Intro to Chemistry Week: September 14 – 18, 2015

Total Page:16

File Type:pdf, Size:1020Kb

Intro to Chemistry Week: September 14 – 18, 2015 LS50 2015 INTRO TO CHEMISTRY WEEK: SEPTEMBER 14 – 18, 2015 Learning goals By the end of this week, you should understand the following: • The key findings and interpretations of some critical experiments that led to our current understanding of atomic structure and electron configurations (Lecture 08) • How electron configurations are related to chemical bonds and interactions (Lecture 09) • How chemical bonds are related to assembly and structure of biological molecules (Lectures 09- 10) • How molecular assembly and structure are related to molecular function (Lectures 11-12) • How knowing molecular function facilitates prediction of the evolution of biological molecules (Lecture 12) Lecture 09 – Elements and periodic trends Learning goals By the end of this lecture, you should be able to: • Know how to figure out the number of valence electrons for an atom • Understand electronegativity; use this to predict formation of compounds in general terms • Describe and explain some basic properties of an element based on periodic trends • State the octet rule o name and define the types of bonds that atoms can engage in to satisfy it o recognize the three major types of violations of this rule • Draw Lewis dot structures of atoms, ionic compounds, and covalent compounds Lecture Outline Periodic table • note that atomic number is not the same as atomic weight: o atomic number = number of protons (this is the order the elements are arranged in, and is constant regardless of the number of neutrons) o atomic weight = weighted average of the atomic mass numbers of all isotopes of an element o atomic mass number = (atomic number) + (number of neutrons) = (number of protons) + (number of neutrons) • atoms can have more than one o ionic form (with positive (cation) or negative (anion) charge) § charge is determined by the relative number of protons and electrons: § charge = (number of protons) – (number of electrons) o isotope, i.e. have a different number of neutrons § isotopes have the same atomic number but different atomic mass numbers and different numbers of neutrons • the elements break down into some broad categories (we will refine these later): o metals § tend to lose electrons to become cations § tend to become isoelectric with a noble gas (this means that they achieve the same number of electrons as a noble gas) § tend to be shiny (have luster), malleable, ductile, good conductors of heat and electricity § six main types: alkali metals, alkaline earth metals, lanthanoids, actinoids, transition metals and post-transition metals o non-metals § tend to gain electrons to become anions Extavour Lecture Roadmaps: Chemistry Page 1 of 5 LS50 2015 § tend to become isoelectric with a noble gas § tend to be dull, brittle, poor conductors of heat and electricity § three main types: noble gases, halogens, other non-metals o metalloids § can gain or lose electrons: no good way to predict what these will do, although Al tends to be mostly metallic and B tends to be mostly nonmetallic § they border the amphoteric line on the periodic table • Valence electrons o These are the electrons that can participate in forming chemical bonds! o You can use the periodic table to help you figure out how many valence electrons an atom has (see Table) o Noble gases don’t have any valence electrons because their outermost shells are totally full! That’s why they are inert o Atoms can do different things with their valence electrons: § Contribute them to a shared partnership with another atom à covalent bond § Totally donate them or steal them from another atom à ionic bond § Nothing à no bond o The valence electron number and position determine which one of these things will happen = the chemical properties of the element • The octet rule o (it is an empirical observation that) the atoms in the main group elements bond so that each atom has 8 electrons (or 2 electrons if it is H or He) in its outermost shell o can be satisfied by covalent bonds or ionic bonds § ionic compounds: • form when the difference in electronegativity between two atoms is large • an electron is totally transferred from one atom to another (the one with higher electronegativity: further to the right of the periodic table), so that they both satisfy the octet rule § covalent compounds: • form when the difference in electronegativity between two atoms is small(er) • an electron is shared between two atoms, so that they both satisfy the octet rule • Lewis dot structures of atoms o A way to describe valence electrons in atoms, and bonding in polyatomic systems o One electron pair = one single bond (between two atoms) o Follow these steps to draw the Lewis dot structure for atoms: § Draw the atomic symbol § Represent each valence electron as a dot around it o The location of the dots is not important; they will get moved around when assigning electrons to bonds in compounds o When drawing ions with partially filled d or f subshells (e.g. transition metals), typically we don’t include those subshells in the drawing o For cations or anions that might have up to 8 electrons in their outer shell, typically we write the original valence shell configuration (the shell configuration pre-ionization) • Periodic trends o The elements in a given group (column) have similar properties because their outer electron configurations are similar to each other o There are also trends across a period (row) Extavour Lecture Roadmaps: Chemistry Page 2 of 5 LS50 2015 o As long as we arrange elements according to atomic number (assuming neutral atoms, so that # protons = # electrons), the physical and chemical properties of the elements vary periodically o Four major trends that help us understand how atoms behave in chemical bonds: § Atomic radius (and ionic radius) • Decreases across a period from L to R • Increases down a group § Ionization energy • This is the minimum energy needed to remove the highest energy electron from an atom (creating a cation) • Increases across a period from L to R (gets harder to remove electrons L to R across a period) • Decreases down a group (gets easier to remove electrons going down a group) § Electronegativity • This is the net ability of an atom to take an electron from another atom (i.e. be an oxidizing agent) • Increases across a period from L to R (the elements get better at stealing electrons) • Decreases down a group (the elements get worse at stealing electrons) § Electron Affinity • This is the energy change required to add an electron to a neutral atom (creating an anion) • Increases from bottom left to top right (gets harder to add electrons in this direction) o A bit more detail about characteristics of some of the groups: o Alkali metals (Li, Na, K, Rb, Cs, Fr) § Group IA = Group 1 à one valence electron (in s subshell) § Have the largest atomic radius of their period § React violently with water à H2 § Easily ionize to 1+ by losing an electron from s à empty s § Oxidize (lose electrons) in air o Alkali earth metals (Be, Mg, Ca, Sr, Ba, Ra) § Group IIA = Group 2 à two valence electrons (in s subshell) § Easily ionize to 2+ by losing 2 electrons from s à empty s § Close (filled) subshell § React with water à H2 o Transition metals (Sc-Zn, Y-Cd, Hf-Hg, Rf-Cn) § Groups 3-12: multiple valence electrons in d subshells § May have more than one oxidation group § Reactive with acids § Make coloured compounds § Some groups have some some cool trivial names! See Table o Post-Transition metals (Al, Ga, In, Tl, Uut) § Group IIIA = Group 3A à Three valence electrons (in p subshell) § Can have several oxidation states, but commonly 3+ o Group IVA = Group 4A (C, Si, Ge, Sn, Pb, Fl) § à 4 valence electrons (in p subshell) § Includes 1 nonmetal (C), 2 metalloids (Si, Ge) and 3 post-transition metals (Sn, Pb, Fl) § Oxidation numbers +4 to -4 § They form most covalent compounds o Group VA = Group 5A (N, P, As, Sb, Bi Uup) § à five valence electrons (in p subshell) Extavour Lecture Roadmaps: Chemistry Page 3 of 5 LS50 2015 § Include 2 post-transition metals (Uup, Bi), 2 metalloids (As, Sb) and 2 nonmetals (N, P) § Usually form anions -1, -2 or -3 o Group VIA = Group 6A (O, S, Se, Te, Po, Lv) § à six valence electrons (in p subshell) § Include 3 nonmetals (O, S, Se), 2 metalloids (Te, Po) and 1 post-transition metal (Lv) o Halogens (F, Cl, Br, I, At, Uus) § Group VIIA = Group 7A à seven valence electrons (full p subshell, one unpaired in s subshell) § Form monoatomic gases o Noble gases (He, Ne, Ar, Kr, Xe, Rn, Uuo) § Group VIIIA – Group 8A à eight valence electrons (n level orbitals all filled) § Closed shell § Form monoatomic gases o Lanthanoids (La to Lu) and Actinoids (Ac to Lr) § Have a variable number of valence electrons in the f subshell • Lewis dot structures of ionic compounds • Since electrons are not shared between atoms to achieve the octet rule in this type of bond, just draw the structure appropriate for each ion following the electron transfer • One of the atoms involved might end up with zero dots, and the other with eight dots • If necessary indicate the charge in the top right hand corner of the atom • The strength of the bond depends on the charge magnitude (greater charge à stronger bond) and the ion size (smaller ion à stronger bond) o Bond strength is called lattice energy, measured in kJ/mol • Lewis dot structures of covalent compounds o Single bond = one electron pair shared = bond order 1 o Double bond – two electron pairs shared = bond order 2 o Triple bond = three electron pairs shared = bond order 3 o Quadruple bond = four electron pairs shared = bond order 4 o Fractional bond orders are also possible: see “Resonance” below) o Sometimes the octet rule is violated! There are three main examples of this: § Sub-octet systems = octet-deficient molecules • B and Be are prone to this: they can form stable molecules that don’t obey the octet rule • e.g.
Recommended publications
  • Unit 3 Notes: Periodic Table Notes  John Newlands Proposed an Organization System Based on Increasing Atomic Mass in 1864
    Unit 3 Notes: Periodic Table Notes John Newlands proposed an organization system based on increasing atomic mass in 1864. He noticed that both the chemical and physical properties repeated every 8 elements and called this the ____Law of Octaves ___________. In 1869 both Lothar Meyer and Dmitri Mendeleev showed a connection between atomic mass and an element’s properties. Mendeleev published first, and is given credit for this. He also noticed a periodic pattern when elements were ordered by increasing ___Atomic Mass _______________________________. By arranging elements in order of increasing atomic mass into columns, Mendeleev created the first Periodic Table. This table also predicted the existence and properties of undiscovered elements. After many new elements were discovered, it appeared that a number of elements were out of order based on their _____Properties_________. In 1913 Henry Mosley discovered that each element contains a unique number of ___Protons________________. By rearranging the elements based on _________Atomic Number___, the problems with the Periodic Table were corrected. This new arrangement creates a periodic repetition of both physical and chemical properties known as the ____Periodic Law___. Periods are the ____Rows_____ Groups/Families are the Columns Valence electrons across a period are There are equal numbers of valence in the same energy level electrons in a group. 1 When elements are arranged in order of increasing _Atomic Number_, there is a periodic repetition of their physical and chemical
    [Show full text]
  • Chemistry Third Marking Period Review Sheet Spring, Mr
    Chemistry Third Marking Period Review Sheet Spring, Mr. Wicks Chapters 7-8: Ionic and Covalent Bonding • I can explain the difference between core electrons and valence electrons. • I can write Lewis dot symbols for atoms of particular elements and show the gain or loss of electrons to form ionic compounds. • I can compare and contrast ionic and molecular compounds. See Table 1. • I can describe ionic and covalent bonding and explain the differences between them. • I can compare and contrast the properties of ionic and molecular compounds. • I can predict trends in bond length when comparing carbon-carbon single, double, and triple bonds. Table 1: Comparing Ionic and Molecular Compounds Ionic Compounds Molecular Compounds Bonding Type: Ionic Bonding Covalent Bonding In this type of bonding, electrons are _____: Transferred Shared Type(s) of Elements Involved: Metal + Nonmetal Elements Nonmetal Elements Comparison of Larger Smaller electronegativity differences: Comparison of Properties: a. Melting and boiling points: a. Higher a. Lower b. Hardness: b. Harder b. Softer c. Conduction of electricity: c. When molten or dissolved in c. Molecular compounds do water, ionic compounds tend to not conduct electricity. conduct electricity. • I can apply trends for electronegativity in the periodic table to solve homework problems. • I can use electronegativity differences to classify bonds as nonpolar covalent, polar covalent, and ionic. See Table 2. Table 2: Classifying Bonds Using Electronegativity Differences Electronegativity Difference Bond Type 0 - 0.2 Nonpolar covalent bond 0.3 - 1.9 Polar covalent bond ≥ 2.0 Ionic bond Chemistry Third Marking Period Review Sheet, Page 2 • I can apply the octet rule to write Lewis structures for molecular compounds and polyatomic ions.
    [Show full text]
  • Periodic Trends Lab CHM120 1The Periodic Table Is One of the Useful
    Periodic Trends Lab CHM120 1The Periodic Table is one of the useful tools in chemistry. The table was developed around 1869 by Dimitri Mendeleev in Russia and Lothar Meyer in Germany. Both used the chemical and physical properties of the elements and their tables were very similar. In vertical groups of elements known as families we find elements that have the same number of valence electrons such as the Alkali Metals, the Alkaline Earth Metals, the Noble Gases, and the Halogens. 2Metals conduct electricity extremely well. Many solids, however, conduct electricity somewhat, but nowhere near as well as metals, which is why such materials are called semiconductors. Two examples of semiconductors are silicon and germanium, which lie immediately below carbon in the periodic table. Like carbon, each of these elements has four valence electrons, just the right number to satisfy the octet rule by forming single covalent bonds with four neighbors. Hence, silicon and germanium, as well as the gray form of tin, crystallize with the same infinite network of covalent bonds as diamond. 3The band gap is an intrinsic property of all solids. The following image should serve as good springboard into the discussion of band gaps. This is an atomic view of the bonding inside a solid (in this image, a metal). As we can see, each of the atoms has its own given number of energy levels, or the rings around the nuclei of each of the atoms. These energy levels are positions that electrons can occupy in an atom. In any solid, there are a vast number of atoms, and hence, a vast number of energy levels.
    [Show full text]
  • Octet Rule & Ions
    Chemistry 51 Chapter 5 OCTET RULE & IONS Most elements, except noble gases, combine to form compounds. Compounds are the result of the formation of chemical bonds between two or more different elements. In the formation of a chemical bond, atoms lose, gain or share valence electrons to complete their outer shell and attain a noble gas configuration. This tendency of atoms to have eight electrons in their outer shell is known as the octet rule. Formation of Ions: An ion (charged particle) can be produced when an atom gains or loses one or more electrons. A cation (+ ion) is formed when a neutral atom loses an electron. An anion (- ion) is formed when a neutral atom gains an electron. 1 Chemistry 51 Chapter 5 IONIC CHARGES The ionic charge of an ion is dependent on the number of electrons lost or gained to attain a noble gas configuration. For most main group elements, the ionic charges can be determined from their group number, as shown below: All other ionic charges need to be memorized and known in order to write correct formulas for the compounds containing them. 2 Chemistry 51 Chapter 5 COMPOUNDS Compounds are pure substances that contain 2 or more elements combined in a definite proportion by mass. Compounds can be classified as one of two types: Ionic and molecular (covalent) Ionic compounds are formed by combination of a metal and a non-metal. The smallest particles of ionic compounds are ions. Molecular compounds are formed by combination of 2 or more non-metals. The smallest particles of molecular compounds are molecules.
    [Show full text]
  • Visualizing Molecules - VSEPR, Valence Bond Theory, and Molecular Orbital Theory
    Copyright ©The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Visualizing Molecules - VSEPR, Valence Bond Theory, and Molecular Orbital Theory Nestor S. Valera 1 Copyright ©The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Visualizing Molecules 1. Lewis Structures and Valence-Shell Electron-Pair Repulsion Theory 2. Valence Bond Theory and Hybridization 3. Molecular Orbital Theory 2 Copyright ©The McGraw-Hill Companies, Inc. Permission required for reproduction or display. The Shapes of Molecules 10.1 Depicting Molecules and Ions with Lewis Structures 10.2 Valence-Shell Electron-Pair Repulsion (VSEPR) Theory and Molecular Shape 10.3 Molecular Shape and Molecular Polarity 3 Copyright ©The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Figure 10.1 The steps in converting a molecular formula into a Lewis structure. Place atom Molecular Step 1 with lowest formula EN in center Atom Add A-group Step 2 placement numbers Sum of Draw single bonds. Step 3 valence e- Subtract 2e- for each bond. Give each Remaining Step 4 atom 8e- valence e- (2e- for H) Lewis structure 4 Copyright ©The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Molecular formula For NF3 Atom placement : : N 5e- : F: : F: : Sum of N F 7e- X 3 = 21e- valence e- - : F: Total 26e Remaining : valence e- Lewis structure 5 Copyright ©The McGraw-Hill Companies, Inc. Permission required for reproduction or display. SAMPLE PROBLEM 10.1 Writing Lewis Structures for Molecules with One Central Atom PROBLEM: Write a Lewis structure for CCl2F2, one of the compounds responsible for the depletion of stratospheric ozone.
    [Show full text]
  • DESCRIBING CHEMICAL BONDING "Octet Rule"
    199 DESCRIBING CHEMICAL BONDING "octet rule" - a "rule of thumb" (NOT a scienfitic law) predicting how atoms will exchange or share electrons to form chemical compounds - atoms will gain, lose, or share enough electrons so that they end up with full "s" and "p" subshells in their outermost shell. - Why "octet"? An "s" subshell can hold two electrons, while a "p" subshell can hold six. 2+6 = 8 IONIC COMPOUNDS - When atoms react to form IONS, they GAIN or LOSE enough electrons to end up with full "s" and "p" subshells. example: Aluminum loses its outer three electrons, and each bromine gains one! 200 ... but using electron configurations to describe how aluminum bromide forms is a bit cumbersome! Can we simplify the picture a bit? LEWIS NOTATION / ELECTRON-DOT NOTATION - Lewis notation represents each VALENCE electron with a DOT drawn around the atomic symbol. Since the valence shell of an atom contains only "s" and "p" electrons, the maximum number of dots drawn will be EIGHT. - To use electron-dot notation, put a dot for each valence electron around the atomic symbol. Put one dot on each "side" of the symbol (4 sides), then pair the dots for atoms that have more than four valence electrons. More examples examples: Which "side" you draw the dots on isn't important, as long as you have the right number of electrons and the right number of "pairs" .. are all equivalent! 201 To draw a dot structure for an atom, you need to know HOW MANY valence electrons it has! You can determine this simply from the periodic table, WITHOUT writing the whole
    [Show full text]
  • Bonding in Molecules Michaelmas Term - Second Year 2019 These 8 Lectures Build on Material Presented in “Introduction to Molecular Orbitals” (HT Year 1)
    Bonding in Molecules Michaelmas Term - Second Year 2019 These 8 lectures build on material presented in “Introduction to Molecular Orbitals” (HT Year 1). They provide a basis for analysing the shapes, properties, spectra and reactivity of a wide range of molecules and transition metal compounds. The essentials of molecular orbital theory 1. The requirements for a good theory of bonding 2. The orbital approximation 3. The nature of molecular orbitals 4. The linear combination of atomic orbitals (LCAO) approach to molecular orbitals + Diatomic molecules: H2 ,H2 and AH + 5. The wave functions for H2 and H2 using an LCAO approach 6. MO schemes for AH molecules (A = second period atom, Li to F) Symmetry and molecular orbital diagrams for the first row hydrides AHn 7. The use of symmetry in polyatomic molecules 8. MO treatment of AH2 (C2v) 9. MO diagrams for AH3 (C3v) 10. MO diagrams for AH4 (Td) Photoelectron spectroscopy and experimental energy levels 11. Photoelectron spectroscopy and "experimental" MO diagrams 12. Photoelectron spectra of AHn molecules The use of Walsh diagrams in exploring molecular shapes 13. TheshapesofAH2 molecules + - 14. ThebondingandshapesofH3 and H3 : 3c-2e and 3c-4e bonds Molecular orbital diagrams for hyper-coordinate molecules 15. The bonding in XeF2 (and CO2) 16. 12-electron main group octahedral systems: SF6 as an example 2+ 2+ 17. Expanding the coordination sphere in carbon: [C(AuPR3)6] as an analogue of CH6 Fragment approach to bonding in electron deficient clusters 18. Build up of molecules from fragments 2– 19. Bonding in [B6H6] (from 6 equivalent BH fragments) and Wade’s rules , the concept of isolobality Complexes of the transition metals: octahedral, tetrahedral and square planar.
    [Show full text]
  • Lecture 11: Lewis Structures: Breakdown of the Octet Rule
    5.111 Lecture Summary #11 Wednesday, October 1, 2014 Readings for today: Section 2.9-2.12 (Same sections in 5th and 4th ed.) Read for Lecture #12: Section 3.1 – The Basic VSEPR Model, Section 3.2 – Molecules with Lone Pairs on the Central Atom. (Same sections in 5th and 4th ed.) Topics: Breakdown of the octet rule Case 1. Odd number of valence electrons Case 2. Octet deficient molecules Case 3. Valence shell expansion I. BREAKDOWN OF THE OCTET RULE Case 1. Odd number of valence electrons For molecules with an odd number of valence electrons, it is not possible for each atom - in the molecule to have an octet, since the octet rule works by pairing e s. Example: CH3 2) 3(1) + 4 = valence electrons 3) 3(2) + 8 = electrons needed for octet 4) 14 – 7 = bonding electrons Radical species: molecule with an electron. Most free radicals are very reactive. The reactivity of radical species leads to interesting (and sometimes harmful) biological activity. Free Radicals in Biology: a Paradox Free radical species DNA. Free radicals are essential for life. Highly reactive oxygen radicals are a byproduct Free radicals are involved in critical of metabolism and cause DNA damage. signaling pathways in or between cells, and in critical enzymatic reactions. Cigarette smoke also contains free radicals. Figure by MIT OpenCourseWare. Image from public domain. -1 O2 radicals are produced by our blood cells to kill invading microorganisms. 1 Nitric oxide is another important radical involved in cell signaling. Nitric oxide, • diffuses freely across cell membranes and signals for the smooth muscle in blood vessels to relax, resulting in vasodilation and increased blood flow.
    [Show full text]
  • Chapter 5 Molecular Orbitals
    Chapter 5 Molecular Orbitals Molecular orbital theory uses group theory to describe the bonding in molecules ; it comple- ments and extends the introductory bonding models in Chapter 3 . In molecular orbital theory the symmetry properties and relative energies of atomic orbitals determine how these orbitals interact to form molecular orbitals. The molecular orbitals are then occupied by the available electrons according to the same rules used for atomic orbitals as described in Sections 2.2.3 and 2.2.4 . The total energy of the electrons in the molecular orbitals is compared with the initial total energy of electrons in the atomic orbitals. If the total energy of the electrons in the molecular orbitals is less than in the atomic orbitals, the molecule is stable relative to the separate atoms; if not, the molecule is unstable and predicted not to form. We will first describe the bonding, or lack of it, in the first 10 homonuclear diatomic molecules ( H2 through Ne2 ) and then expand the discussion to heteronuclear diatomic molecules and molecules having more than two atoms. A less rigorous pictorial approach is adequate to describe bonding in many small mole- cules and can provide clues to more complete descriptions of bonding in larger ones. A more elaborate approach, based on symmetry and employing group theory, is essential to under- stand orbital interactions in more complex molecular structures. In this chapter, we describe the pictorial approach and develop the symmetry methodology required for complex cases. 5.1 Formation of Molecular Orbitals from Atomic Orbitals As with atomic orbitals, Schrödinger equations can be written for electrons in molecules.
    [Show full text]
  • 7 Breaking Octet Rule.Pdf
    11/6/2020 Breaking the octet rule Odd electron Some compounds have atoms with more or less than 8 electrons Although rare, it is possible to have compounds that have an odd Lewis dot structures with atoms that break the around them (breaking the octet rule) number of electrons. octet rule There are 3 types Obviously it is not possible to satisfy the octet rule with an odd 1. odd numbered electrons number of electrons, ONE CANNOT BE A PAIR! 2. electron deficient compounds Two compounds are NO and NO2 3. expanded valence shells They will have a free electron on N. Lewis dot Electron deficient compounds This is rare. It is only found Boron, Beryllium or Aluminum The formal charge is appropriate for each atom and compounds. All are highly reactive. the molecule Beryllium, aluminum are a metals, however, since its valence shell Compounds with a free electron, unpaired electron, is so close to the nucleus it can form covalent bonds (rarely). are called free radicals. All atoms are electron deficient (have less than 4 electrons), and They are highly reactive. therefore when they form bonds they can’t make it all the way up These two compounds are used in nitrous oxide to 8 electrons systems in cars Expanded valance shells Examples Examples One atom will have more than 8 valence electrons. This requires a highly electronegative atoms (fluorine, oxygen, or Bl3 PF5 chlorine) to bond with a nonmetal with its outer shell 3 p or higher. The BeH XeF 2 extra electrons can use the unused d orbital.
    [Show full text]
  • Practice Test 3.Tst
    Practice Exam #3 Name___________________________________ MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) The energy of a photon of light is __________ proportional to its frequency and __________ 1) proportional to its wavelength. A) directly, inversely B) directly, directly C) indirectly, not D) inversely, inversely E) inversely, directly 2) What color of visible light has the longest wavelength __________ ? 2) A) violet B) green C) yellow D) red E) blue 3) Of the following transitions in the Bohr hydrogen atom, the __________ transition results in the 3) emission of the highest-energy photon. A) n = 1 → n = 6 B) n = 3 → n = 6 C) n = 6 → n = 3 D) n = 1 → n = 4 E) n = 6 → n = 1 4) The __________ subshell contains only one orbital. 4) A) 6f B) 4s C) 1p D) 3d E) 5d 5) The ground state electron configuration for Zn is __________. 5) A) [Ar]4s23d10 B) [Kr]3s23d10 C) [Kr]4s23d10 D) [Ar]4s13d10 E) [Ar]3s23d10 6) All of the __________ have a valence shell electron configuration ns1. 6) A) noble gases B) alkali metals C) chalcogens D) halogens E) alkaline earth metals 7) Elements in the modern version of the periodic table are arranged in order of increasing 7) __________. A) oxidation number B) average atomic mass C) number of isotopes D) atomic mass E) atomic number 1 8) In general, as you go across a period in the periodic table from left to right: 8) (1) the atomic radius __________; (2) the electron affinity becomes __________ negative; and (3) the first ionization energy __________.
    [Show full text]
  • One Hundred Years of Lewis Chemical Bond!
    J. Chem. Sci. Vol. 128, No. 10, October 2016, pp. 1517–1518. c Indian Academy of Sciences. Special Issue on CHEMICAL BONDING DOI 10.1007/s12039-016-1177-y One hundred years of Lewis Chemical Bond! MS received 19 September 2016; accepted 20 September 2016 When a suggestion about a special issue on the Chemical Bond came to us from the Editor, we readily agreed. After nine months, we are pleased to present the special issue of the Journal of Chemical Science to celebrate the 100th year of the ‘electron pair bond’ proposed by G. N. Lewis.1 By any stretch of imagination of that period, this was a conceptual quantum jump, coming more than a decade ahead of quantum mechanics and the Schrödinger’s equation. However, the periodic table of elements was already available. Chemists knew how many electrons are there in each element and were also aware of stable electronic configurations. For example, ‘inert gases’ having 8 electrons in the valence shell (now known as s and p orbitals) were very stable. Bonding in polar molecules, called electrovalent those days, such as KCl could be understood based on Coulombic interaction between the + − oppositely charged K and Cl . It was a puzzle for chemists to understand how neutral molecules such as H2,F2 and HF are bound! In the ‘electrovalent molecules’, an electron is transferred from one atom (K) to another (Cl), forming respectively K+ and Cl−. Having understood the stable electronic configuration of the rare gases, Lewis suggested that H and F atom can both attain such configuration, if they were to share one electron with each other.
    [Show full text]