Valence Bond Theory Lecture 18 - Valence Bond Theory

Total Page:16

File Type:pdf, Size:1020Kb

Valence Bond Theory Lecture 18 - Valence Bond Theory Chem 103, Section F0F Lecture 18 - Covalent Bonding Unit VI - Compounds Part II: Covalent Compounds Reading in Silberberg Lecture 18 • Chapter 11, Section 1 - VAlence Bond (VB) Theory and Orbital Hybridization • Chapter 11, Section 2 Valence Bond Theory and Orbital Hybridization • - The Mode of Orbital Overlap and the Types of Covalent Bonds • The Mode of Orbital Overlap and the Types of Covalent Bonds 2 Lecture 18 - Introduction Lecture 18 - Valence Bond Theory In this lecture we will look into theorys of covent bonding. Valence bond theory proposes that covalent bonds form when the atomic orbitals of two atoms overlap. • We will look at the Valence Bond (VB) Theory, which • The combined, overlapping orbitals, contain a total of two resolves the inconsistentcy of what we know about the electrons. shapes and orientations of the atomic orbitals (s, p, and d) - Which, according Pauli’s exclusion principle, have opposing spins with the molecular shapes predicted by the VSEPR Theory. • We discuss how covalent bonds form when atomic orbitals from different atoms overlap. 3 4 Lecture 18 - Valence Bond Theory Lecture 18 - Valence Bond Theory Valence bond theory proposes that covalent bonds form Valence bond theory proposes that covalent bonds form when the atomic orbitals of two atoms overlap. when the atomic orbitals of two atoms overlap. • Every attempt is made to maximize the orbital overlap • Hybridization of atomic orbitals provides for molecular shapes that cannot be accommodated by using s, p, and d orbitals. - For example, we have seen that the VSEPR theory predicts a linear molecular geometry for BeCl2. Cl Be Cl - It is hard to see how this can be accommodated using s, and p orbitals. 5 6 Lecture 18 - Valence Bond Theory Lecture 18 - Valence Bond Theory 2 Be: [He]2s Hybridization of the 2s with one of the empty 2p orbitals in Be provides the solution to this problem. The 2s orbital of Be already has two electrons in it. Cl: [Ne]3s23p5 7 8 Lecture 18 - Valence Bond Theory Lecture 18 - Valence Bond Theory Hybridization of the 2s with one of the empty 2p orbitals in Be Hybridization of the 2s with one of the empty 2p orbitals in Be provides the solution to this problem. provides the solution to this problem. • The half-filled 3p orbitals from each of the Cl atoms can now each overlap with one of Be’s half-filled 2sp orbitals: 9 10 Lecture 18 - Valence Bond Theory Lecture 18 - Valence Bond Theory Hybridization: sp2 Hybridization: • The number of hybrid orbitals obtained equals the number • Example BF3 of atomic orbitals mixed. - VSEPR Theory predicts a trigonal planar molecular shape. • The type of hybrid orbitals obtained varies with the types of atomic orbitals mixed. F B F F We have just seen an example of sp hybridization with BeCl2, we will now go on to look at some other examples. 11 12 Lecture 18 - Valence Bond Theory Lecture 18 - Valence Bond Theory sp2 Hybridization: sp3 Hybridization: • Example BF3 • Example CH4 - VSEPR Theory predicts a trigonal planar molecular shape - VSEPR Theory predicts a tetrahedral molecular shape. - B: [He]2s22p1 - F: [He]2s22p5 H H H C H C H H H H 13 14 Lecture 18 - Valence Bond Theory Lecture 18 - Valence Bond Theory sp3 Hybridization: sp3 Hybridization: • Example CH4 • Example NH3 - VSEPR Theory predicts a tetrahedral molecular shape - VSEPR Theory predicts a tetrahedral molecular shape. - C: [He]2s22p2 - H: 1s1 H N H N H H H H 15 16 Lecture 18 - Valence Bond Theory Lecture 18 - Valence Bond Theory sp3 Hybridization: sp3 Hybridization: • Example CH4 • Example H2O - VSEPR Theory predicts a tetrahedral molecular shape - VSEPR Theory predicts a tetrahedral molecular shape. - N: [He]2s22p3 - H: 1s1 O H O H H H • Hybridized orbitals can also be used to hold non-bonding (lone pair) electrons. 17 18 Lecture 18 - Valence Bond Theory Lecture 18 - Valence Bond Theory sp3 Hybridization: sp3d Hybridization: • Example CH4 • To go beyond 4 hybridized orbitals the empty d orbtals can - VSEPR Theory predicts a tetrahedral molecular shape also be included 2 3 - N: [He]2s 2p Example PCl4 1 • - H: 1s - VSEPR Theory predicts a trigonal bipyramidal molecular shape. Cl Cl Cl P Cl Cl • Hybridized orbitals can also be used to hold non-bonding (lone pair) electrons. 19 20 Lecture 18 - Valence Bond Theory Lecture 18 - Valence Bond Theory sp3d Hybridization: sp3d2 Hybridization: • Example PCl5 • Example SF6 - VSEPR Theory predicts a trigonal bipyramidal molecular shape - VSEPR Theory predicts an octahedral molecular shape. - P: [Ne] 3s23p3 - Cl: [Ne]3s23p5 F F F S F F F 21 22 Lecture 18 - Valence Bond Theory Lecture 18 - Valence Bond Theory sp3d2 Hybridization: Hybridization and Molecular Shapes • Example SF6 - VSEPR Theory predicts an octahedral molecular shape - S: [Ne] 3s23p4 - F: [He]2s22p5 23 24 Lecture 18 - Valence Bond Theory Lecture 18 - Valence Bond Theory Hybridization and Molecular Shapes Hybridization and Molecular Shapes 25 26 Lecture 18 - Valence Bond Theory Lecture 18 - Types of Covalent Bonds Sometimes hybridization does not apply !-Bonds: x • Example H2S • Arise from end-to-end overlap of s, p, and hybridized sp or - VSEPR Theory predicts a tetrahedral molecular shape, like H2O. sp3dy orbitals - However, the bond angle is closer to that predicted for overlap of the • All single bonds are !-bonds. hydrogen 1s orbtals with non-hybridized 3p orbitals from the sulfur. S H 92° H 27 28 Lecture 18 - Types of Covalent Bonds Lecture 18 - Types of Covalent Bonds "-Bonds "-Bonds • Multiple bonds involve "-bonds in addition to one !-bond • Mutiple bonds involve "-bonds in addition to one !-bond • "-Bonds form from side-to-side overlap of p or d orbitals • "-Bonds form from side-to-side overlap of p or d orbitals • For example: • For example: - Double-bonds comprise 1 !-bond and 1 "-bond - Triple-bonds comprise 1 !-bond and 2 "-bonds 29 30 Lecture 18 - Types of Covalent Bonds Lecture 18 - Types of Covalent Bonds "-Bonds "-Bonds restrict rotation about double and triple bonds. • Have two lobes; the two lobes together make a single "- • This can lead to molecules that are configurational isomer. bond. - The isomers are distinguished as cis-trans isomers H H C C Cl Cl cis 1,2-dichloroethene H Cl C C Cl H trans 1,2-dichloroethene 31 32 Lecture 18 - Question 1 Lecture 18 - Question 2 What is the orbital hybridization of t a central atom that has What is the hybridization of the chlorine atom in each of the one lone pair and bonds to following polyatomic ions: - A) two other atoms? A) ClO2 - B) three other atoms? B) ClO3 - C) four other atoms? C) ClO4 D) five other atoms? 33 34 Lecture 18 - Question 3 Lecture 18 - Question 4 Is this statements true or false: Is this statements true or false: Two !-bonds comprise a double bond. A triple bond consists of one "-bond and two !-bonds. A) True A) True B) False B) False 35 36 Lecture 18 - Question 4 Unit VII - Up Next Is this statements true or false: Lecture 19 - Physical States and Intermolecular Forces A "bond consists of two pairs of electrons. • Overview of physical states and changes A) True • Description of phase changes B) False • Types of intermolecular forces 37 38 The End.
Recommended publications
  • Shapes and Structures of Organic Molecules HYBRIDISATION
    Department of Chemistry Anugrah Memorial College, Gaya Class- B.Sc. 1 (Hons) Subject- Organic Chemistry Paper- 1C Unit- Shapes and Structures of Organic molecules Teacher – Dr. Nidhi Tripathi Assistant Professor Shapes and Structures of Organic molecules HYBRIDISATION The formation of bonds is no less than the act of courtship. Atoms come closer, attract to each other and gradually lose a little part of themselves to the other atoms. In chemistry, the study of bonding, that is, Hybridization is of prime importance. What happens to the atoms during bonding? What happens to the atomic orbitals? The answer lies in the concept of Hybridisation. Let us see! Introducing Hybridisation All elements around us, behave in strange yet surprising ways. The electronic configuration of these elements, along with their properties, is a unique concept to study and observe. Owing to the uniqueness of such properties and uses of an element, we are able to derive many practical applications of such elements. When it comes to the elements around us, we can observe a variety of physical properties that these elements display. The study of hybridization and how it allows the combination of various molecules in an interesting way is a very important study in science. Understanding the properties of hybridisation lets us dive into the realms of science in a way that is hard to grasp in one go but excellent to study once we get to know more about it. Let us get to know more about the process of hybridization, which will help us understand the properties of different elements. What is Hybridization? Scientist Pauling introduced the revolutionary concept of hybridization in the year 1931.
    [Show full text]
  • VSEPR Theory
    VSEPR Theory The valence-shell electron-pair repulsion (VSEPR) model is often used in chemistry to predict the three dimensional arrangement, or the geometry, of molecules. This model predicts the shape of a molecule by taking into account the repulsion between electron pairs. This handout will discuss how to use the VSEPR model to predict electron and molecular geometry. Here are some definitions for terms that will be used throughout this handout: Electron Domain – The region in which electrons are most likely to be found (bonding and nonbonding). A lone pair, single, double, or triple bond represents one region of an electron domain. H2O has four domains: 2 single bonds and 2 nonbonding lone pairs. Electron Domain may also be referred to as the steric number. Nonbonding Pairs Bonding Pairs Electron domain geometry - The arrangement of electron domains surrounding the central atom of a molecule or ion. Molecular geometry - The arrangement of the atoms in a molecule (The nonbonding domains are not included in the description). Bond angles (BA) - The angle between two adjacent bonds in the same atom. The bond angles are affected by all electron domains, but they only describe the angle between bonding electrons. Lewis structure - A 2-dimensional drawing that shows the bonding of a molecule’s atoms as well as lone pairs of electrons that may exist in the molecule. Provided by VSEPR Theory The Academic Center for Excellence 1 April 2019 Octet Rule – Atoms will gain, lose, or share electrons to have a full outer shell consisting of 8 electrons. When drawing Lewis structures or molecules, each atom should have an octet.
    [Show full text]
  • Structures and Properties of Substances
    Structures and Properties of Substances Introducing Valence-Shell Electron- Pair Repulsion (VSEPR) Theory The VSEPR theory In 1957, the chemist Ronald Gillespie and Ronald Nyholm, developed a model for predicting the shape of molecules. This model is usually abbreviated to VSEPR (pronounced “vesper”) theory: Valence Shell Electron Pair Repulsion The fundamental principle of the VSEPR theory is that the bonding pairs (BP) and lone pairs (LP) of electrons in the valence level of an atom repel one another. Thus, the orbital for each electron pair is positioned as far from the other orbitals as possible in order to achieve the lowest possible unstable structure. The effect of this positioning minimizes the forces of repulsion between electron pairs. A The VSEPR theory The repulsion is greatest between lone pairs (LP-LP). Bonding pairs (BP) are more localized between the atomic nuclei, so they spread out less than lone pairs. Therefore, the BP-BP repulsions are smaller than the LP-LP repulsions. The repulsion between a bond pair and a lone-pair (BP-LP) is intermediate between the other two. In other words, in terms of decreasing repulsion: LP-LP > LP-BP > BP-BP The tetrahedral shape around a single-bonded carbon atom (e.g. in CH4), the planar shape around a carbon atom with two double bond (e.g. in CO2), and the bent shape around an oxygen atom in H2O result from repulsions between lone pairs and/or bonding pairs of electrons. The VSEPR theory The repulsion is greatest between lone pairs (LP-LP). Bonding pairs (BP) are more localized between the atomic nuclei, so they spread out less than lone pairs.
    [Show full text]
  • Chemical Bonding II: Molecular Shapes, Valence Bond Theory, and Molecular Orbital Theory Review Questions
    Chemical Bonding II: Molecular Shapes, Valence Bond Theory, and Molecular Orbital Theory Review Questions 10.1 J The properties of molecules are directly related to their shape. The sensation of taste, immune response, the sense of smell, and many types of drug action all depend on shape-specific interactions between molecules and proteins. According to VSEPR theory, the repulsion between electron groups on interior atoms of a molecule determines the geometry of the molecule. The five basic electron geometries are (1) Linear, which has two electron groups. (2) Trigonal planar, which has three electron groups. (3) Tetrahedral, which has four electron groups. (4) Trigonal bipyramid, which has five electron groups. (5) Octahedral, which has six electron groups. An electron group is defined as a lone pair of electrons, a single bond, a multiple bond, or even a single electron. H—C—H 109.5= ijj^^jl (a) Linear geometry \ \ (b) Trigonal planar geometry I Tetrahedral geometry I Equatorial chlorine Axial chlorine "P—Cl: \ Trigonal bipyramidal geometry 1 I Octahedral geometry I 369 370 Chapter 10 Chemical Bonding II The electron geometry is the geometrical arrangement of the electron groups around the central atom. The molecular geometry is the geometrical arrangement of the atoms around the central atom. The electron geometry and the molecular geometry are the same when every electron group bonds two atoms together. The presence of unbonded lone-pair electrons gives a different molecular geometry and electron geometry. (a) Four electron groups give tetrahedral electron geometry, while three bonding groups and one lone pair give a trigonal pyramidal molecular geometry.
    [Show full text]
  • Orbital Hybridisation from Wikipedia, the Free Encyclopedia Jump To
    Orbital hybridisation From Wikipedia, the free encyclopedia Jump to: navigation, search Four sp3 orbitals. Three sp2 orbitals. In chemistry, hybridisation (or hybridization) is the concept of mixing atomic orbitals to form new hybrid orbitals suitable for the qualitative description of atomic bonding properties. Hybridised orbitals are very useful in the explanation of the shape of molecular orbitals for molecules. It is an integral part of valence bond theory. Although sometimes taught together with the valence shell electron-pair repulsion (VSEPR) theory, valence bond and hybridization are in fact not related to the VSEPR model.[1] The hybrids are named based on the atomic orbitals that are involved in the hybridization, and the geometries of the hybrids are also reflective of those of the atomic-orbital 3 contributors. For example, in methane (CH4) a set of sp orbitals are formed by mixing one s and three p orbitals on the carbon atom, and are directed towards the four hydrogen atoms which are located at the vertices of a regular tetrahedron. Contents [hide] • 1 Historical development • 2 Types of hybridisation 3 o 2.1 sp hybrids 2 o 2.2 sp hybrids o 2.3 sp hybrids • 3 Hybridisation and molecule shape o 3.1 Explanation of the shape of water o 3.2 Rationale for orbital exclusion in hypervalent molecules 3.2.1 d-orbitals in main group compounds 3.2.2 p-orbitals in transition metal complexes o 3.3 Description of bonding in hypervalent molecules 3.3.1 AX5 to AX7 main group compounds • 4 Hybridisation theory vs. MO theory • 5 See also • 6 References • 7 External links [edit] Historical development Chemist Linus Pauling first developed the hybridisation theory in order to explain the [2] structure of molecules such as methane (CH4).
    [Show full text]
  • Molecular Shape
    VSEPR Theory VSEPR Theory Shapes of Molecules Molecular Structure or Molecular Geometry The 3-dimensional arrangement of the atoms that make-up a molecule. Determines several properties of a substance, including: reactivity, polarity, phase of matter, color, magnetism, and biological activity. The chemical formula has no direct relationship with the shape of the molecule. VSEPR Theory Shapes of Molecules Molecular Structure or Molecular Geometry The 3-dimensional shapes of molecules can be predicted by their Lewis structures. Valence-shell electron pair repulsion (VSEPR) model or electron domain (ED) model: Used in predicting the shapes. The electron pairs occupy a certain domain. They move as far apart as possible. Lone pairs occupy additional domains, contributing significantly to the repulsion and shape. VSEPR Theory Terms and Definitions Bonding Pairs (AX) Electron pairs that are involved in the bonding. Lone Pairs (E) – aka non-bonding pairs or unshared pairs Electrons that are not involved in the bonding. They tend to occupy a larger domain. Electron Domains (ED) Total number of pairs found in the molecule that contribute to its shape. VSEPR – Molecular Shape Multiple covalent bonds Bond Angle: around the same atom • Angle formed by any determine the shape two terminal (outside) Negative e- pairs (same atoms and a central charge) repel each other atom • Caused by the repulsion Repulsions push the pairs as far apart as possible of shared electron pairs. Hybridization What’s a hybrid? • Combining two of the same
    [Show full text]
  • The Noble Gases
    INTERCHAPTER K The Noble Gases When an electric discharge is passed through a noble gas, light is emitted as electronically excited noble-gas atoms decay to lower energy levels. The tubes contain helium, neon, argon, krypton, and xenon. University Science Books, ©2011. All rights reserved. www.uscibooks.com Title General Chemistry - 4th ed Author McQuarrie/Gallogy Artist George Kelvin Figure # fig. K2 (965) Date 09/02/09 Check if revision Approved K. THE NOBLE GASES K1 2 0 Nitrogen and He Air P Mg(ClO ) NaOH 4 4 2 noble gases 4.002602 1s2 O removal H O removal CO removal 10 0 2 2 2 Ne Figure K.1 A schematic illustration of the removal of O2(g), H2O(g), and CO2(g) from air. First the oxygen is removed by allowing the air to pass over phosphorus, P (s) + 5 O (g) → P O (s). 20.1797 4 2 4 10 2s22p6 The residual air is passed through anhydrous magnesium perchlorate to remove the water vapor, Mg(ClO ) (s) + 6 H O(g) → Mg(ClO ) ∙6 H O(s), and then through sodium hydroxide to remove 18 0 4 2 2 4 2 2 the carbon dioxide, NaOH(s) + CO2(g) → NaHCO3(s). The gas that remains is primarily nitrogen Ar with about 1% noble gases. 39.948 3s23p6 36 0 The Group 18 elements—helium, K-1. The Noble Gases Were Kr neon, argon, krypton, xenon, and Not Discovered until 1893 83.798 radon—are called the noble gases 2 6 4s 4p and are noteworthy for their rela- In 1893, the English physicist Lord Rayleigh noticed 54 0 tive lack of chemical reactivity.
    [Show full text]
  • Bsc Chemistry
    ____________________________________________________________________________________________________ Subject Chemistry Paper No and Title 2 and Physical Chemistry-I Module No and Title 27 and Valence Bond Theory I Module Tag CHE_P2_M27 SUBJECT PAPER : 2, Physical Chemistry I MODULE : 27, Valence Bond Theory I ____________________________________________________________________________________________________ TABLE OF CONTENTS 1. Learning Outcomes 2. Introduction 3. Valence Bond Theory (VBT) 3.1 Postulates of VBT 3.2 VBT of Hydrogen molecule 4. Summary 1. SUBJECT PAPER : 2, Physical Chemistry I MODULE : 27, Valence Bond Theory I ____________________________________________________________________________________________________ 1. Learning Outcomes After studying this module, you shall be able to: Learn about electronic structure of molecules using VBT Understand the postulates of VBT The VBT of Hydrogen molecule 2. Introduction Now, at this point we know that the Schrodinger equation cannot be solved exactly for multi-electron system even if the inter-nuclear distances are held constant. This is due to the presence of electron-electron repulsion terms in the Hamiltonian operator. Consequently, various approaches have been developed for the approximate solution of Schrodinger equation. Of these, Molecular Orbital Theory (MOT) and Valence Bond Theory (VBT) have been widely used. These two approaches differ in the choice of trial/approximate wave-function which is optimized via variation method for the system under consideration. Of these, we have already discussed MOT in earlier modules. In this module, we will take up the formalism of VBT in detail. 3. Valence Bond Theory Valence Bond Theory was the first quantum mechanical treatment to account for chemical bonding. This theory was first introduced by Heitler and London in 1927 and subsequently by Slater and Pauling in 1930s.
    [Show full text]
  • Hybrid Orbitals Hybrid Orbitals
    Molecular Shape and Molecular Shape and Molecular Polarity Molecular Polarity • When there is a difference in electronegativity between • In water, the molecule is not linear and the bond dipoles two atoms, then the bond between them is polar. do not cancel each other. • It is possible for a molecule to contain polar bonds, but • Therefore, water is a polar molecule. not be polar. • For example, the bond dipoles in CO2 cancel each other because CO2 is linear. Figure 9.12 Prentice Hall © 2003 Chapter 9 Prentice Hall © 2003 Chapter 9 Molecular Shape and Molecular Shape and Molecular Polarity Molecular Polarity • The overall polarity of a molecule depends on its molecular geometry. Figure 9.13 Figure 9.11 Prentice Hall © 2003 Chapter 9 Prentice Hall © 2003 Chapter 9 1 Covalent Bonding and Covalent Bonding and Orbital Overlap Orbital Overlap • How do we account for shape in terms of quantum • As two nuclei approach each other their atomic orbitals mechanics? overlap. • What are the orbitals that are involved in bonding? • As the amount of overlap increases, the energy of the • We use Valence Bond Theory: interaction decreases. • Bonds form when orbitals on atoms overlap. • At some distance the minimum energy is reached. • There are two electrons of opposite spin in the orbital overlap. • The minimum energy corresponds to the bonding distance (or bond length). • As the two atoms get closer, their nuclei begin to repel and the energy increases. Prentice Hall © 2003 Chapter 9 Prentice Hall © 2003 Chapter 9 Covalent Bonding and Covalent Bonding and Orbital Overlap Orbital Overlap • At the bonding distance, the attractive forces between nuclei and electrons just balance the repulsive forces (nucleus-nucleus, electron-electron).
    [Show full text]
  • Chapter 9. Molecular Geometry and Bonding Theories
    Chapter 9. Molecular Geometry and Bonding Theories Media Resources Figures and Tables in Transparency Pack: Section: Figure 9.2 Shapes of AB2 and AB3 Molecules 9.1 Molecular Shapes Figure 9.3 Shapes Allowing Maximum Distances 9.1 Molecular Shapes between Atoms in ABn Molecules Table 9.1 Electron-Domain Geometries as a 9.2 VSEPR Model Function of Number of Electron Domains Table 9.2 Electron-Domain and Molecular 9.2 VSEPR Model Geometries for Two, Three, and Four Electron Domains around a Central Atom Table 9.3 Electron-Domain and Molecular 9.2 VSEPR Model Geometries for Five and Six Electron Domains around a Central Atom Figure 9.12 Polar and Nonpolar Molecules 9.3 Molecular Shape and Molecular Polarity Containing Polar Bonds Figure 9.14 Formation of the H2 Molecule as 9.4 Covalent Bonding and Orbital Overlap Atomic Orbitals Overlap Figure 9.15 Formation of sp Hybrid Orbitals 9.5 Hybrid Orbitals Figure 9.17 Formation of sp2 Hybrid Orbitals 9.5 Hybrid Orbitals Figure 9.18 Formation of sp3 Hybrid Orbitals 9.5 Hybrid Orbitals Table 9.4 Geometric Arrangements Characteristic 9.5 Hybrid Orbitals of Hybrid Orbital Sets Figure 9.23 The Orbital Structure of Ethylene 9.6 Multiple Bonds Figure 9.24 Formation of Two π Bonds in 9.6 Multiple Bonds Acetylene, C2H2 Figure 9.26 σ and the π Bond Networks in Benzene, 9.6 Multiple Bonds C6H6 Figure 9.27 Delocalized π Bonds in Benzene 9.6 Multiple Bonds Figure 9.32 The Two Molecular Orbitals of H2, One 9.7 Molecular Orbitals a Bonding MO and One an Antibonding MO Figure 9.35 Energy-level Diagram for the Li2
    [Show full text]
  • Valence Bond Theory
    Valence Bond Theory • A bond is a result of overlapping atomic orbitals from two atoms. The overlap holds a pair of electrons. • Normally each atomic orbital is bringing one electron to this bond. But in a “coordinate covalent bond”, both electrons come from the same atom • In this model, we are not creating a new orbital by the overlap. We are simply referring to the overlap between atomic orbitals (which may or may not be hybrid) from two atoms as a “bond”. Valence Bond Theory Sigma (σ) Bond • Skeletal bonds are called “sigma” bonds. • Sigma bonds are formed by orbitals approaching and overlapping each other head-on . Two hybrid orbitals, or a hybrid orbital and an s-orbital, or two s- orbitals • The resulting bond is like an elongated egg, and has cylindrical symmetry. Acts like an axle • That means the bond shows no resistance to rotation around a line that lies along its length. Pi (π) Bond Valence Bond Theory • The “leftover” p-orbitals that are not used in forming hybrid orbitals are used in making the “extra” bonds we saw in Lewis structures. The 2 nd bond in a double bond nd rd The 2 and 3 bonds in a triple bond /~harding/IGOC/P/pi_bond.html • Those extra bonds form only after the atoms are brought together by the formation of the skeletal bonds made by www.chem.ucla.edu hybrid orbitals. • The “extra” π bonds are always associated with a skeletal bond around which they form. • They don’t form without a skeletal bond to bring the p- orbitals together and “support” them.
    [Show full text]
  • Visualizing Molecules - VSEPR, Valence Bond Theory, and Molecular Orbital Theory
    Copyright ©The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Visualizing Molecules - VSEPR, Valence Bond Theory, and Molecular Orbital Theory Nestor S. Valera 1 Copyright ©The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Visualizing Molecules 1. Lewis Structures and Valence-Shell Electron-Pair Repulsion Theory 2. Valence Bond Theory and Hybridization 3. Molecular Orbital Theory 2 Copyright ©The McGraw-Hill Companies, Inc. Permission required for reproduction or display. The Shapes of Molecules 10.1 Depicting Molecules and Ions with Lewis Structures 10.2 Valence-Shell Electron-Pair Repulsion (VSEPR) Theory and Molecular Shape 10.3 Molecular Shape and Molecular Polarity 3 Copyright ©The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Figure 10.1 The steps in converting a molecular formula into a Lewis structure. Place atom Molecular Step 1 with lowest formula EN in center Atom Add A-group Step 2 placement numbers Sum of Draw single bonds. Step 3 valence e- Subtract 2e- for each bond. Give each Remaining Step 4 atom 8e- valence e- (2e- for H) Lewis structure 4 Copyright ©The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Molecular formula For NF3 Atom placement : : N 5e- : F: : F: : Sum of N F 7e- X 3 = 21e- valence e- - : F: Total 26e Remaining : valence e- Lewis structure 5 Copyright ©The McGraw-Hill Companies, Inc. Permission required for reproduction or display. SAMPLE PROBLEM 10.1 Writing Lewis Structures for Molecules with One Central Atom PROBLEM: Write a Lewis structure for CCl2F2, one of the compounds responsible for the depletion of stratospheric ozone.
    [Show full text]