Chapter 9 Covalent Bonding: Orbitals the Localized Electron Model Valence Bond Theory Hybridization

Total Page:16

File Type:pdf, Size:1020Kb

Chapter 9 Covalent Bonding: Orbitals the Localized Electron Model Valence Bond Theory Hybridization The Localized Electron Model Chapter 9 Covalent Bonding: Draw the Lewis structure(s) Orbitals Determine the arrangement of electron pairs (VSEPR model). Specify the necessary hybrid orbitals. Hybridization Valence Bond Theory • Valence bond theory or hybrid orbital theory is an approximate theory to explain the covalent bond from a quantum mechanical • The mixing of atomic orbitals to form special orbitals for bonding. view. • According to this theory, a bond forms between • The atoms are responding as needed to two atoms when the following conditions are met. (see Figures 10.21 and 10.22) give the minimum energy for the molecule. 1. Two atomic orbitals “overlap” 2. The total number of electrons in both orbitals is no more than two. 1 Figure 10.20: Formation of H2. Figure 10.21: Bonding in HCl. Bond formed between two s orbitals Bond formed between an s and p orbital Figure 9.1: (a) The Lewis structure of the methane molecule. (b) The Hybrid Orbitals tetrahedral molecular geometry of • One might expect the number of bonds formed the methane molecule. by an atom would equal its unpaired electrons. • Chlorine, for example, generally forms one bond and has one unpaired electron. • Oxygen, with two unpaired electrons, usually forms two bonds. • However, carbon, with only two unpaired electrons, generally forms four bonds. For example, methane, CH4, is well known. 2 Hybrid Orbitals • The bonding in carbon might be explained as 2p 2p follows: • Four unpaired electrons are formed as an electron from the 2s orbital is promoted 2s 2s (excited) to the vacant 2p orbital. • The following slide illustrates this excitation. (Recall that in the excited state for an element, a ground state electron is promoted to a higher Energy 1s 1s orbital) • More than enough energy is supplied for this C atom (ground state) C atom (promoted) promotion from the formation of two additional covalent bonds. Hybrid Orbitals Hybrid Orbitals • One bond on carbon would form using the 2s • Hybrid orbitals are orbitals used to describe orbital while the other three bonds would use bonding that are obtained by taking the 2p orbitals. combinations of atomic orbitals of an isolated atom. • This does not explain the fact that the four • In this case, a set of hybrids are constructed bonds in CH4 appear to be identical. from one “s” orbital and three “p” orbitals, so • Valence bond theory assumes that the four they are called sp3 hybrid orbitals. available atomic orbitals in carbon combine to 3 make four equivalent “hybrid” orbitals. • The four sp hybrid orbitals take the shape of a tetrahedron (see Figure 10.23). 3 Figure 9.2: The valence Figure 9.3: The "native" 2s and three 2p atomic orbitals characteristic of a free carbon atom are combined to form a new set of four sp 3 orbitals. The orbitals on a small lobes of the orbitals are usually omitted from diagrams for clarity. free carbon atom: 2s, 2px, 2py, and 2pz. Figure 9.4: Figure 9.6: The tetrahedral set of four sp3 orbitals of the carbon atom are used to share electron pairs with the four 1s Cross orbitals of the hydrogen atoms to form the four equivalent section of C—H bonds. This accounts for the known tetrahedral structure of the CH4 molecule. an sp3 orbital. 4 Figure 9.5: An energy-level Figure 9.7: The nitrogen atom in diagram showing the formation ammonia is sp3 hybridized. of four sp3 orbitals. You can represent the hybridization of carbon in CH4 as follows. A Problem to Consider • Describe the bonding in H2O according to 2p valence bond theory. Assume that the 3 3 sp sp molecular geometry is the same as given by C-H bonds the VSEPR model. 2s •From the Lewis formula for a molecule, determine its geometry about the central atom Energy using the VSEPR model. 1s 1s 1s C atom C atom C atom (ground state) (hybridized state) (in CH4) 5 A Problem to Consider A Problem to Consider • Describe the bonding in H2O according to • Describe the bonding in H2O according to valence bond theory. Assume that the valence bond theory. Assume that the molecular geometry is the same as given by molecular geometry is the same as given by the VSEPR model. the VSEPR model. • The Lewis formula for H2O is • From this geometry, determine the hybrid orbitals on this atom, assigning its valence electrons to these orbitals one at a time. A Problem to Consider A Problem to Consider • Describe the bonding in H2O according to • Describe the bonding in H2O according to valence bond theory. Assume that the valence bond theory. Assume that the molecular geometry is the same as given by molecular geometry is the same as given by the VSEPR model. the VSEPR model. • Note that there are four pairs of electrons about • Each O-H bond is formed by the overlap of a the oxygen atom. 1s orbital of a hydrogen atom with one of the • According to the VSEPR model, these are directed singly occupied sp3 hybrid orbitals of the tetrahedrally, and from the previous table you see oxygen atom. that you should use sp3 hybrid orbitals. 6 You can represent the bonding to the oxygen atom in H2O as follows: Figure 2p sp3 sp3 10.24: lone O-H Bonding 2s pairs bonds in H2O. Energy 1s 1s 1s O atom O atom O atom (ground state) (hybridized state) (in H2O) Figure 9.9: An orbital energy-level Figure 9.8: The hybridization of the s, px, and py atomic diagram for sp2 hybridization. Note orbitals results in the formation of three sp2 orbitals centered in the xy plane. The large lobes of the orbitals lie in the plane that one p orbital remains at angles of 120 degrees and point toward the corners of a unchanged. triangle. 7 Figure 9.21: A set of dsp3 hybrid orbitals on a Figure 9.14: When one s orbital and one phosphorus atom. Note that the set of five dsp3 p orbital are hybridized, a set of two sp orbitals has a trigonal bipyramidal arrangement. 3 orbitals oriented at 180 degrees results. (Each dsp orbital also has a small lobe that is not shown in this diagram.) 2 3 Figure 9.22: (a) The structure of the PCI5 molecule. (b) The Figure 9.23: An octahedral set of d sp orbitals used to form the bonds in PCl5. The phosphorus uses orbitals on a sulfur atom. The small lobe a set of five dsp3 orbitals to share electron pairs with sp3 orbitals on the five chlorine atoms. The other sp3 orbitals on of each hybrid orbital has been omitted each chlorine atom hold lone pairs. for clarity. 8 Figure 9.24: Hybrid Orbitals The relationship of the number • Note that there is a relationship between the of effective type of hybrid orbitals and the geometric pairs, their arrangement of those orbitals. spatial • Thus, if you know the geometric arrangement, arrangement, you know what hybrid orbitals to use in the and the hybrid bonding description. orbital set • Figure 9.24 summarizes the types of hybridization required. and their spatial arrangements. Hybrid Orbitals Hybrid Orbitals Hybrid Geometric Number of Example • To obtain the bonding description of any atom Orbitals Arrangements Orbitals in a molecule, you proceed as follows: sp Linear 2 Be in BeF 2 1. Write the Lewis electron-dot formula for the 2 sp Trigonal planar 3 B in BF3 molecule. 2. From the Lewis formula, use the VSEPR theory sp3 Tetrahedral 4 C in CH 4 to determine the arrangement of electron pairs 3 dsp Trigonal bipyramidal 5 P in PCl5 around the atom. 2 3 d sp Octahedral 6 S in SF6 9 Hybrid Orbitals Hybrid Orbitals • To obtain the bonding description of any atom • To obtain the bonding description of any atom in a molecule, you proceed as follows: in a molecule, you proceed as follows: 3. From the geometric arrangement of the electron 5. Form bonds to this atom by overlapping singly pairs, obtain the hybridization type. occupied orbitals of other atoms with the singly occupied hybrid orbitals of this atom. 4. Assign valence electrons to the hybrid orbitals of this atom one at a time, pairing only when necessary. A Problem to Consider A Problem to Consider • Describe the bonding in XeF4 using hybrid • Describe the bonding in XeF4 using hybrid orbitals. orbitals. • From this geometry, determine the hybrid • From the Lewis formula for a molecule, orbitals on this atom, assigning its valence determine its geometry about the central atom electrons to these orbitals one at a time. using the VSEPR model. 10 A Problem to Consider A Problem to Consider • Describe the bonding in XeF4 using hybrid • Describe the bonding in XeF4 using hybrid orbitals. orbitals. • The Lewis formula of XeF4 is • The xenon atom has four single bonds and two lone pairs. It will require six orbitals to describe the bonding. • This suggests that you use d2sp3 hybrid orbitals on xenon. A Problem to Consider 5d • Describe the bonding in XeF4 using hybrid orbitals. 5p • Each Xe-F bond is formed by the overlap of a xenon d2sp3 hybrid orbital with a singly occupied fluorine 2p orbital. • You can summarize this as follows: 5s Xe atom (ground state) 11 5d 5d d2sp3 d2sp3 lone pairs Xe-F bonds Xe atom (hybridized state) Xe atom (in XeF4) Multiple Bonding Multiple Bonding • According to valence bond theory, one hybrid • To describe the multiple bonding in ethene, orbital is needed for each bond (whether a we must first distinguish between two kinds of single or multiple) and for each lone pair.
Recommended publications
  • Valence Bond Theory
    UMass Boston, Chem 103, Spring 2006 CHEM 103 Molecular Geometry and Valence Bond Theory Lecture Notes May 2, 2006 Prof. Sevian Announcements z The final exam is scheduled for Monday, May 15, 8:00- 11:00am It will NOT be in our regularly scheduled lecture hall (S- 1-006). The final exam location has been changed to Snowden Auditorium (W-1-088). © 2006 H. Sevian 1 UMass Boston, Chem 103, Spring 2006 More announcements Information you need for registering for the second semester of general chemistry z If you will take it in the summer: z Look for chem 104 in the summer schedule (includes lecture and lab) z If you will take it in the fall: z Look for chem 116 (lecture) and chem 118 (lab). These courses are co-requisites. z If you plan to re-take chem 103, in the summer it will be listed as chem 103 (lecture + lab). In the fall it will be listed as chem 115 (lecture) + chem 117 (lab), which are co-requisites. z Note: you are only eligible for a lab exemption if you previously passed the course. Agenda z Results of Exam 3 z Molecular geometries observed z How Lewis structure theory predicts them z Valence shell electron pair repulsion (VSEPR) theory z Valence bond theory z Bonds are formed by overlap of atomic orbitals z Before atoms bond, their atomic orbitals can hybridize to prepare for bonding z Molecular geometry arises from hybridization of atomic orbitals z σ and π bonding orbitals © 2006 H. Sevian 2 UMass Boston, Chem 103, Spring 2006 Molecular Geometries Observed Tetrahedral See-saw Square planar Square pyramid Lewis Structure Theory
    [Show full text]
  • Lewis Structure Handout
    Lewis Structure Handout for Chemistry Students An electron dot diagram, also known as a Lewis Structure, is a representation of valence electrons in a single atom, and can be further utilized to depict the bonds that form based on the available electrons for covalent bonding between multiple atoms. -Each atom has a characteristic dot diagram based on its position in the periodic table and this reflects its potential for fulfillment of the octet rule. As a general rule, the noble gases have a filled octet (column VIII with eight valence electrons) and each preceding column has successively one fewer. • For example, Carbon is in column IV and has four valence electrons. It can therefore be represented as: • Each of these "lone" electrons can form a bond by sharing the orbital with another unbonded electron. Hydrogen, being in column I, has a single valence electron, and will therefore satisfy carbon's octet thusly: • When a compound has bonded electrons (as with CH4) it is most accurate to diagram it with lines representing each of the single bonds. • Using carbon again for a slightly more complicated example, it can also form double bonds. This is the case when carbon bonds to two oxygen atoms, resulting in CO2. The oxygen atoms (with six valence electrons in column VI) are each represented as: • Because carbon is the least electronegative of the atoms involved, it is placed centrally, and its valence electrons will migrate toward the more electronegative oxygens to form two double bonds and a linear structure. This can be written as: where oxygen's remaining lone pairs are still shown.
    [Show full text]
  • Introduction to Molecular Orbital Theory
    Chapter 2: Molecular Structure and Bonding Bonding Theories 1. VSEPR Theory 2. Valence Bond theory (with hybridization) 3. Molecular Orbital Theory ( with molecualr orbitals) To date, we have looked at three different theories of molecular boning. They are the VSEPR Theory (with Lewis Dot Structures), the Valence Bond theory (with hybridization) and Molecular Orbital Theory. A good theory should predict physical and chemical properties of the molecule such as shape, bond energy, bond length, and bond angles.Because arguments based on atomic orbitals focus on the bonds formed between valence electrons on an atom, they are often said to involve a valence-bond theory. The valence-bond model can't adequately explain the fact that some molecules contains two equivalent bonds with a bond order between that of a single bond and a double bond. The best it can do is suggest that these molecules are mixtures, or hybrids, of the two Lewis structures that can be written for these molecules. This problem, and many others, can be overcome by using a more sophisticated model of bonding based on molecular orbitals. Molecular orbital theory is more powerful than valence-bond theory because the orbitals reflect the geometry of the molecule to which they are applied. But this power carries a significant cost in terms of the ease with which the model can be visualized. One model does not describe all the properties of molecular bonds. Each model desribes a set of properties better than the others. The final test for any theory is experimental data. Introduction to Molecular Orbital Theory The Molecular Orbital Theory does a good job of predicting elctronic spectra and paramagnetism, when VSEPR and the V-B Theories don't.
    [Show full text]
  • Lewis Structures
    Lewis Structures Valence electrons for Elements Recall that the valence electrons for the elements can be determined based on the elements position on the periodic table. Lewis Dot Symbol Valence electrons and number of bonds Number of bonds elements prefers depending on the number of valence electrons. In general - F a m i l y → # C o v a l e n t B o n d s* H a l o g e n s X F , B r , C l , I → 1 bond often C a l c o g e n s O 2 bond often O , S → N i t r o g e n N 3 bond often N , P → C a r b o n C → 4 bond always C , S i The above chart is a guide on the number of bonds formed by these atoms. Lewis Structure, Octet Rule Guidelines When compounds are formed they tend to follow the Octet Rule. Octet Rule: Atoms will share electrons (e-) until it is surrounded by eight valence electrons. 4 unpaired 3unpaired 2unpaired 1unpaired up = unpaired e- 4 bonds 3 bonds 2 bonds 1 bond O=C=O N≡ N O = O F - F Atomic Connectivity The atomic arrangement for a molecule is usually given. CH2ClF HNO3 CH3COOH H2SO4 Cl N H O O O O H C F O H C C H O S O H H H H O H O In general when there is a single central atom in the 3- molecule, CH2ClF, SeCl2, O3 (CO2, NH3, PO4 ), the central atom is the first atom in the chemical formula.
    [Show full text]
  • Draw Three Resonance Structures for the Chlorate Ion, Clo3
    University Chemistry Quiz 3 2014/11/6 + 1. (10%) Explain why the bond order of N2 is greater than that of N2 , but the bond + order of O2 is less than that of O2 . Sol. + In forming the N2 from N2, an electron is removed from the sigma bonding molecular orbital. Consequently, the bond order decreases to 2.5 from 3.0. In + forming the O2 ion from O2, an electron is removed from the pi antibonding molecular orbital. Consequently, the bond order increases to 2.5 from 2.0. - 2. (10%) Draw three resonance structures for the chlorate ion, ClO3 . Show formal charges. Sol. Strategy: We follow the procedure for drawing Lewis structures outlined in Section 3.4 of the text. After we complete the Lewis structure, we draw the resonance structures. Solution: Following the procedure in Section 3.4 of the text, we come up with − the following Lewis structure for ClO3 . O − + − O Cl O We can draw two more equivalent Lewis structures with the double bond between Cl and a different oxygen atom. The resonance structures with formal charges are as follows: − − O O O + − − + − − + O Cl O O Cl O O Cl O 3. (5%) Use the molecular orbital energy-level diagram for O2 to show that the following Lewis structure corresponds to an excited state: Sol. The Lewis structure shows 4 pairs of electrons on the two oxygen atoms. From Table 3.4 of the text, we see that these 8 valence electrons are placed in the σ p p p p 2p , 2p , 2p , 2p , and 2p orbitals.
    [Show full text]
  • Molecular Orbital Theory
    Molecular Orbital Theory The Lewis Structure approach provides an extremely simple method for determining the electronic structure of many molecules. It is a bit simplistic, however, and does have trouble predicting structures for a few molecules. Nevertheless, it gives a reasonable structure for many molecules and its simplicity to use makes it a very useful tool for chemists. A more general, but slightly more complicated approach is the Molecular Orbital Theory. This theory builds on the electron wave functions of Quantum Mechanics to describe chemical bonding. To understand MO Theory let's first review constructive and destructive interference of standing waves starting with the full constructive and destructive interference that occurs when standing waves overlap completely. When standing waves only partially overlap we get partial constructive and destructive interference. To see how we use these concepts in Molecular Orbital Theory, let's start with H2, the simplest of all molecules. The 1s orbitals of the H-atom are standing waves of the electron wavefunction. In Molecular Orbital Theory we view the bonding of the two H-atoms as partial constructive interference between standing wavefunctions of the 1s orbitals. The energy of the H2 molecule with the two electrons in the bonding orbital is lower by 435 kJ/mole than the combined energy of the two separate H-atoms. On the other hand, the energy of the H2 molecule with two electrons in the antibonding orbital is higher than two separate H-atoms. To show the relative energies we use diagrams like this: In the H2 molecule, the bonding and anti-bonding orbitals are called sigma orbitals (σ).
    [Show full text]
  • Chemical Bonding II: Molecular Shapes, Valence Bond Theory, and Molecular Orbital Theory Review Questions
    Chemical Bonding II: Molecular Shapes, Valence Bond Theory, and Molecular Orbital Theory Review Questions 10.1 J The properties of molecules are directly related to their shape. The sensation of taste, immune response, the sense of smell, and many types of drug action all depend on shape-specific interactions between molecules and proteins. According to VSEPR theory, the repulsion between electron groups on interior atoms of a molecule determines the geometry of the molecule. The five basic electron geometries are (1) Linear, which has two electron groups. (2) Trigonal planar, which has three electron groups. (3) Tetrahedral, which has four electron groups. (4) Trigonal bipyramid, which has five electron groups. (5) Octahedral, which has six electron groups. An electron group is defined as a lone pair of electrons, a single bond, a multiple bond, or even a single electron. H—C—H 109.5= ijj^^jl (a) Linear geometry \ \ (b) Trigonal planar geometry I Tetrahedral geometry I Equatorial chlorine Axial chlorine "P—Cl: \ Trigonal bipyramidal geometry 1 I Octahedral geometry I 369 370 Chapter 10 Chemical Bonding II The electron geometry is the geometrical arrangement of the electron groups around the central atom. The molecular geometry is the geometrical arrangement of the atoms around the central atom. The electron geometry and the molecular geometry are the same when every electron group bonds two atoms together. The presence of unbonded lone-pair electrons gives a different molecular geometry and electron geometry. (a) Four electron groups give tetrahedral electron geometry, while three bonding groups and one lone pair give a trigonal pyramidal molecular geometry.
    [Show full text]
  • Drawing Lewis Structures
    Drawing Lewis Structures • This chapter describes how to draw Lewis structures from chemical formulas. • Lewis structures represent molecules using element symbols, lines for bonds, and dots for lone pairs. Short Procedue for Drawing Lewis Structures • The first procedure involves drawing Lewis structures by attempting to give each atom in a molecule its most common bonding pattern. Most Common Bonding Patterns for Nonmetals Element # Bonds # lone pairs H 1 0 C 4 0 N, P 3 1 O, S, Se 2 2 F, Cl, Br, I 1 3 Most Common Bonding Patterns for Nonmetals https://preparatorychemistry.com/Bishop_periodic_table.pdf Example 1 Short Technique Methane, CH4 • Hydrogen atoms have 1 bond and no lone pairs. • Carbon atoms usually have 4 bonds and no lone pairs. Example 2 Short Technique Ammonia, NH3 • Hydrogen atoms have 1 bond and no lone pairs. • Nitrogen atoms usually have 3 bonds and 1 lone pair. Example 3 Short Technique Water, H2O • Hydrogen atoms have 1 bond and no lone pairs. • Oxygen atoms usually have 2 bonds and 2 lone pairs. Example 4 Short Technique Hypochlorous acid, HOCl • Hydrogen atoms have 1 bond and no lone pairs. • Oxygen atoms usually have 2 bonds and 2 lone pairs. • Chlorine atoms usually have one bond and three lone pairs. Example 5 Short Technique CFC-11, CCl3F • Carbon atoms usually have 4 bonds and no lone pairs. • Both fluorine and chlorine atoms usually have one bond and three lone pairs. Example 6 Short Technique Ethyne (acetylene), C2H2 (burned in oxyacetylene torches) • Carbon atoms usually have 4 bonds and no lone pairs.
    [Show full text]
  • How Do We Know That There Are Atoms
    Chemistry 11 Fall 2010 Discussion – 12/13/10 MOs and Hybridization 1. a. [:C N:]- Bond order = (8 – 2) / 2 = 3 *2p * 2p C 2p N 2p 2p 2p *2s C 2s N 2s 2s CN- b. Comparison of Lewis and MO models of CN- CN- Consistent: Both have triple bond (B.O. = 3) Inconsistent: - Lewis structure shows lone pairs on each atom rather than all e- being shared (MO) - Lewis structure indicates a negative formal charge on C, whereas MO suggests more electron density on N, which is consistent with EN considerations c. Both molecules exhibit sp mixing, and the MOs should reflect this. In N2, the molecular orbitals would be distributed equally between the two N atoms, whereas in CN-, the bonding orbitals have greater electron density on the more electronegative atom (N). The antibonding orbitals have more electron density on the less electronegative atom (C). - 1 - Chemistry 11 Fall 2010 2. a. Completed structure of guanine (carbons at each intersection are implied): * * * * b. 17 sigma bonds; 4 pi bonds. c. All carbons are sp2 hybridized; trigonal planar; with 120˚ bond angles. d. We predict that the three N’s marked with * are sp3 hybridized, with 109.5˚ bond angles. The remaining N atoms are sp2 hybridized, with 120˚ bond angles. e. i. Benzene: ii. For the structure drawn in (a), the bond angles in the six membered ring would be expected to be 120˚ for each atom except for the N§, which is predicted to have bond angles of 109.5˚. However, it is not possible to form a planar six-membered ring unless ALL the angles are 120˚.
    [Show full text]
  • Localized Electron Model for Bonding What Does Hybridization Mean?
    190 Localized electron model for bonding 1. Determine the Lewis Structure for the molecule 2. Determine resonance structures 3. Determine the shape of the molecule 4. Determine the hybridization of the atoms What does hybridization mean? Why hybridize? Look at the shape of many molecules, and compare this to the shape of the orbitals of each of the atoms. Shape of orbitals Orbitals on atoms are s, p, d, and f, and there are certain shapes associated with each orbital. an s orbital is a big sphere the f orbitals look like two four leaf the p orbitals looks like “8” ’s clovers each one points in along an axis three f orbitals look like weird “8”’s with two doughnuts around each four of the d orbitals look like four one leaf clovers one d orbital looks like an “8” with a doughnut around the middle Shape of molecules Remember we determine the shape of molecules by determining the number of sets of electrons around the atom. count double and triple bonds as one set, count single bonds as one set of electrons and count lone pairs as a set 2 sets—each pair of electrons points 180° away from the other 5 sets—each pair points toward the corner of a trigonal bipyramid 3 sets—each pair points toward the corner of a triangle 6 sets—each pair points toward the corners of an octahedron 4 sets—each pair points toward the corner of a tetrahedron 191 To make bonds we need orbitals—the electrons need to go some where.
    [Show full text]
  • Understanding Hypervalency
    Created by Gerard Rowe ([email protected]) and posted on VIPEr (www.ionicviper.org) on Nov 5, 2013. Copyright Gerard Rowe 2013. This work is licensed under the Creative Commons Attribution-NonCommerical-ShareAlike 3.0 Unported License. To view a copy of this license visit http://creativecommons.org/about/license/. Understanding Hypervalency In the world of quantum chemistry, there are two prevailing theories that explain chemical bonding: valence bond (VB) theory and molecular orbital (MO) theory. By this point in time, you have had exposure to both. The concepts of equivalent hybrid orbitals and resonance structures are part of VB theory, and VB orbitals generally only sit between two atoms. MO theory, on the other hand, uses orbitals that are delocalized; that is, they can span multiple atoms, or even the entire molecule. The interesting thing about these two theories is that they are both equally valid, and make the exact same predictions. Which one you use depends on the situation. The utility of VB hybrid orbitals lies in their simplicity in explaining structural features such as the four equivalent C-H bonds of methane (as does MO theory in a more complex manner). However, when one looks at the electronic spectrum of methane, two major peaks are observed. Hybrid orbital theory and molecular orbital theory predict very different orbital energy levels for methane (Figure 1). Using MO theory, it is very easy to see why there would be two peaks; electrons jump from the HOMO to each of the two higher energy levels (Figure 1b). With VB theory, it takes a lot of extra math to explain how there could be two peaks.
    [Show full text]
  • Bsc Chemistry
    ____________________________________________________________________________________________________ Subject Chemistry Paper No and Title 2 and Physical Chemistry-I Module No and Title 27 and Valence Bond Theory I Module Tag CHE_P2_M27 SUBJECT PAPER : 2, Physical Chemistry I MODULE : 27, Valence Bond Theory I ____________________________________________________________________________________________________ TABLE OF CONTENTS 1. Learning Outcomes 2. Introduction 3. Valence Bond Theory (VBT) 3.1 Postulates of VBT 3.2 VBT of Hydrogen molecule 4. Summary 1. SUBJECT PAPER : 2, Physical Chemistry I MODULE : 27, Valence Bond Theory I ____________________________________________________________________________________________________ 1. Learning Outcomes After studying this module, you shall be able to: Learn about electronic structure of molecules using VBT Understand the postulates of VBT The VBT of Hydrogen molecule 2. Introduction Now, at this point we know that the Schrodinger equation cannot be solved exactly for multi-electron system even if the inter-nuclear distances are held constant. This is due to the presence of electron-electron repulsion terms in the Hamiltonian operator. Consequently, various approaches have been developed for the approximate solution of Schrodinger equation. Of these, Molecular Orbital Theory (MOT) and Valence Bond Theory (VBT) have been widely used. These two approaches differ in the choice of trial/approximate wave-function which is optimized via variation method for the system under consideration. Of these, we have already discussed MOT in earlier modules. In this module, we will take up the formalism of VBT in detail. 3. Valence Bond Theory Valence Bond Theory was the first quantum mechanical treatment to account for chemical bonding. This theory was first introduced by Heitler and London in 1927 and subsequently by Slater and Pauling in 1930s.
    [Show full text]