Acronyms Used in Theoretical Chemistry
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Density Functional Theory
Density Functional Approach Francesco Sottile Ecole Polytechnique, Palaiseau - France European Theoretical Spectroscopy Facility (ETSF) 22 October 2010 Density Functional Theory 1. Any observable of a quantum system can be obtained from the density of the system alone. < O >= O[n] Hohenberg, P. and W. Kohn, 1964, Phys. Rev. 136, B864 Density Functional Theory 1. Any observable of a quantum system can be obtained from the density of the system alone. < O >= O[n] 2. The density of an interacting-particles system can be calculated as the density of an auxiliary system of non-interacting particles. Hohenberg, P. and W. Kohn, 1964, Phys. Rev. 136, B864 Kohn, W. and L. Sham, 1965, Phys. Rev. 140, A1133 Density Functional ... Why ? Basic ideas of DFT Importance of the density Example: atom of Nitrogen (7 electron) 1. Any observable of a quantum Ψ(r1; ::; r7) 21 coordinates system can be obtained from 10 entries/coordinate ) 1021 entries the density of the system alone. 8 bytes/entry ) 8 · 1021 bytes 4:7 × 109 bytes/DVD ) 2 × 1012 DVDs 2. The density of an interacting-particles system can be calculated as the density of an auxiliary system of non-interacting particles. Density Functional ... Why ? Density Functional ... Why ? Density Functional ... Why ? Basic ideas of DFT Importance of the density Example: atom of Oxygen (8 electron) 1. Any (ground-state) observable Ψ(r1; ::; r8) 24 coordinates of a quantum system can be 24 obtained from the density of the 10 entries/coordinate ) 10 entries 8 bytes/entry ) 8 · 1024 bytes system alone. 5 · 109 bytes/DVD ) 1015 DVDs 2. -
Semiempirical Implementations of Molecular
Semiempirical Implementations of Molecular Orbital Theory How one can make Hartree-Fock theory less computationally intensive without much sacrificing its accuracy? The most demanding step – calculation of two-electron (four-index) integrals (J and K integrals) appearing in the Fock matrix elements (N4 where N is the number of basis functions). One way to save time – to estimate their value accurately in an a priori fashion and thus to avoid numerical integration. Coulomb integrals measure the repulsion between electrons in regions of space defined by the basis functions. When the basis functions in the integral for one electron are very far from the basis functions for the other, the value of that integral will approach zero. In a large molecule, one might be able to avoid the calculation of a very large number of integrals simply by assuming them to be zero. HF theory is intrinsically inaccurate as it does not include correlation energy. Therefore, modifications of the theory introduced in order to simplify its formalism may actually improve it, provided the new approximations somehow introduce an accounting for correlation energy. Most typically, such approximations involve the adoption of a parametric form for some aspect of the calculation where the parameters involved are chosen so as best reproduce experimental data – ‘semiempirical’. Another motivation for introducing semiempirical approximation into HF theory was to facilitate the computation of derivatives (gradients, Hessians) so that geometries could be more efficiently optimized. Extended Hückel Theory Before considering semiempirical methods we revisit Hückel theory: H11 − ES11 H12 − ES12 L H1N − ES1N H21 − ES21 H22 − ES22 L H2N − ES2N = 0 M M O M H − ES H − ES H − ES N1 N1 N2 N 2 L NN NN The dimension of the secular determinant depends on the choice of the basis set. -
Multiscale Simulation of Laser Ablation and Processing of Semiconductor Materials
University of Central Florida STARS Electronic Theses and Dissertations, 2004-2019 2012 Multiscale Simulation Of Laser Ablation And Processing Of Semiconductor Materials Lalit Shokeen University of Central Florida Part of the Materials Science and Engineering Commons Find similar works at: https://stars.library.ucf.edu/etd University of Central Florida Libraries http://library.ucf.edu This Doctoral Dissertation (Open Access) is brought to you for free and open access by STARS. It has been accepted for inclusion in Electronic Theses and Dissertations, 2004-2019 by an authorized administrator of STARS. For more information, please contact [email protected]. STARS Citation Shokeen, Lalit, "Multiscale Simulation Of Laser Ablation And Processing Of Semiconductor Materials" (2012). Electronic Theses and Dissertations, 2004-2019. 2420. https://stars.library.ucf.edu/etd/2420 MULTISCALE SIMULATION OF LASER PROCESSING AND ABLATION OF SEMICONDUCTOR MATERIALS by LALIT SHOKEEN Bachelor of Science (B.Sc. Physics), University of Delhi, India, 2006 Masters of Science (M.Sc. Physics), University of Delhi, India, 2008 Master of Science (M.S. Materials Engg.), University of Central Florida, USA, 2009 A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Department of Mechanical, Materials and Aerospace Engineering in the College of Engineering and Computer Science at the University of Central Florida Orlando, Florida, USA Fall Term 2012 Major Professor: Patrick Schelling © 2012 Lalit Shokeen ii ABSTRACT We present a model of laser-solid interactions in silicon based on an empirical potential developed under conditions of strong electronic excitations. The parameters of the interatomic potential depends on the temperature of the electronic subsystem Te, which is directly related to the density of the electron-hole pairs and hence the number of broken bonds. -
More Insight in Multiple Bonding with Valence Bond Theory K
More insight in multiple bonding with valence bond theory K. Hendrickx, B. Braida, P. Bultinck, P.C. Hiberty To cite this version: K. Hendrickx, B. Braida, P. Bultinck, P.C. Hiberty. More insight in multiple bonding with va- lence bond theory. Computational and Theoretical Chemistry, Elsevier, 2015, 1053, pp.180–188. 10.1016/j.comptc.2014.09.007. hal-01627698 HAL Id: hal-01627698 https://hal.archives-ouvertes.fr/hal-01627698 Submitted on 21 Nov 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. More insight in multiple bonding with valence bond theory ⇑ ⇑ K. Hendrickx a,b,c, B. Braida a,b, , P. Bultinck c, P.C. Hiberty d, a Sorbonne Universités, UPMC Univ Paris 06, UMR 7616, LCT, F-75005 Paris, France b CNRS, UMR 7616, LCT, F-75005 Paris, France c Department of Inorganic and Physical Chemistry, Ghent University, Krijgslaan 281 (S3), 9000 Gent, Belgium d Laboratoire de Chimie Physique, UMR CNRS 8000, Groupe de Chimie Théorique, Université de Paris-Sud, 91405 Orsay Cédex, France abstract An original procedure is proposed, based on valence bond theory, to calculate accurate dissociation ener- gies for multiply bonded molecules, while always dealing with extremely compact wave functions involving three valence bond structures at most. -
References Title: in Search of El Dorado: John Dalton and the Origins of the Atomic Theory. Authors:Rocke, Alan J. Source
References Title: In Search of El Dorado: John Dalton and the Origins of the Atomic Theory. Authors: Rocke, Alan J. Source: Social Research ; Spring2005, Vol. 72 Issue 1, p125-158, 34p Abstract: This article examines how John Dalton formulated his atomic theory of matter. Dalton's work called forth a vigorous international research program that has a continuous history from 1803 t the present-- nanoscience long before the word became vogue. Almost from the start, that research program utterly transformed the science; moreover, it was atomistic theory that enabled chemistry, two generations after Dalton, to become the earliest example of a well-developed science-based theory acquiring the practical power to transform the world of technology and commerce. Dalton knew that water consists of 87.5 oxygen and 12.5 percent hydrogen by weight that is exactly seven times as much as oxygen as hydrogen. If one assumes, with Dalton, that the invisibly small water molecule consists of an atom of hydrogen united to an atom of oxygen, then every oxygen atom must weigh seven times as much as every hydrogen atom, for under these circumstances it is o bvious that the weight ratio of the atoms must match the composition of the compound. In contrast to Dalton, Humphry Davy and Jacob Berzelius assumed (in 1812 and 1814, respectively) that the formula for water was H2O rather than Dalton's HO. ISSN: 0037-783X Accession Number: 16900837 Persistent link to http://proxy.library.upenn.edu:2062/login.aspx?direct=true&db=aph&AN=16900837&site=ehost this record: live Title: Find More Like This J. -
Theoretical Methods That Help Understanding the Structure and Reactivity of Gas Phase Ions
International Journal of Mass Spectrometry 240 (2005) 37–99 Review Theoretical methods that help understanding the structure and reactivity of gas phase ions J.M. Merceroa, J.M. Matxaina, X. Lopeza, D.M. Yorkb, A. Largoc, L.A. Erikssond,e, J.M. Ugaldea,∗ a Kimika Fakultatea, Euskal Herriko Unibertsitatea, P.K. 1072, 20080 Donostia, Euskadi, Spain b Department of Chemistry, University of Minnesota, 207 Pleasant St. SE, Minneapolis, MN 55455-0431, USA c Departamento de Qu´ımica-F´ısica, Universidad de Valladolid, Prado de la Magdalena, 47005 Valladolid, Spain d Department of Cell and Molecular Biology, Box 596, Uppsala University, 751 24 Uppsala, Sweden e Department of Natural Sciences, Orebro¨ University, 701 82 Orebro,¨ Sweden Received 27 May 2004; accepted 14 September 2004 Available online 25 November 2004 Abstract The methods of the quantum electronic structure theory are reviewed and their implementation for the gas phase chemistry emphasized. Ab initio molecular orbital theory, density functional theory, quantum Monte Carlo theory and the methods to calculate the rate of complex chemical reactions in the gas phase are considered. Relativistic effects, other than the spin–orbit coupling effects, have not been considered. Rather than write down the main equations without further comments on how they were obtained, we provide the reader with essentials of the background on which the theory has been developed and the equations derived. We committed ourselves to place equations in their own proper perspective, so that the reader can appreciate more profoundly the subtleties of the theory underlying the equations themselves. Finally, a number of examples that illustrate the application of the theory are presented and discussed. -
Camcasp 5.9 Alston J. Misquitta† and Anthony J
CamCASP 5.9 Alston J. Misquittay and Anthony J. Stoneyy yDepartment of Physics and Astronomy, Queen Mary, University of London, 327 Mile End Road, London E1 4NS yy University Chemical Laboratory, Lensfield Road, Cambridge CB2 1EW September 1, 2015 Abstract CamCASP is a suite of programs designed to calculate molecular properties (multipoles and frequency- dependent polarizabilities) in single-site and distributed form, and interaction energies between pairs of molecules, and thence to construct atom–atom potentials. The CamCASP distribution also includes the programs Pfit, Casimir,Gdma 2.2, Cluster, and Process. Copyright c 2007–2014 Alston J. Misquitta and Anthony J. Stone Contents 1 Introduction 1 1.1 Authors . .1 1.2 Citations . .1 2 What’s new? 2 3 Outline of the capabilities of CamCASP and other programs 5 3.1 CamCASP limits . .7 4 Installation 7 4.1 Building CamCASP from source . .9 5 Using CamCASP 10 5.1 Workflows . 10 5.2 High-level scripts . 10 5.3 The runcamcasp.py script . 11 5.4 Low-level scripts . 13 6 Data conventions 13 7 CLUSTER: Detailed specification 14 7.1 Prologue . 15 7.2 Molecule definitions . 15 7.3 Geometry manipulations and other transformations . 16 7.4 Job specification . 18 7.5 Energy . 23 7.6 Crystal . 25 7.7 ORIENT ............................................... 26 7.8 Finally, . 29 8 Examples 29 8.1 A SAPT(DFT) calculation . 29 8.2 An example properties calculation . 30 8.3 Dispersion coefficients . 34 8.4 Using CLUSTER to obtain the dimer geometry . 36 9 CamCASP program specification 39 9.1 Global data . -
Theory and Technique
Lawrence Berkeley National Laboratory Lawrence Berkeley National Laboratory Title COMPUTATIONAL METHODS FOR MOLEUCLAR STRUCTURE DETERMINATION: THEORY AND TECHNIQUE Permalink https://escholarship.org/uc/item/3b7795px Author Lester, W.A. Publication Date 1980-03-14 Peer reviewed eScholarship.org Powered by the California Digital Library University of California CONTENTS Foreword v List of Invited Speakers vii Workshop Participants viii LECTURES 1 Introduction to Computational Quantum Chemistry Ernest R. Davidson 1-1 2/3 Introduction to SCF Theory Ernest R. Davidson 2/3-1 4 Semi-Empirical SCF Theory Michael C. Zerner 4-1 5 An Introduction to Some Semi-Empirical and Approximate Molecular Orbital Methods Miehael C. Zerner 5-1 6/7 Ab Initio Hartree Fock John A. Pople 6/7-1 8 SCF Properties Ernest R. Davidson 8-1 9/10 Generalized Valence Bond William A, Goddard, III 9/10-1 11 Open Shell KF and MCSCF Theory Ernest R. Davidson 11-1 12 Some Semi-Empirical Approaches to Electron Correlation Miahael C. Zerner 12-1 13 Configuration Interaction Method Ernest R. Davidson 13-1 14 Geometry Optimization of Large Systems Michael C. Zerner 14-1 15 MCSCF Calculations: Results Boaen Liu 15-1 lfi/18 Empirical Potentials, Semi-Empirical Potentials, and Molecular Mechanics Norman L. Allinger 16/18-1 iv 17 CI Calculations: Results Bowen Liu 17-1 19 Computational Quantum Chemistry: Future Outlook Ernest R. Davidson 19-1 V FOREWORD The National Resource for Computation in Chemistry (NRCC) was established as a Division of Lawrence Berkeley Laboratory (LBL) in October 1977. The functions of the NRCC may be broadly categorized as follows: (1) to make information on existing and developing computa tional methodologies available to all segments of the chemistry community, (2) to make state-of-the-art computational facilities (both hardware and software] accessible to the chemistry community, and (3) to foster research and development of new computational methods for application to chemical problems. -
Implementation of Methods to Accurately Predict Transition Pathways and the Underlying Potential Energy Surface of Biomolecular Systems
IMPLEMENTATION OF METHODS TO ACCURATELY PREDICT TRANSITION PATHWAYS AND THE UNDERLYING POTENTIAL ENERGY SURFACE OF BIOMOLECULAR SYSTEMS By DELARAM GHOREISHI A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY UNIVERSITY OF FLORIDA 2019 c 2019 Delaram Ghoreishi I dedicate this dissertation to my mother, my brother, and my partner. For their endless love, support, and encouragement. ACKNOWLEDGMENTS I am thankful to my advisor, Adrian Roitberg, for his guidance during my graduate studies. I am grateful for the opportunities he provided me and for allowing me to work independently. I also thank my committee members, Rodney Bartlett, Xiaoguang Zhang, and Alberto Perez, for their valuable inputs. I am grateful to the University of Florida Informatics Institue for providing financial support in 2016, allowing me to take a break from teaching and focus more on research. I like to acknowledge my group members and friends for their moral support and technical assistance. Natali di Russo helped me become familiar with Amber. I thank Pilar Buteler, Sunidhi Lenka, and Vinicius Cruzeiro for daily conversations regarding science and life. Pancham Lal Gupta was my cpptraj encyclopedia. I thank my physicist colleagues, Ankita Sarkar and Dustin Tracy, who went through the intense physics coursework with me during the first year. I thank Farhad Ramezanghorbani, Justin Smith, Kavindri Ranasinghe, and Xiang Gao for helpful discussions regarding ANI and active learning. I also thank David Cerutti from Rutgers University for his help with NEB implementation. I thank Pilar Buteler and Alvaro Gonzalez for the good times we had camping and climbing. -
Kepler Gpus and NVIDIA's Life and Material Science
LIFE AND MATERIAL SCIENCES Mark Berger; [email protected] Founded 1993 Invented GPU 1999 – Computer Graphics Visual Computing, Supercomputing, Cloud & Mobile Computing NVIDIA - Core Technologies and Brands GPU Mobile Cloud ® ® GeForce Tegra GRID Quadro® , Tesla® Accelerated Computing Multi-core plus Many-cores GPU Accelerator CPU Optimized for Many Optimized for Parallel Tasks Serial Tasks 3-10X+ Comp Thruput 7X Memory Bandwidth 5x Energy Efficiency How GPU Acceleration Works Application Code Compute-Intensive Functions Rest of Sequential 5% of Code CPU Code GPU CPU + GPUs : Two Year Heart Beat 32 Volta Stacked DRAM 16 Maxwell Unified Virtual Memory 8 Kepler Dynamic Parallelism 4 Fermi 2 FP64 DP GFLOPS GFLOPS per DP Watt 1 Tesla 0.5 CUDA 2008 2010 2012 2014 Kepler Features Make GPU Coding Easier Hyper-Q Dynamic Parallelism Speedup Legacy MPI Apps Less Back-Forth, Simpler Code FERMI 1 Work Queue CPU Fermi GPU CPU Kepler GPU KEPLER 32 Concurrent Work Queues Developer Momentum Continues to Grow 100M 430M CUDA –Capable GPUs CUDA-Capable GPUs 150K 1.6M CUDA Downloads CUDA Downloads 1 50 Supercomputer Supercomputers 60 640 University Courses University Courses 4,000 37,000 Academic Papers Academic Papers 2008 2013 Explosive Growth of GPU Accelerated Apps # of Apps Top Scientific Apps 200 61% Increase Molecular AMBER LAMMPS CHARMM NAMD Dynamics GROMACS DL_POLY 150 Quantum QMCPACK Gaussian 40% Increase Quantum Espresso NWChem Chemistry GAMESS-US VASP CAM-SE 100 Climate & COSMO NIM GEOS-5 Weather WRF Chroma GTS 50 Physics Denovo ENZO GTC MILC ANSYS Mechanical ANSYS Fluent 0 CAE MSC Nastran OpenFOAM 2010 2011 2012 SIMULIA Abaqus LS-DYNA Accelerated, In Development NVIDIA GPU Life Science Focus Molecular Dynamics: All codes are available AMBER, CHARMM, DESMOND, DL_POLY, GROMACS, LAMMPS, NAMD Great multi-GPU performance GPU codes: ACEMD, HOOMD-Blue Focus: scaling to large numbers of GPUs Quantum Chemistry: key codes ported or optimizing Active GPU acceleration projects: VASP, NWChem, Gaussian, GAMESS, ABINIT, Quantum Espresso, BigDFT, CP2K, GPAW, etc. -
Modern Quantum Chemistry with [Open]Molcas
Modern quantum chemistry with [Open]Molcas Cite as: J. Chem. Phys. 152, 214117 (2020); https://doi.org/10.1063/5.0004835 Submitted: 17 February 2020 . Accepted: 11 May 2020 . Published Online: 05 June 2020 Francesco Aquilante , Jochen Autschbach , Alberto Baiardi , Stefano Battaglia , Veniamin A. Borin , Liviu F. Chibotaru , Irene Conti , Luca De Vico , Mickaël Delcey , Ignacio Fdez. Galván , Nicolas Ferré , Leon Freitag , Marco Garavelli , Xuejun Gong , Stefan Knecht , Ernst D. Larsson , Roland Lindh , Marcus Lundberg , Per Åke Malmqvist , Artur Nenov , Jesper Norell , Michael Odelius , Massimo Olivucci , Thomas B. Pedersen , Laura Pedraza-González , Quan M. Phung , Kristine Pierloot , Markus Reiher , Igor Schapiro , Javier Segarra-Martí , Francesco Segatta , Luis Seijo , Saumik Sen , Dumitru-Claudiu Sergentu , Christopher J. Stein , Liviu Ungur , Morgane Vacher , Alessio Valentini , and Valera Veryazov J. Chem. Phys. 152, 214117 (2020); https://doi.org/10.1063/5.0004835 152, 214117 © 2020 Author(s). The Journal ARTICLE of Chemical Physics scitation.org/journal/jcp Modern quantum chemistry with [Open]Molcas Cite as: J. Chem. Phys. 152, 214117 (2020); doi: 10.1063/5.0004835 Submitted: 17 February 2020 • Accepted: 11 May 2020 • Published Online: 5 June 2020 Francesco Aquilante,1,a) Jochen Autschbach,2,b) Alberto Baiardi,3,c) Stefano Battaglia,4,d) Veniamin A. Borin,5,e) Liviu F. Chibotaru,6,f) Irene Conti,7,g) Luca De Vico,8,h) Mickaël Delcey,9,i) Ignacio Fdez. Galván,4,j) Nicolas Ferré,10,k) Leon Freitag,3,l) Marco Garavelli,7,m) Xuejun Gong,11,n) Stefan Knecht,3,o) Ernst D. Larsson,12,p) Roland Lindh,4,q) Marcus Lundberg,9,r) Per Åke Malmqvist,12,s) Artur Nenov,7,t) Jesper Norell,13,u) Michael Odelius,13,v) Massimo Olivucci,8,14,w) Thomas B. -
UOW High Performance Computing Cluster User's Guide
UOW High Performance Computing Cluster User’s Guide Information Management & Technology Services University of Wollongong ( Last updated on February 2, 2015) Contents 1. Overview6 1.1. Specification................................6 1.2. Access....................................7 1.3. File System.................................7 2. Quick Start9 2.1. Access the HPC Cluster...........................9 2.1.1. From within the UOW campus...................9 2.1.2. From the outside of UOW campus.................9 2.2. Work at the HPC Cluster.......................... 10 2.2.1. Being familiar with the environment................ 10 2.2.2. Setup the working space...................... 11 2.2.3. Initialize the computational task.................. 11 2.2.4. Submit your job and check the results............... 14 3. Software 17 3.1. Software Installation............................ 17 3.2. Software Environment........................... 17 3.3. Software List................................ 19 4. Queue System 22 4.1. Queue Structure............................... 22 4.1.1. Normal queue............................ 22 4.1.2. Special queues........................... 23 4.1.3. Schedule policy........................... 23 4.2. Job Management.............................. 23 4.2.1. PBS options............................. 23 4.2.2. Submit a batch job......................... 25 4.2.3. Check the job/queue status..................... 27 4.2.4. Submit an interactive job...................... 29 4.2.5. Submit workflow jobs....................... 30 4.2.6. Delete jobs............................. 31 5. Utilization Agreement 32 5.1. Policy.................................... 32 5.2. Acknowledgements............................. 32 5.3. Contact Information............................. 33 Appendices 35 A. Access the HPC cluster from Windows clients 35 A.1. Putty..................................... 35 A.2. Configure ‘Putty’ with UOW proxy.................... 36 A.3. SSH Secure Shell Client.......................... 38 B. Enable Linux GUI applications using Xming 41 B.1.