N C O N C O N C O Forms B and C have negative formal charges on N and O; this makes them more preferred than form A. Form C has a negative charge on O which is the more electronegative element, therefore C contributes the most to the resonance hybrid. 19 Copyright ©The McGraw-Hill Companies, Inc. Permission required for reproduction or display. The “octet” rule is often violated especially for atoms not belonging to the second period. PROBLEM: Write Lewis structures for (a) H3PO4 (pick the most likely structure); (b) BFCl2. Draw the Lewis structures for the molecule and determine STRATEGY: if there is an element which can be an exception to the octet rule. Note that (a) contains P which is a Period-3 element and can have an expanded valence shell.
Recommended publications
  • Resonance, and Formal Charge
    3.091: Introduction to Solid State Chemistry Maddie Sutula, Fall 2018 Recitation 8 1 Resonance Often, there are many ways that electrons can be arranged around a molecule. The existence of multiple electronic configurations that are stable leads to resonance, which describes the delocalization of electrons in covalently bonded molecules. To be considered resonance structures, molecules must meet the following criteria: 1. Atoms must be in the same orientation relative to each other 2. All resonance structures must have the same number of valence electrons 3. The octet rule must be satisfied, with a few exceptions: - Not followed by some elements in periods three and higher, including Cl, Br, I, P, Si − - Sulfur can have up to 12 e − - Boron can have 6 e 4. Formal charge should be on the most electronegative atoms 2− Example: Draw resonance structures for ozone (O3) and CO3 . Ozone consists of three oxygen atoms, for a total of 18 valence electrons. These can be equivalently dis- tributed in two ways: 2− CO3 consists of a central carbon atom which brings 4 valence electrons, and four oxygen atoms that each bring 6 electrons, and two additional electrons that yield the additional 2− charge. The resonance structures can be represented as follows: These equivalent structures can be combined into one compact picture (shown above on the right) that is an average of the possible structures. All of the resonance structures are equally likely, as they equivalently satisfy the guidelines for stable Lewis structures. 1 3.091: Introduction to Solid State Chemistry Maddie Sutula, Fall 2018 Recitation 8 2 Formal charge (again) 2− In the CO3 example above, the formal charge on each atom is shown in circles.
    [Show full text]
  • Unit 3 Notes: Periodic Table Notes  John Newlands Proposed an Organization System Based on Increasing Atomic Mass in 1864
    Unit 3 Notes: Periodic Table Notes John Newlands proposed an organization system based on increasing atomic mass in 1864. He noticed that both the chemical and physical properties repeated every 8 elements and called this the ____Law of Octaves ___________. In 1869 both Lothar Meyer and Dmitri Mendeleev showed a connection between atomic mass and an element’s properties. Mendeleev published first, and is given credit for this. He also noticed a periodic pattern when elements were ordered by increasing ___Atomic Mass _______________________________. By arranging elements in order of increasing atomic mass into columns, Mendeleev created the first Periodic Table. This table also predicted the existence and properties of undiscovered elements. After many new elements were discovered, it appeared that a number of elements were out of order based on their _____Properties_________. In 1913 Henry Mosley discovered that each element contains a unique number of ___Protons________________. By rearranging the elements based on _________Atomic Number___, the problems with the Periodic Table were corrected. This new arrangement creates a periodic repetition of both physical and chemical properties known as the ____Periodic Law___. Periods are the ____Rows_____ Groups/Families are the Columns Valence electrons across a period are There are equal numbers of valence in the same energy level electrons in a group. 1 When elements are arranged in order of increasing _Atomic Number_, there is a periodic repetition of their physical and chemical
    [Show full text]
  • Chemistry Third Marking Period Review Sheet Spring, Mr
    Chemistry Third Marking Period Review Sheet Spring, Mr. Wicks Chapters 7-8: Ionic and Covalent Bonding • I can explain the difference between core electrons and valence electrons. • I can write Lewis dot symbols for atoms of particular elements and show the gain or loss of electrons to form ionic compounds. • I can compare and contrast ionic and molecular compounds. See Table 1. • I can describe ionic and covalent bonding and explain the differences between them. • I can compare and contrast the properties of ionic and molecular compounds. • I can predict trends in bond length when comparing carbon-carbon single, double, and triple bonds. Table 1: Comparing Ionic and Molecular Compounds Ionic Compounds Molecular Compounds Bonding Type: Ionic Bonding Covalent Bonding In this type of bonding, electrons are _____: Transferred Shared Type(s) of Elements Involved: Metal + Nonmetal Elements Nonmetal Elements Comparison of Larger Smaller electronegativity differences: Comparison of Properties: a. Melting and boiling points: a. Higher a. Lower b. Hardness: b. Harder b. Softer c. Conduction of electricity: c. When molten or dissolved in c. Molecular compounds do water, ionic compounds tend to not conduct electricity. conduct electricity. • I can apply trends for electronegativity in the periodic table to solve homework problems. • I can use electronegativity differences to classify bonds as nonpolar covalent, polar covalent, and ionic. See Table 2. Table 2: Classifying Bonds Using Electronegativity Differences Electronegativity Difference Bond Type 0 - 0.2 Nonpolar covalent bond 0.3 - 1.9 Polar covalent bond ≥ 2.0 Ionic bond Chemistry Third Marking Period Review Sheet, Page 2 • I can apply the octet rule to write Lewis structures for molecular compounds and polyatomic ions.
    [Show full text]
  • Constrained Density Functional Theory
    Constrained Density Functional Theory The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation Kaduk, Benjamin, Tim Kowalczyk, and Troy Van Voorhis. “Constrained Density Functional Theory.” Chemical Reviews 112.1 (2012): 321–370. © 2012 American Chemical Society As Published http://dx.doi.org/ 10.1021/cr200148b Publisher American Chemical Society (ACS) Version Author's final manuscript Citable link http://hdl.handle.net/1721.1/74564 Terms of Use Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use. Constrained Density Functional Theory Benjamin Kaduk, Tim Kowalczyk and Troy Van Voorhis Department of Chemistry, Massachusetts Institute of Technology 77 Massachusetts Avenue, Cambridge MA 02139 May 2, 2011 Contents 1 Introduction 3 2 Theory 7 2.1 OriginalCDFTEquations ............................ 7 2.2 ConstrainedObservables . .. .. 9 2.3 ChoosingaConstraint .............................. 13 2.4 Implementation .................................. 18 2.5 Promolecules ................................... 24 2.6 Illustrations .................................... 28 2.6.1 MetalImpurities ............................. 28 2.6.2 Long-range Charge-Transfer Excited States . .... 32 2.7 FutureChallenges................................. 34 3 Application to Electron Transfer 36 3.1 Background:MarcusTheory. 36 3.2 DiabaticETStatesfromCDFT ......................... 39 3.2.1 Choosing Suitable Density Constraints for ET . 39 3.2.2 Illustrations ................................ 41 3.3 IncorporatingSolventEffects. .. 46 3.4 Molecular Dynamics and Free Energy Simulations . 49 3.5 RelatedandOngoingWork ........................... 54 4 Low-lying Spin States 57 4.1 TracingOutConstant-spinStates . .. 59 4.2 The Heisenberg Picture of Molecular Magnets . .. 63 4.3 Singlet-Triplet Gaps of Intermolecular CT States .
    [Show full text]
  • Formal Charge Worksheet / Chem 314 Beauchamp
    Formal Charge Worksheet / Chem 314 Beauchamp Formal Charge – a convention designed to indicate an excess or deficiency of electron density compared to an atom’s neutral allocation of electrons. Formal electrons in 1 electrons in Charge =Zeffective lone pairs 2 covalent bonds This number never changes for an atom and represents positive Total valence electrons allocated to an atom charge not cancelled assuming electrons are shared evenly in bonds. by core electrons. This number varies depending on the bonding arrangement. It is negative because electrons are negative. Rules of Formal Charge 1. When an atom’s total valence electron credit exactly matches its Zeff, there is no formal charge. 2. Each deficiency of an electron credit from an atom’s normal number of valence electrons produces an additional positive charge. 3. If the formal charge calculation shows excess electron credit over an atom’s normal number of valence electrons, a negative formal charge is added for each extra electron. 4. The total charge on an entire molecule, ion or free radical is the sum of all of the formal charges on the individual atoms. Write 3D structures for all resonance contributors. Rank them from best (=1) to last. Judge your structures on the basis of 1. maximum number of bonds / full octets, 2. minimize formal charge, 3, consistent formal charge based on electronegativity. Cations a. b. c. d. e. f. H COH 2 H2CNH2 (CH3)2COH (CH3)2CNHCH3 (CH3)2CCH2CH3 H2CCOH 2 resonance 2 resonance 2 resonance 2 resonance 2 resonance structures structures structures structures structures g. h. i. j.
    [Show full text]
  • Formal Charge and Oxidation Number
    FORMAL CHARGE AND OXIDATION NUMBER Although the total number of valence electrons in a molecule is easily calculated, there is not aways a simple and unambiguous way of determining how many reside in a particular bond or as non-bonding pairs on a particular atom. For example, one can write valid Lewis octet structures for carbon monoxide showing either a double or triple bond between the two atoms, depending on how many nonbonding pairs are placed on each: C::O::: and :C:::O: (see Problem Example 3 below). The choice between structures such as these is usually easy to make on the principle that the more electronegative atom tends to surround itself with the greater number of electrons. In cases where the distinction between competing structures is not all that clear, an arbitrarily-calculated quantity known as the formal charge can often serve as a guide. The formal charge on an atom is the electric charge it would have if all bonding electrons were shared equally with its bonded neighbors. How to calculate the formal charge on an atom in a molecule The formal charge on an atom is calculated by the following formula: In which the core charge is the electric charge the atom would have if all its valence electrons were removed. In simple cases, the formal charge can be worked out visually directly from the Lewis structure, as is illustrated farther on. Problem Example 1 Find the formal charges of all the atoms in the sulfuric acid structure shown here. Solution: The atoms here are hydrogen, sulfur, and double- and single-bonded oxygens.
    [Show full text]
  • Periodic Trends Lab CHM120 1The Periodic Table Is One of the Useful
    Periodic Trends Lab CHM120 1The Periodic Table is one of the useful tools in chemistry. The table was developed around 1869 by Dimitri Mendeleev in Russia and Lothar Meyer in Germany. Both used the chemical and physical properties of the elements and their tables were very similar. In vertical groups of elements known as families we find elements that have the same number of valence electrons such as the Alkali Metals, the Alkaline Earth Metals, the Noble Gases, and the Halogens. 2Metals conduct electricity extremely well. Many solids, however, conduct electricity somewhat, but nowhere near as well as metals, which is why such materials are called semiconductors. Two examples of semiconductors are silicon and germanium, which lie immediately below carbon in the periodic table. Like carbon, each of these elements has four valence electrons, just the right number to satisfy the octet rule by forming single covalent bonds with four neighbors. Hence, silicon and germanium, as well as the gray form of tin, crystallize with the same infinite network of covalent bonds as diamond. 3The band gap is an intrinsic property of all solids. The following image should serve as good springboard into the discussion of band gaps. This is an atomic view of the bonding inside a solid (in this image, a metal). As we can see, each of the atoms has its own given number of energy levels, or the rings around the nuclei of each of the atoms. These energy levels are positions that electrons can occupy in an atom. In any solid, there are a vast number of atoms, and hence, a vast number of energy levels.
    [Show full text]
  • Chemical Bonding
    Chemical Bonding: Fundamental Concepts Resonance Structures and Formal Charge Electronegativity, Formal Charge and Resonance Page [1 of 3] In this lecture we’re going to pull together ideas about formal charge, resonance structures, electronegativity, and really make some predictions and some rationalizations about why molecules behave the way they do. And the first one I want to do is to go back and look at the cyanate ion. Cyanate is NCO. And in a previous lecture I talked about the fact that there were several different possible resonance structures that are all in equivalence, and that it was possible at least to figure out which one contributed the most and which one contributed the least based on formal charge. So here are the formal charge evaluations for this left-hand resonance structure. Nitrogen has a formal charge of zero. Carbon has a formal charge of zero. Oxygen has a formal charge of -1. For B, nitrogen is -1, carbon is zero, oxygen is zero. And for C, nitrogen is -2, carbon is zero, and oxygen is +1. Now, the rule said that formal charges of plus or minus 1 and zero are okay. In fact, zero is great. And plus or minus 2 and bigger, that’s just not going to work. Why? Because remember, formal charges reflect how the electrons are distributed relative to how they are distributed in the free atom. So how they’re distributed in a molecule versus how they’re distributed in the free atom. And in this case nitrogen has a lot more electrons than it would if were a free atom formally; in other words, an accounting method.
    [Show full text]
  • Bsc Chemistry
    ____________________________________________________________________________________________________ Subject Chemistry Paper No and Title 2 and Physical Chemistry-I Module No and Title 27 and Valence Bond Theory I Module Tag CHE_P2_M27 SUBJECT PAPER : 2, Physical Chemistry I MODULE : 27, Valence Bond Theory I ____________________________________________________________________________________________________ TABLE OF CONTENTS 1. Learning Outcomes 2. Introduction 3. Valence Bond Theory (VBT) 3.1 Postulates of VBT 3.2 VBT of Hydrogen molecule 4. Summary 1. SUBJECT PAPER : 2, Physical Chemistry I MODULE : 27, Valence Bond Theory I ____________________________________________________________________________________________________ 1. Learning Outcomes After studying this module, you shall be able to: Learn about electronic structure of molecules using VBT Understand the postulates of VBT The VBT of Hydrogen molecule 2. Introduction Now, at this point we know that the Schrodinger equation cannot be solved exactly for multi-electron system even if the inter-nuclear distances are held constant. This is due to the presence of electron-electron repulsion terms in the Hamiltonian operator. Consequently, various approaches have been developed for the approximate solution of Schrodinger equation. Of these, Molecular Orbital Theory (MOT) and Valence Bond Theory (VBT) have been widely used. These two approaches differ in the choice of trial/approximate wave-function which is optimized via variation method for the system under consideration. Of these, we have already discussed MOT in earlier modules. In this module, we will take up the formalism of VBT in detail. 3. Valence Bond Theory Valence Bond Theory was the first quantum mechanical treatment to account for chemical bonding. This theory was first introduced by Heitler and London in 1927 and subsequently by Slater and Pauling in 1930s.
    [Show full text]
  • Valence Bond Theory
    Valence Bond Theory • A bond is a result of overlapping atomic orbitals from two atoms. The overlap holds a pair of electrons. • Normally each atomic orbital is bringing one electron to this bond. But in a “coordinate covalent bond”, both electrons come from the same atom • In this model, we are not creating a new orbital by the overlap. We are simply referring to the overlap between atomic orbitals (which may or may not be hybrid) from two atoms as a “bond”. Valence Bond Theory Sigma (σ) Bond • Skeletal bonds are called “sigma” bonds. • Sigma bonds are formed by orbitals approaching and overlapping each other head-on . Two hybrid orbitals, or a hybrid orbital and an s-orbital, or two s- orbitals • The resulting bond is like an elongated egg, and has cylindrical symmetry. Acts like an axle • That means the bond shows no resistance to rotation around a line that lies along its length. Pi (π) Bond Valence Bond Theory • The “leftover” p-orbitals that are not used in forming hybrid orbitals are used in making the “extra” bonds we saw in Lewis structures. The 2 nd bond in a double bond nd rd The 2 and 3 bonds in a triple bond /~harding/IGOC/P/pi_bond.html • Those extra bonds form only after the atoms are brought together by the formation of the skeletal bonds made by www.chem.ucla.edu hybrid orbitals. • The “extra” π bonds are always associated with a skeletal bond around which they form. • They don’t form without a skeletal bond to bring the p- orbitals together and “support” them.
    [Show full text]
  • Octet Rule & Ions
    Chemistry 51 Chapter 5 OCTET RULE & IONS Most elements, except noble gases, combine to form compounds. Compounds are the result of the formation of chemical bonds between two or more different elements. In the formation of a chemical bond, atoms lose, gain or share valence electrons to complete their outer shell and attain a noble gas configuration. This tendency of atoms to have eight electrons in their outer shell is known as the octet rule. Formation of Ions: An ion (charged particle) can be produced when an atom gains or loses one or more electrons. A cation (+ ion) is formed when a neutral atom loses an electron. An anion (- ion) is formed when a neutral atom gains an electron. 1 Chemistry 51 Chapter 5 IONIC CHARGES The ionic charge of an ion is dependent on the number of electrons lost or gained to attain a noble gas configuration. For most main group elements, the ionic charges can be determined from their group number, as shown below: All other ionic charges need to be memorized and known in order to write correct formulas for the compounds containing them. 2 Chemistry 51 Chapter 5 COMPOUNDS Compounds are pure substances that contain 2 or more elements combined in a definite proportion by mass. Compounds can be classified as one of two types: Ionic and molecular (covalent) Ionic compounds are formed by combination of a metal and a non-metal. The smallest particles of ionic compounds are ions. Molecular compounds are formed by combination of 2 or more non-metals. The smallest particles of molecular compounds are molecules.
    [Show full text]
  • Chemical Applications of X-Ray Charge-Density Analysis
    Chem. Rev. 2001, 101, 1583−1627 1583 Chemical Applications of X-ray Charge-Density Analysis Tibor S. Koritsanszky† Department of Chemistry, University of the Witwatersrand, WITS 2050, Johannesburg, South Africa Philip Coppens* Department of Chemistry, State University of New York at Buffalo, Buffalo, New York, 14260-3000 Received October 18, 2000 Contents VII. Physical Properties from the Experimental 1617 Density I. Charge Densities from X-ray Diffraction 1583 A. Net Atomic and Molecular Charges 1617 II. Elements of Electron Density Determination 1585 B. Solid-State Dipole and Higher Moments and 1618 A. Expressions 1585 Nonlinear Optical Properties 1. Electron Density 1585 C. Electric Field Gradient at the Nuclear 1621 2. Structure Factor and Difference Densities 1585 Positions 3. Aspherical-Atom Formalism 1586 D. Electrostatic Potential 1621 4. Electrostatic Properties from the Charge 1586 E. Quantitative Evaluation of Electrostatic 1623 Density Interactions from the X-ray Charge Density B. Experiment and Analysis 1587 VIII. Concluding Remarks 1624 1. Experimental Conditions 1587 IX. Glossary of Abbreviations 1624 2. Data Analysis 1588 X. Acknowledgments 1624 III. Chemistry from the Electron Density 1590 XI. References 1625 A. Use of the Deformation Density 1590 B. Theory of Atoms in Molecules 1591 I. Charge Densities from X-ray Diffraction 1. Topological Atom 1591 As X-ray scattering by electrons is much stronger 2. Topological Structure of Molecules 1591 than that of the nuclei, intensities of scattered X-rays 3. Topological Classification of Atomic 1591 are almost exclusively determined by the distribution Interactions of the electrons. Thus, X-ray diffraction is a priori a 4. Laplacian of the Electron Density 1592 tool for the determination of electron distribution in 5.
    [Show full text]