Seeding the Multi-dimensional Nonequilibrium Pulling for Hamiltonian Variation: Indirect QM/MM Free Energy Simulations Zhaoxi Sun1* and Qiaole He2 1Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Institute of Theoretical and Computational Chemistry, Peking University, Beijing 100871, China 2State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 200237 Shanghai, China *To whom correspondence should be addressed:
[email protected] Abstract Combination of free energy simulations in the alchemical and configurational spaces provides a feasible route to access the thermodynamic profiles under a computationally demanding target Hamiltonian. Normally, due to the significant differences between the computational cost of ab initio quantum mechanics (QM) calculations and those of semi-empirical quantum mechanics (SQM) and molecular mechanics (MM), this indirect method could be used to obtain the QM thermodynamics by combining the SQM or MM results and the SQM-to-QM or MM-to-QM corrections. In our previous works, a multi-dimensional nonequilibrium pulling framework for Hamiltonian variations has been introduced based on bidirectional pulling and bidirectional reweighting. The method performs nonequilibrium free energy simulations in the configurational space to obtain the thermodynamic profile along the conformational change pathway under a selected computationally efficient Hamiltonian, and uses the nonequilibrium alchemical method to correct or perturb the thermodynamic profile to that under the target Hamiltonian. The BAR-based method is designed to achieve the best generality and transferability and thus leads to modest (~20 folds) speedup. In this work, we explore the possibility of further accelerating the nonequilibrium free energy simulation by employing unidirectional pulling and using the selection criterion to obtain the initial configurations used to initiate nonequilibrium trajectories following the idea of adaptive steered molecular dynamics (ASMD).