Computational Chemistry: a Practical Guide for Applying Techniques to Real-World Problems
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Density Functional Theory
Density Functional Approach Francesco Sottile Ecole Polytechnique, Palaiseau - France European Theoretical Spectroscopy Facility (ETSF) 22 October 2010 Density Functional Theory 1. Any observable of a quantum system can be obtained from the density of the system alone. < O >= O[n] Hohenberg, P. and W. Kohn, 1964, Phys. Rev. 136, B864 Density Functional Theory 1. Any observable of a quantum system can be obtained from the density of the system alone. < O >= O[n] 2. The density of an interacting-particles system can be calculated as the density of an auxiliary system of non-interacting particles. Hohenberg, P. and W. Kohn, 1964, Phys. Rev. 136, B864 Kohn, W. and L. Sham, 1965, Phys. Rev. 140, A1133 Density Functional ... Why ? Basic ideas of DFT Importance of the density Example: atom of Nitrogen (7 electron) 1. Any observable of a quantum Ψ(r1; ::; r7) 21 coordinates system can be obtained from 10 entries/coordinate ) 1021 entries the density of the system alone. 8 bytes/entry ) 8 · 1021 bytes 4:7 × 109 bytes/DVD ) 2 × 1012 DVDs 2. The density of an interacting-particles system can be calculated as the density of an auxiliary system of non-interacting particles. Density Functional ... Why ? Density Functional ... Why ? Density Functional ... Why ? Basic ideas of DFT Importance of the density Example: atom of Oxygen (8 electron) 1. Any (ground-state) observable Ψ(r1; ::; r8) 24 coordinates of a quantum system can be 24 obtained from the density of the 10 entries/coordinate ) 10 entries 8 bytes/entry ) 8 · 1024 bytes system alone. 5 · 109 bytes/DVD ) 1015 DVDs 2. -
The Molecular Sciences Software Institute
The Molecular Sciences Software Institute T. Daniel Crawford, Cecilia Clementi, Robert Harrison, Teresa Head-Gordon, Shantenu Jha*, Anna Krylov, Vijay Pande, and Theresa Windus http://molssi.org S2I2 HEP/CS Workshop at NCSA/UIUC 07 Dec, 2016 1 Outline • Space and Scope of Computational Molecular Sciences. • “State of the art and practice” • Intellectual drivers • Conceptualization Phase: Identifying the community and needs • Bio-molecular Simulations (BMS) Conceptualization • Quantum Mechanics/Chemistry (QM) Conceptualization • Execution Phase. • Structure and Governance Model • Resource Distribution • Work Plan 2 The Molecular Sciences Software Institute (MolSSI) • New project (as of August 1st, 2016) funded by the National Science Foundation. • Collaborative effort by Virginia Tech, Rice U., Stony Brook U., U.C. Berkeley, Stanford U., Rutgers U., U. Southern California, and Iowa State U. • Total budget of $19.42M for five years, potentially renewable to ten years. • Joint support from numerous NSF divisions: Advanced Cyberinfrastructure (ACI), Chemistry (CHE), Division of Materials Research (DMR), Office of Multidisciplinary Activities (OMA) • Designed to serve and enhance the software development efforts of the broad field of computational molecular science. 3 Computational Molecular Sciences (CMS) • The history of CMS – the sub-fields of quantum chemistry, computational materials science, and biomolecular simulation – reaches back decades to the genesis of computational science. • CMS is now a “full partner with experiment”. • For an impressive array of chemical, biochemical, and materials challenges, our community has developed simulations and models that directly impact: • Development of new chiral drugs; • Elucidation of the functionalities of biological macromolecules; • Development of more advanced materials for solar-energy storage, technology for CO2 sequestration, etc. -
Semiempirical Implementations of Molecular
Semiempirical Implementations of Molecular Orbital Theory How one can make Hartree-Fock theory less computationally intensive without much sacrificing its accuracy? The most demanding step – calculation of two-electron (four-index) integrals (J and K integrals) appearing in the Fock matrix elements (N4 where N is the number of basis functions). One way to save time – to estimate their value accurately in an a priori fashion and thus to avoid numerical integration. Coulomb integrals measure the repulsion between electrons in regions of space defined by the basis functions. When the basis functions in the integral for one electron are very far from the basis functions for the other, the value of that integral will approach zero. In a large molecule, one might be able to avoid the calculation of a very large number of integrals simply by assuming them to be zero. HF theory is intrinsically inaccurate as it does not include correlation energy. Therefore, modifications of the theory introduced in order to simplify its formalism may actually improve it, provided the new approximations somehow introduce an accounting for correlation energy. Most typically, such approximations involve the adoption of a parametric form for some aspect of the calculation where the parameters involved are chosen so as best reproduce experimental data – ‘semiempirical’. Another motivation for introducing semiempirical approximation into HF theory was to facilitate the computation of derivatives (gradients, Hessians) so that geometries could be more efficiently optimized. Extended Hückel Theory Before considering semiempirical methods we revisit Hückel theory: H11 − ES11 H12 − ES12 L H1N − ES1N H21 − ES21 H22 − ES22 L H2N − ES2N = 0 M M O M H − ES H − ES H − ES N1 N1 N2 N 2 L NN NN The dimension of the secular determinant depends on the choice of the basis set. -
Supporting Information
Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2020 Supporting Information How to Select Ionic Liquids as Extracting Agent Systematically? Special Case Study for Extractive Denitrification Process Shurong Gaoa,b,c,*, Jiaxin Jina,b, Masroor Abroc, Ruozhen Songc, Miao Hed, Xiaochun Chenc,* a State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, North China Electric Power University, Beijing, 102206, China b Research Center of Engineering Thermophysics, North China Electric Power University, Beijing, 102206, China c Beijing Key Laboratory of Membrane Science and Technology & College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China d Office of Laboratory Safety Administration, Beijing University of Technology, Beijing 100124, China * Corresponding author, Tel./Fax: +86-10-6443-3570, E-mail: [email protected], [email protected] 1 COSMO-RS Computation COSMOtherm allows for simple and efficient processing of large numbers of compounds, i.e., a database of molecular COSMO files; e.g. the COSMObase database. COSMObase is a database of molecular COSMO files available from COSMOlogic GmbH & Co KG. Currently COSMObase consists of over 2000 compounds including a large number of industrial solvents plus a wide variety of common organic compounds. All compounds in COSMObase are indexed by their Chemical Abstracts / Registry Number (CAS/RN), by a trivial name and additionally by their sum formula and molecular weight, allowing a simple identification of the compounds. We obtained the anions and cations of different ILs and the molecular structure of typical N-compounds directly from the COSMObase database in this manuscript. -
Multiscale Simulation of Laser Ablation and Processing of Semiconductor Materials
University of Central Florida STARS Electronic Theses and Dissertations, 2004-2019 2012 Multiscale Simulation Of Laser Ablation And Processing Of Semiconductor Materials Lalit Shokeen University of Central Florida Part of the Materials Science and Engineering Commons Find similar works at: https://stars.library.ucf.edu/etd University of Central Florida Libraries http://library.ucf.edu This Doctoral Dissertation (Open Access) is brought to you for free and open access by STARS. It has been accepted for inclusion in Electronic Theses and Dissertations, 2004-2019 by an authorized administrator of STARS. For more information, please contact [email protected]. STARS Citation Shokeen, Lalit, "Multiscale Simulation Of Laser Ablation And Processing Of Semiconductor Materials" (2012). Electronic Theses and Dissertations, 2004-2019. 2420. https://stars.library.ucf.edu/etd/2420 MULTISCALE SIMULATION OF LASER PROCESSING AND ABLATION OF SEMICONDUCTOR MATERIALS by LALIT SHOKEEN Bachelor of Science (B.Sc. Physics), University of Delhi, India, 2006 Masters of Science (M.Sc. Physics), University of Delhi, India, 2008 Master of Science (M.S. Materials Engg.), University of Central Florida, USA, 2009 A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Department of Mechanical, Materials and Aerospace Engineering in the College of Engineering and Computer Science at the University of Central Florida Orlando, Florida, USA Fall Term 2012 Major Professor: Patrick Schelling © 2012 Lalit Shokeen ii ABSTRACT We present a model of laser-solid interactions in silicon based on an empirical potential developed under conditions of strong electronic excitations. The parameters of the interatomic potential depends on the temperature of the electronic subsystem Te, which is directly related to the density of the electron-hole pairs and hence the number of broken bonds. -
Open Babel Documentation Release 2.3.1
Open Babel Documentation Release 2.3.1 Geoffrey R Hutchison Chris Morley Craig James Chris Swain Hans De Winter Tim Vandermeersch Noel M O’Boyle (Ed.) December 05, 2011 Contents 1 Introduction 3 1.1 Goals of the Open Babel project ..................................... 3 1.2 Frequently Asked Questions ....................................... 4 1.3 Thanks .................................................. 7 2 Install Open Babel 9 2.1 Install a binary package ......................................... 9 2.2 Compiling Open Babel .......................................... 9 3 obabel and babel - Convert, Filter and Manipulate Chemical Data 17 3.1 Synopsis ................................................. 17 3.2 Options .................................................. 17 3.3 Examples ................................................. 19 3.4 Differences between babel and obabel .................................. 21 3.5 Format Options .............................................. 22 3.6 Append property values to the title .................................... 22 3.7 Filtering molecules from a multimolecule file .............................. 22 3.8 Substructure and similarity searching .................................. 25 3.9 Sorting molecules ............................................ 25 3.10 Remove duplicate molecules ....................................... 25 3.11 Aliases for chemical groups ....................................... 26 4 The Open Babel GUI 29 4.1 Basic operation .............................................. 29 4.2 Options ................................................. -
GROMACS: Fast, Flexible, and Free
GROMACS: Fast, Flexible, and Free DAVID VAN DER SPOEL,1 ERIK LINDAHL,2 BERK HESS,3 GERRIT GROENHOF,4 ALAN E. MARK,4 HERMAN J. C. BERENDSEN4 1Department of Cell and Molecular Biology, Uppsala University, Husargatan 3, Box 596, S-75124 Uppsala, Sweden 2Stockholm Bioinformatics Center, SCFAB, Stockholm University, SE-10691 Stockholm, Sweden 3Max-Planck Institut fu¨r Polymerforschung, Ackermannweg 10, D-55128 Mainz, Germany 4Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, NL-9747 AG Groningen, The Netherlands Received 12 February 2005; Accepted 18 March 2005 DOI 10.1002/jcc.20291 Published online in Wiley InterScience (www.interscience.wiley.com). Abstract: This article describes the software suite GROMACS (Groningen MAchine for Chemical Simulation) that was developed at the University of Groningen, The Netherlands, in the early 1990s. The software, written in ANSI C, originates from a parallel hardware project, and is well suited for parallelization on processor clusters. By careful optimization of neighbor searching and of inner loop performance, GROMACS is a very fast program for molecular dynamics simulation. It does not have a force field of its own, but is compatible with GROMOS, OPLS, AMBER, and ENCAD force fields. In addition, it can handle polarizable shell models and flexible constraints. The program is versatile, as force routines can be added by the user, tabulated functions can be specified, and analyses can be easily customized. Nonequilibrium dynamics and free energy determinations are incorporated. Interfaces with popular quantum-chemical packages (MOPAC, GAMES-UK, GAUSSIAN) are provided to perform mixed MM/QM simula- tions. The package includes about 100 utility and analysis programs. -
The Alexandria Library, a Quantum-Chemical Database of Molecular Properties for Force field Development 9 2017 Received: October 1 1 1 Mohammad M
www.nature.com/scientificdata OPEN Data Descriptor: The Alexandria library, a quantum-chemical database of molecular properties for force field development 9 2017 Received: October 1 1 1 Mohammad M. Ghahremanpour , Paul J. van Maaren & David van der Spoel Accepted: 19 February 2018 Published: 10 April 2018 Data quality as well as library size are crucial issues for force field development. In order to predict molecular properties in a large chemical space, the foundation to build force fields on needs to encompass a large variety of chemical compounds. The tabulated molecular physicochemical properties also need to be accurate. Due to the limited transparency in data used for development of existing force fields it is hard to establish data quality and reusability is low. This paper presents the Alexandria library as an open and freely accessible database of optimized molecular geometries, frequencies, electrostatic moments up to the hexadecupole, electrostatic potential, polarizabilities, and thermochemistry, obtained from quantum chemistry calculations for 2704 compounds. Values are tabulated and where available compared to experimental data. This library can assist systematic development and training of empirical force fields for a broad range of molecules. Design Type(s) data integration objective • molecular physical property analysis objective Measurement Type(s) physicochemical characterization Technology Type(s) Computational Chemistry Factor Type(s) Sample Characteristic(s) 1 Uppsala Centre for Computational Chemistry, Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3, Box 596, SE-75124 Uppsala, Sweden. Correspondence and requests for materials should be addressed to D.v.d.S. (email: [email protected]). -
Secondary Structure Propensities in Peptide Folding Simulations: a Systematic Comparison of Molecular Mechanics Interaction Schemes
Biophysical Journal Volume 97 July 2009 599–608 599 Secondary Structure Propensities in Peptide Folding Simulations: A Systematic Comparison of Molecular Mechanics Interaction Schemes Dirk Matthes and Bert L. de Groot* Department of Theoretical and Computational Biophysics, Computational Biomolecular Dynamics Group, Max-Planck-Institute for Biophysical Chemistry, Go¨ttingen, Germany ABSTRACT We present a systematic study directed toward the secondary structure propensity and sampling behavior in peptide folding simulations with eight different molecular dynamics force-field variants in explicit solvent. We report on the combi- national result of force field, water model, and electrostatic interaction schemes and compare to available experimental charac- terization of five studied model peptides in terms of reproduced structure and dynamics. The total simulation time exceeded 18 ms and included simulations that started from both folded and extended conformations. Despite remaining sampling issues, a number of distinct trends in the folding behavior of the peptides emerged. Pronounced differences in the propensity of finding prominent secondary structure motifs in the different applied force fields suggest that problems point in particular to the balance of the relative stabilities of helical and extended conformations. INTRODUCTION Molecular dynamics (MD) simulations are routinely utilized to that study, simulations of relatively short lengths were per- study the folding dynamics of peptides and small proteins as formed and the natively folded state was used as starting well as biomolecular aggregation. The critical constituents of point, possibly biasing the results (13). such molecular mechanics studies are the validity of the under- For folding simulations, such a systematic test has not lyingphysical models together with theassumptionsofclassical been carried out so far, although with growing computer dynamics and a sufficient sampling of the conformational power several approaches toward the in silico folding space. -
Chem Compute Quickstart
Chem Compute Quickstart Chem Compute is maintained by Mark Perri at Sonoma State University and hosted on Jetstream at Indiana University. The Chem Compute URL is https://chemcompute.org/. We will use Chem Compute as the frontend for running electronic structure calculations with The General Atomic and Molecular Electronic Structure System, GAMESS (http://www.msg.ameslab.gov/gamess/). Chem Compute also provides access to other computational chemistry resources including PSI4 and the molecular dynamics packages TINKER and NAMD, though we will not be using those resource at this time. Follow this link, https://chemcompute.org/gamess/submit, to directly access the Chem Compute GAMESS guided submission interface. If you are a returning Chem Computer user, please log in now. If your University is part of the InCommon Federation you can log in without registering by clicking Login then "Log In with Google or your University" – select your University from the dropdown list. Otherwise if this is your first time working with Chem Compute, please register as a Chem Compute user by clicking the “Register” link in the top-right corner of the page. This gives you access to all of the computational resources available at ChemCompute.org and will allow you to maintain copies of your calculations in your user “Dashboard” that you can refer to later. Registering also helps track usage and obtain the resources needed to continue providing its service. When logged in with the GAMESS-Submit tabs selected, an instruction section appears on the left side of the page with instructions for several different kinds of calculations. -
Molecular Dynamics Simulations in Drug Discovery and Pharmaceutical Development
processes Review Molecular Dynamics Simulations in Drug Discovery and Pharmaceutical Development Outi M. H. Salo-Ahen 1,2,* , Ida Alanko 1,2, Rajendra Bhadane 1,2 , Alexandre M. J. J. Bonvin 3,* , Rodrigo Vargas Honorato 3, Shakhawath Hossain 4 , André H. Juffer 5 , Aleksei Kabedev 4, Maija Lahtela-Kakkonen 6, Anders Støttrup Larsen 7, Eveline Lescrinier 8 , Parthiban Marimuthu 1,2 , Muhammad Usman Mirza 8 , Ghulam Mustafa 9, Ariane Nunes-Alves 10,11,* , Tatu Pantsar 6,12, Atefeh Saadabadi 1,2 , Kalaimathy Singaravelu 13 and Michiel Vanmeert 8 1 Pharmaceutical Sciences Laboratory (Pharmacy), Åbo Akademi University, Tykistökatu 6 A, Biocity, FI-20520 Turku, Finland; ida.alanko@abo.fi (I.A.); rajendra.bhadane@abo.fi (R.B.); parthiban.marimuthu@abo.fi (P.M.); atefeh.saadabadi@abo.fi (A.S.) 2 Structural Bioinformatics Laboratory (Biochemistry), Åbo Akademi University, Tykistökatu 6 A, Biocity, FI-20520 Turku, Finland 3 Faculty of Science-Chemistry, Bijvoet Center for Biomolecular Research, Utrecht University, 3584 CH Utrecht, The Netherlands; [email protected] 4 Swedish Drug Delivery Forum (SDDF), Department of Pharmacy, Uppsala Biomedical Center, Uppsala University, 751 23 Uppsala, Sweden; [email protected] (S.H.); [email protected] (A.K.) 5 Biocenter Oulu & Faculty of Biochemistry and Molecular Medicine, University of Oulu, Aapistie 7 A, FI-90014 Oulu, Finland; andre.juffer@oulu.fi 6 School of Pharmacy, University of Eastern Finland, FI-70210 Kuopio, Finland; maija.lahtela-kakkonen@uef.fi (M.L.-K.); tatu.pantsar@uef.fi -
Universit`A Di Parma
UNIVERSITA` DI PARMA DEPARTMENT OF CHEMISTRY, LIFE SCIENCES AND ENVIRONMENTAL SUSTAINABILITY Doctoral Programme in Chemical Sciences XXIX Cycle DYES AND NANOPARTICLES FOR 2PA APPLICATIONS: MODELS AND COMPUTATIONS PhD Student: Somananda Sanyal Supervisors: Prof. Anna Painelli Prof. Swapan K. Pati Coordinator: Prof. Roberto Corradini 2014-2017 Dedicated to My Family List of Abbreviations BFC BF2 complex of Curcumin CT Charge Transfer CNT Carbon Nanotubes D/A Electron Donor / Acceptor 0 DANS p,p -dimethylamino-nitrostilbene DFT Density Functional Theory DMRG Density Matrix Renormalization Group Theory eV electron-volt unit ESM Essential State Model ESP Electrostatic Potential FMO Frontier Molecular Orbital GM G¨oppert-Mayer units (1GM ≡ 10−50 cm 4 s photon−1) HOMO Highest Occupied Molecular Orbital HRS Hyper Rayleigh Scattering LUMO Lowest Unoccupied Molecular Orbital MO Molecular Orbital OPA One Photon Absorption PCM Polarizable Continuum Model PPP Pariser-Parr-Pople TPA Two Photon Absorption ZINDO Zerner's Intermediate Neglect of Differential Overlap i Acknowledgements It's time to say Thank You to many people who have either actively or silently been supporting me in successfully completing the PhD thesis! These three years of my PhD tenure in Parma, Italy has been an eye opener for me, as I slowly learnt to adapt as a girl in a new city. I have been extremely fortunate to meet some people whose influence has been profound and worth cherishing, and I want to grab this opportunity to Thank them All! My parents have been my biggest support system throughout my life and from them I have learnt the first lessons of morality and humanity.