The Role of Eif5a Hypusination in Mediating Oncogenic Mtor Signaling

Total Page:16

File Type:pdf, Size:1020Kb

The Role of Eif5a Hypusination in Mediating Oncogenic Mtor Signaling The role of eIF5A hypusination in mediating oncogenic mTOR signaling Yutian Cai Faculty of Medicine Department of Biochemistry McGill University, Montreal, Quebec, Canada December 2016 A thesis submitted to McGill University in partial fulfillment of the requirements of the degree of Master of Science ©Yutian Cai 2016 TABLE OF CONTENTS TABLE OF CONTENTS ........................................................................................ 2 TABLE OF FIGURES ............................................................................................ 4 PREFACE.............................................................................................................. 5 ACKNOWLEDGEMENTS ...................................................................................... 6 ABSTRACT ........................................................................................................... 7 RÉSUMÉ ............................................................................................................... 9 LIST OF ABBREVIATIONS ................................................................................. 11 CHAPTER 1: INTRODUCTION ........................................................................... 14 1.1 mRNA TRANSLATION ......................................................................... 14 1.1.1 TRANSLATION INITIATION....................................................................... 15 1.1.2 TRANSLATIONAL EFFICIENCY ............................................................... 20 1.1.3 TRANSLATION AND CANCER ................................................................. 25 1.2 POLYSOME FRACTIONATION ............................................................ 27 1.3 mTOR PATHWAY ................................................................................. 30 1.3.1 UPSTREAM ACTIVATORS OF mTOR ...................................................... 31 1.3.2 DOWNSTREAM EFFECTORS OF mTOR IMPLICATED IN TRANSLATIONAL REGULATION....................................................................... 34 1.3.3 PHARMACOLOGICAL INHIBITORS OF mTOR ........................................ 36 1.4 OBJECTIVES ........................................................................................ 39 1.4.1 EUKARYOTIC TRANSLATION INITIATION FACTOR eIF5A .................... 42 1.4.2 DEOXYHYPUSINE HYDROXYLASE/MONOOXYGENASE (DOHH) ........ 47 CHAPTER 2 RESULTS ....................................................................................... 49 2.1 EXPRESSION OF DOHH AND eIF5A mRNA IS UPREGULATED ACROSS A VARIETY OF DIFFERENT CANCER TYPES .............................................. 49 2.2 DOHH IS A DOWNSTREAM TARGET OF THE mTOR PATHWAY ......... 50 2.3 CHANGES IN mTOR SIGNALING DO NOT EXERT A MAJOR EFFECT ON DOHH PROTEIN STABILITY .......................................................................... 51 2.4 DOHH mRNA LEVELS ARE NOT MODULATED BY mTOR SIGNALING .... ......................................................................................................................... 51 2.5 mTOR INCREASES TRANSLATIONAL EFFICIENCY OF DOHH mRNA .... ......................................................................................................................... 51 2.6 DOHH PROTEIN EXPRESSION IS INDEPENDENT OF THE 4E-BP STATUS IN THE CELL .................................................................................... 56 2 2.7 IDENTIFYING THE ROLE OF eIF5A HYPUSINATION IN mTOR DEPENDENT TUMORIGENESIS .................................................................... 57 CHAPTER 3 DISCUSSION ................................................................................. 67 CHAPTER 4 MATERIALS AND METHODS ....................................................... 76 4.1 CELL CULTURE AND DRUG TREATMENTS .......................................... 76 4.2 LENTIVIRUS shRNA AND INFECTIONS .................................................. 77 4.3 CELL LYSIS AND WESTERN BLOTTING ANALYSIS ............................. 77 4.4 POLYSOME PROFILING AND RNA EXTRACTION ................................. 79 4.5 REVERSE TRANSCRIPTASE-QUANTITATIVE PCR (RT-qPCR) AND PRIMERS ......................................................................................................... 80 4.6 SOFT AGAR COLONY FORMATION ASSAY .......................................... 82 CHAPTER 4 REFERENCES ............................................................................... 84 3 TABLE OF FIGURES FIGURE 1.1 A BRIEF OVERVIEW OF TRANSLATIONAL INITIATION IN EUKARYOTES .................................................................................................... 20 FIGURE 1.2 SHEMATIC REPRESENTATION OF POLYSOME PROFILING TECHNIQUE ....................................................................................................... 29 FIGURE 1.3 THE SCHEMATIC REPRESENTATION OF THE mTOR SIGNALING NETWORK ...................................................................................... 36 FIGURE 1.4 mTOR INHIBITORS SUPPRESS TRANSLATION OF A SUBSET OF mRNAS THAT ENCODE PROTEINS INVOLVED IN AMINO ACID METABOLIC PROCESSES INCLUDING DOHH ................................................ 41 FIGURE 1.5 A SCHEMATIC REPRESENTATION OF THE HYPUSINATION REACTION .......................................................................................................... 46 FIGURE 2.1 EXPRESSION OF DOHH AND EIF5A MRNA IS UPREGULATED ACROSS A VARIETY OF DIFFERENT CANCER TYPES ................................. 59 FIGURE 2.2 DOHH IS A DOWNSTREAM TARGET OF THE mTOR PATHWAY ............................................................................................................................. 60 FIGURE 2.3 CHANGES IN MTOR SIGNALING DO NOT EXERT A MAJOR EFFECT ON DOHH PROTEIN STABILITY ......................................................... 61 FIGURE 2.4 DOHH MRNA LEVELS ARE NOT MODULATED BY mTOR SIGNALING ......................................................................................................... 62 FIGURE 2.5 MTOR INCREASES TRANSLATIONAL EFFICIENCY OF DOHH mRNA .................................................................................................................. 63 FIGURE 2.6 DOHH PROTEIN EXPRESSION IS INDEPENDENT OF THE 4E-BP STATUS IN THE CELLS ..................................................................................... 65 FIGURE 2.7 DOHH IS REQUIRED FOR THE NEOPLASTIC GROWTH OF HCT116 PTEN-/- CELLS ...................................................................................... 66 4 PREFACE This thesis was written based on the Guidelines for Thesis Preparation from the Faculty of Graduate Studies and Research of McGill University. Our lab manager Shannon McLaughlan initiated the project and helped me optimize the experimental conditions throughout the project. Also, our collaborator Dr. Ola Larsson at Karolinska Institute in Sweden helped to develop the R script for polysome analysis. 5 ACKNOWLEDGEMENTS I first wish to thank my supervisor Dr. Ivan Topisirovic for his patience, guidance, and expertise in science. Moreover, I wish to thank him for giving me the opportunity to attend R programming workshop in Sweden and broaden my knowledge in bioinformatics. I would also like to thank my colleagues in the lab Valentina Gandin, Shannon McLaughlan, Marie Cargnello and Laura Hulea for teaching me the experimental techniques and helping me to develop critical thinking. Last but not the least, I would like to thank all my friends and family for the moral support I needed throughout the master study. 6 ABSTRACT Protein synthesis (or mRNA translation) is a major step in the regulation of gene expression and one of the most energy consuming processes in the cell. eIF5A is activated by a unique post-translational modification called hypusination (modification of Lys50 on eIF5A to hypusine), which is catalyzed by deoxyhypusine synthase (DHS) and deoxyhypusine hydroxylase (DOHH). eIF5A hypusination is thought to play a significant role in translation, but little is known about its regulation. Our recent genome-wide interrogation of the translatome identified DOHH mRNA as a potential translational target of the mechanistic/mammalian target of rapamycin (mTOR). We were able to validate these findings and demonstrate that treatment with mTOR inhibitors, rapamycin and torin1 causes a substantial decrease in DOHH protein levels. Using proteasome inhibitors and measuring mRNA levels by RT-qPCR, we concluded the mTOR neither controls stability of DOHH protein nor the transcription of the corresponding gene. We next conducted polysome-profiling experiments using mTOR inhibitors, which revealed that mTOR regulates DOHH expression at the level of translation. Since both mTOR and eIF5A hypusination are often found to be upregulated in cancer, and we established the link between mTOR and eIF5A hypusination, we hypothesized the DOHH/eIF5A pathway at least in part mediates oncogenic effects of mTOR. Using soft agar assay, we demonstrated 7 that DOHH depletion was sufficient to attenuate anchorage-independent growth induced by hyperactivated mTOR signaling. These findings suggest that DOHH and consequently eIF5A hypusination may play a major role in mTOR-driven oncogenesis. 8 Résumé La synthèse des protéines (ou traduction des ARN messagers) est une étape clé de la régulation de l’expression des gènes dont la dérégulation est associée au développement de nombreuses pathologies humaines telles que le cancer. Le facteur d’initiation de la traduction eIF5A est activé par hypusination, une modification post-traductionnelle
Recommended publications
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • Supplementary Material Contents
    Supplementary Material Contents Immune modulating proteins identified from exosomal samples.....................................................................2 Figure S1: Overlap between exosomal and soluble proteomes.................................................................................... 4 Bacterial strains:..............................................................................................................................................4 Figure S2: Variability between subjects of effects of exosomes on BL21-lux growth.................................................... 5 Figure S3: Early effects of exosomes on growth of BL21 E. coli .................................................................................... 5 Figure S4: Exosomal Lysis............................................................................................................................................ 6 Figure S5: Effect of pH on exosomal action.................................................................................................................. 7 Figure S6: Effect of exosomes on growth of UPEC (pH = 6.5) suspended in exosome-depleted urine supernatant ....... 8 Effective exosomal concentration....................................................................................................................8 Figure S7: Sample constitution for luminometry experiments..................................................................................... 8 Figure S8: Determining effective concentration .........................................................................................................
    [Show full text]
  • Relevance of Translation Initiation in Diffuse Glioma Biology and Its
    cells Review Relevance of Translation Initiation in Diffuse Glioma Biology and its Therapeutic Potential Digregorio Marina 1, Lombard Arnaud 1,2, Lumapat Paul Noel 1, Scholtes Felix 1,2, Rogister Bernard 1,3 and Coppieters Natacha 1,* 1 Laboratory of Nervous System Disorders and Therapy, GIGA-Neurosciences Research Centre, University of Liège, 4000 Liège, Belgium; [email protected] (D.M.); [email protected] (L.A.); [email protected] (L.P.N.); [email protected] (S.F.); [email protected] (R.B.) 2 Department of Neurosurgery, CHU of Liège, 4000 Liège, Belgium 3 Department of Neurology, CHU of Liège, 4000 Liège, Belgium * Correspondence: [email protected] Received: 18 October 2019; Accepted: 26 November 2019; Published: 29 November 2019 Abstract: Cancer cells are continually exposed to environmental stressors forcing them to adapt their protein production to survive. The translational machinery can be recruited by malignant cells to synthesize proteins required to promote their survival, even in times of high physiological and pathological stress. This phenomenon has been described in several cancers including in gliomas. Abnormal regulation of translation has encouraged the development of new therapeutics targeting the protein synthesis pathway. This approach could be meaningful for glioma given the fact that the median survival following diagnosis of the highest grade of glioma remains short despite current therapy. The identification of new targets for the development of novel therapeutics is therefore needed in order to improve this devastating overall survival rate. This review discusses current literature on translation in gliomas with a focus on the initiation step covering both the cap-dependent and cap-independent modes of initiation.
    [Show full text]
  • Loss of Eif4e Phosphorylation Engenders Depression-Like Behaviors Via Selective Mrna Translation
    This Accepted Manuscript has not been copyedited and formatted. The final version may differ from this version. A link to any extended data will be provided when the final version is posted online. Research Articles: Neurobiology of Disease Loss of eIF4E phosphorylation engenders depression-like behaviors via selective mRNA translation Inês Silva Amorim1,2, Sonal Kedia1,2, Stella Kouloulia1,2, Konstanze Simbriger1,2, Ilse Gantois3, Seyed Mehdi Jafarnejad3, Yupeng Li1,2, Agniete Kampaite1,2, Tine Pooters1, Nicola Romanò1 and Christos G. Gkogkas1,2,4 1Centre for Discovery Brain Sciences, EH8 9XD, Edinburgh, Scotland, UK 2The Patrick Wild Centre, EH8 9XD, Edinburgh, Scotland, UK 3Goodman Cancer Research Centre and Biochemistry Department, McGill University, H3A 1A3, Montréal, QC, Canada 4Simons Initiative for the Developing Brain, EH8 9XD, Edinburgh, Scotland, UK DOI: 10.1523/JNEUROSCI.2673-17.2018 Received: 16 September 2017 Revised: 3 December 2017 Accepted: 8 January 2018 Published: 24 January 2018 Author contributions: I.S.A., S. Kedia, S. Kouloulia, S.M.J., N.R., and C.G.G. designed research; I.S.A., S. Kedia, S. Kouloulia, K.S., I.G., S.M.J., Y.L., A.K., N.R., and C.G.G. performed research; I.S.A., S. Kedia, S. Kouloulia, K.S., I.G., S.M.J., A.K., T.P., and C.G.G. analyzed data; N.R. and C.G.G. contributed unpublished reagents/analytic tools; C.G.G. wrote the paper. Conflict of Interest: The authors declare no competing financial interests. This work was supported by grants to CGG: Sir Henry Dale Fellowship from the Wellcome Trust and Royal Society (107687/Z/15/Z), a NARSAD Young Investigator grant from the Brain & Behavior Research Foundation, the RS Macdonald Charitable Trust and the Patrick Wild Centre.
    [Show full text]
  • Host Cell Factors Necessary for Influenza a Infection: Meta-Analysis of Genome Wide Studies
    Host Cell Factors Necessary for Influenza A Infection: Meta-Analysis of Genome Wide Studies Juliana S. Capitanio and Richard W. Wozniak Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta Abstract: The Influenza A virus belongs to the Orthomyxoviridae family. Influenza virus infection occurs yearly in all countries of the world. It usually kills between 250,000 and 500,000 people and causes severe illness in millions more. Over the last century alone we have seen 3 global influenza pandemics. The great human and financial cost of this disease has made it the second most studied virus today, behind HIV. Recently, several genome-wide RNA interference studies have focused on identifying host molecules that participate in Influen- za infection. We used nine of these studies for this meta-analysis. Even though the overlap among genes identified in multiple screens was small, network analysis indicates that similar protein complexes and biological functions of the host were present. As a result, several host gene complexes important for the Influenza virus life cycle were identified. The biological function and the relevance of each identified protein complex in the Influenza virus life cycle is further detailed in this paper. Background and PA bound to the viral genome via nucleoprotein (NP). The viral core is enveloped by a lipid membrane derived from Influenza virus the host cell. The viral protein M1 underlies the membrane and anchors NEP/NS2. Hemagglutinin (HA), neuraminidase Viruses are the simplest life form on earth. They parasite host (NA), and M2 proteins are inserted into the envelope, facing organisms and subvert the host cellular machinery for differ- the viral exterior.
    [Show full text]
  • Inhibition of the MID1 Protein Complex
    Matthes et al. Cell Death Discovery (2018) 4:4 DOI 10.1038/s41420-017-0003-8 Cell Death Discovery ARTICLE Open Access Inhibition of the MID1 protein complex: a novel approach targeting APP protein synthesis Frank Matthes1,MoritzM.Hettich1, Judith Schilling1, Diana Flores-Dominguez1, Nelli Blank1, Thomas Wiglenda2, Alexander Buntru2,HannaWolf1, Stephanie Weber1,InaVorberg 1, Alina Dagane2, Gunnar Dittmar2,3,ErichWanker2, Dan Ehninger1 and Sybille Krauss1 Abstract Alzheimer’s disease (AD) is characterized by two neuropathological hallmarks: senile plaques, which are composed of amyloid-β (Aβ) peptides, and neurofibrillary tangles, which are composed of hyperphosphorylated tau protein. Aβ peptides are derived from sequential proteolytic cleavage of the amyloid precursor protein (APP). In this study, we identified a so far unknown mode of regulation of APP protein synthesis involving the MID1 protein complex: MID1 binds to and regulates the translation of APP mRNA. The underlying mode of action of MID1 involves the mTOR pathway. Thus, inhibition of the MID1 complex reduces the APP protein level in cultures of primary neurons. Based on this, we used one compound that we discovered previously to interfere with the MID1 complex, metformin, for in vivo experiments. Indeed, long-term treatment with metformin decreased APP protein expression levels and consequently Aβ in an AD mouse model. Importantly, we have initiated the metformin treatment late in life, at a time-point where mice were in an already progressed state of the disease, and could observe an improved behavioral phenotype. These 1234567890 1234567890 findings together with our previous observation, showing that inhibition of the MID1 complex by metformin also decreases tau phosphorylation, make the MID1 complex a particularly interesting drug target for treating AD.
    [Show full text]
  • Distinct Interactions of Eif4a and Eif4e with RNA Helicase Ded1 Stimulate Translation in Vivo Suna Gulay, Neha Gupta, Jon R Lorsch, Alan G Hinnebusch*
    RESEARCH ARTICLE Distinct interactions of eIF4A and eIF4E with RNA helicase Ded1 stimulate translation in vivo Suna Gulay, Neha Gupta, Jon R Lorsch, Alan G Hinnebusch* Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, United States Abstract Yeast DEAD-box helicase Ded1 stimulates translation initiation, particularly of mRNAs with structured 5’UTRs. Interactions of the Ded1 N-terminal domain (NTD) with eIF4A, and Ded1- CTD with eIF4G, subunits of eIF4F, enhance Ded1 unwinding activity and stimulation of preinitiation complex (PIC) assembly in vitro. However, the importance of these interactions, and of Ded1-eIF4E association, in vivo were poorly understood. We identified separate amino acid clusters in the Ded1-NTD required for binding to eIF4A or eIF4E in vitro. Disrupting each cluster selectively impairs native Ded1 association with eIF4A or eIF4E, and reduces cell growth, polysome assembly, and translation of reporter mRNAs with structured 5’UTRs. It also impairs Ded1 stimulation of PIC assembly on a structured mRNA in vitro. Ablating Ded1 interactions with eIF4A/eIF4E unveiled a requirement for the Ded1-CTD for robust initiation. Thus, Ded1 function in vivo is stimulated by independent interactions of its NTD with eIF4E and eIF4A, and its CTD with eIF4G. Introduction Eukaryotic translation initiation is an intricate process that ensures accurate selection and decoding *For correspondence: of the mRNA start codon. Initiation
    [Show full text]
  • The Role of C-Myc in Regulation of Translation Initiation
    Oncogene (2004) 23, 3217–3221 & 2004 Nature Publishing Group All rights reserved 0950-9232/04 $25.00 www.nature.com/onc The role of c-myc in regulation of translation initiation Emmett V Schmidt*,1,2 1Cancer Research Center at Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114, USA; 2MassGeneral Hospital for Children, 55 Fruit Street; Boston, MA 02114, USA Translation initiation is important for the regulation of grow to aminimum size threshold, this property is both cell growth and cell division. It is uniquely poised to fundamental to both normal and malignant growth coordinate overall cell proliferation by its effects on both (Baserga, 1985). When the minimally perturbing set of growth and division. A number of translation initiation genes used to fully transform human cells was more factors are transcriptional targets of c-myc in a variety of carefully analysed, it became apparent that resistance assays. In particular, the mRNA cap-binding protein to nutrient deprivation was an equal partner to all of eIF4E has a myc-binding sequence in its promoter that is the other genetic changes required in malignant cells myc responsive in reporter assays and contains a high- (Hahn et al., 2002). Despite the simplicity of the logic affinity myc-binding site in chromosome immunoprecipi- that cells must grow in order to proliferate, relatively tation experiments. Several differential expression screens less attention has been given to studies of the genetic have demonstrated altered levels of eIF4E, along with mechanisms by which cell growth is perturbed several other translation initiation factors, in response to compared to other aspects of cellular proliferation.
    [Show full text]
  • Overview of Research on Fusion Genes in Prostate Cancer
    2011 Review Article Overview of research on fusion genes in prostate cancer Chunjiao Song1,2, Huan Chen3 1Medical Research Center, Shaoxing People’s Hospital, Shaoxing University School of Medicine, Shaoxing 312000, China; 2Shaoxing Hospital, Zhejiang University School of Medicine, Shaoxing 312000, China; 3Key Laboratory of Microorganism Technology and Bioinformatics Research of Zhejiang Province, Zhejiang Institute of Microbiology, Hangzhou 310000, China Contributions: (I) Conception and design: C Song; (II) Administrative support: Shaoxing Municipal Health and Family Planning Science and Technology Innovation Project (2017CX004) and Shaoxing Public Welfare Applied Research Project (2018C30058); (III) Provision of study materials or patients: None; (IV) Collection and assembly of data: C Song; (V) Data analysis and interpretation: H Chen; (VI) Manuscript writing: All authors; (VII) Final approval of manuscript: All authors. Correspondence to: Chunjiao Song. No. 568 Zhongxing Bei Road, Shaoxing 312000, China. Email: [email protected]. Abstract: Fusion genes are known to drive and promote carcinogenesis and cancer progression. In recent years, the rapid development of biotechnologies has led to the discovery of a large number of fusion genes in prostate cancer specimens. To further investigate them, we summarized the fusion genes. We searched related articles in PubMed, CNKI (Chinese National Knowledge Infrastructure) and other databases, and the data of 92 literatures were summarized after preliminary screening. In this review, we summarized approximated 400 fusion genes since the first specific fusion TMPRSS2-ERG was discovered in prostate cancer in 2005. Some of these are prostate cancer specific, some are high-frequency in the prostate cancer of a certain ethnic group. This is a summary of scientific research in related fields and suggests that some fusion genes may become biomarkers or the targets for individualized therapies.
    [Show full text]
  • UNDERSTANDING the ROLE of EIF4A in GENE REGULATION in HEALTH and DISEASE THOMAS EDWARD WEBB B.Sc
    UNDERSTANDING THE ROLE OF EIF4A IN GENE REGULATION IN HEALTH AND DISEASE THOMAS EDWARD WEBB B.Sc. (Hons, Warwick) M.Sc. (Oxon) Thesis submitted to The University of Nottingham for the degree of Doctor of Philosophy (July 2012) 1 Abstract eIF4A Eukaryotic initiation factor 4A (eIF4A) is an ATP-dependent RNA helicase responsible for unwinding the secondary structure of mRNAs. In humans, eIF4A exists as three separate paralogs: eIF4AI and eIF4AII possess a high degree of homology while eIF4AIII is distinct. Knockdown of eIF4AII had no effect on the expression of a reporter construct containing a structured RNA hairpin. Knockdown of eIF4AI and treatment with hippuristanol (an eIF4A inhibitor) caused a dramatic reduction in the hairpin-mediated gene. This reporter system was developed as part of this project to act as a screen for eIF4A activity along with an in vitro screening approach. PDCD4 The activity of eIF4A is suppressed in vivo by the tumour suppressor PDCD4. The fact that loss of PDCD4 function increases the severity of DNA damage is probably attributable its eIF4A-suppressive activity. Alzheimer's Disease Based on previous microarray data, it was supposed that eIF4A inhibition may be therapeutically beneficial in the treatment of Alzheimer's disease. As part of this project, it was demonstrated that eIF4A suppression significantly reduced the expression of reporter genes preceded by the 5’ UTRs of genes predicted to play harmful roles in Alzheimer’s disease. The expression of reporter genes preceded by the 5’ UTR sequences of genes predicted to be beneficial in Alzheimer's were not affected by this suppression.
    [Show full text]
  • Supplemental Material For
    SUPPLEMENTAL MATERIAL FOR Coexpression network based on natural variation in human gene expression reveals gene interactions and functions Renuka Nayak, Michael Kearns, Richard S. Spielman, Vivian G. Cheung Supplementary Figure 1 Supplementary Table 1. Gene pairs whose correlations in gene expression levels differ significantly (Pc<0.05) among the 3 datasets. Supplementary Table 2. Gene pairs that are correlated in gene expression levels with |R|>0.5 and are found within 500 kb of each other. Supplementary Table 3. Predicted functions of poorly characterized genes based on the functions of neighboring genes. Supplementary Figure 1. Genes identified in genome-wide association studies (grey) and their neighbors in the network. Red and green connections refer to positive and negative correlations, respectively. MICB has been implicated in AIDS progression (PMID: 19115949) TNF has been implicated in AIDS progression (PMID: 19115949) LTB has been implicated in AIDS progression (PMID: 19115949) ZNF224 has been implicated in Alzheimer's disease (PMID: 19118814) NDUFAB1 has been implicated in bipolar disorder (PMID: 17554300) SFRS10 has been implicated in body mass index (PMID: 19079260) and weight (PMID: 19079260) CTNNBL1 has been implicated in bone mineral density (PMID: 17903296) TGFBR3 has been implicated in bone mineral density (PMID: 19249006) IGF2R has been implicated in brain lesion load (PMID: 19010793) LSP1 has been implicated in breast cancer (PMID: 17529967) FBN1 has been implicated in breast cancer (PMID: 17903305) GLG1 has been implicated in breast cancer (PMID: 18463975) SCHIP1 has been implicated in Celiac disease (PMID: 18311140) RGS1 has been implicated in Celiac disease (PMID: 18311140) FADS2 has been implicated in Cholesterol (total) (PMID: 19060911), HDL cholesterol (PMID: 19060911, 19060906), LDL cholesterol (PMID: 19060911, 19060910), and triglycerides (PMID: 19060906).
    [Show full text]
  • Lysine Demethylase KDM4A Associates with Translation Machinery and Regulates Protein Synthesis
    Published OnlineFirst January 6, 2015; DOI: 10.1158/2159-8290.CD-14-1326 RESEARCH BRIEF Lysine Demethylase KDM4A Associates with Translation Machinery and Regulates Protein Synthesis Capucine Van Rechem 1 , Joshua C. Black 1 , Myriam Boukhali 1 , Martin J. Aryee 2 , Susanne Gräslund 3 , Wilhelm Haas 1 , Cyril H. Benes 1 , and Johnathan R. Whetstine 1 ABSTRACT Chromatin-modifying enzymes are predominantly nuclear; however, these factors are also localized to the cytoplasm, and very little is known about their role in this compartment. In this report, we reveal a non–chromatin-linked role for the lysine-specifi c demethylase KDM4A. We demonstrate that KDM4A interacts with the translation initiation complex and affects the distribution of translation initiation factors within polysome fractions. Furthermore, KDM4A depletion reduced protein synthesis and enhanced the protein synthesis suppression observed with mTOR inhibi- tors, which paralleled an increased sensitivity to these drugs. Finally, we demonstrate that JIB-04, a JmjC demethylase inhibitor, suppresses translation initiation and enhances mTOR inhibitor sensitivity. These data highlight an unexpected cytoplasmic role for KDM4A in regulating protein synthesis and suggest novel potential therapeutic applications for this class of enzyme. SIGNIFICANCE: This report documents an unexpected cytoplasmic role for the lysine demethylase KDM4A. We demonstrate that KDM4A interacts with the translation initiation machinery, regulates protein synthesis and, upon coinhibition with mTOR inhibitors, enhances the translation suppression and cell sensitivity to these therapeutics. Cancer Discov; 5(3); 255–63. ©2015 AACR. See related commentary by Rothbart et al., p. 228. See related article by Van Rechem et al., p. 245. INTRODUCTION (KDM), respectively, are affecting the associated targets or their downstream processes.
    [Show full text]