New Pancreatic Cancer Biomarkers Eif1, Eif2d, Eif3c and Eif6 Play A

Total Page:16

File Type:pdf, Size:1020Kb

New Pancreatic Cancer Biomarkers Eif1, Eif2d, Eif3c and Eif6 Play A ANTICANCER RESEARCH 40 : 3109-3118 (2020) doi:10.21873/anticanres.14292 New Pancreatic Cancer Biomarkers eIF1, eIF2D, eIF3C and eIF6 Play a Major Role in Translational Control in Ductal Adenocarcinoma NICOLE GOLOB-SCHWARZL 1,2 , PHILIP PUCHAS 1, MARGIT GOGG-KAMERER 1, WILKO WEICHERT 3, BENJAMIN GÖPPERT 4 and JOHANNES HAYBAECK 1,5 1Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria; 2Institute of Dermatology and Venerology, Medical University of Graz, Graz, Austria; 3Institute of Pathology, Technical University Munich, Munich, Germany; 4Department of General Pathology and Anatomy of the Pathology Institute, University Hospital Heidelberg, Heidelberg, Germany; 5Department of Pathology, Neuropathology and Molecular Pathology, Medical University of Innsbruck, Innsbruck, Austria Abstract. Background/Aim: Pancreatic cancer is one of the Consequently, they might be useful as potential new deadliest forms of cancer and ranks among the leading causes biomarkers and therapeutic targets in PDAC. of cancer-related death worldwide. The most common histological type is ductal adenocarcinoma (PDAC), Pancreatic cancer, including ductal adenocarcinoma (PDAC), accounting for approximately 95% of cases. Deregulation of its most common manifestation, is still one of the deadliest protein synthesis has been found to be closely related to cancer. forms of cancer. It usually affects the elderly, with a 5-year The rate-limiting step of translation is initiation, which is survival rate of 5% that has not improved over the past 20 regulated by a broad range of eukaryotic translation initiation years (1). PDAC, originates from the exocrine portion of the factors (eIFs). Patients and Methods: Human PDAC samples gland and accounts for approximately 80% of cases (1). were biochemically analyzed for the expression of various eIF Compared to other hepatobiliary cancers, only little is known subunits on the protein level (immunohistochemistry, about the risk factors and molecular mechanisms underlying immunoblot analyses) in 174 cases of PDAC in comparison PDAC. Several studies have shown that alcohol and nicotine with non-neoplastic pancreatic tissue (n=10). Results: Our abuse are the main risk factors, although genetic studies have investigation revealed a significant down-regulation of four identified a large number of mutations that affect signaling specific eIF subunits, namely eIF1, eIF2D, eIF3C and eIF6. pathways (2). These genetic variations include K-RAS , the Concomitantly, the protein (immunoblot) levels of eIF1, eIF2D, tumor suppressors p53 and p16 , as well as changes in TGF- β eIF3C and eIF6 were reduced in PDAC samples as compared and WNT/NOTCH signaling (1-4). with non-neoplastic pancreatic tissue. Conclusion: Members of However, the cellular alterations promoting carcinogenesis the eIF family are of relevance in pancreatic tumor biology and still need to be investigated for their possible function as new may play a major role in translational control in PDAC. diagnostic markers, prognostic tools and novel therapeutic targets. Translation, the process of protein synthesis crucially needed for cellular homeostasis, is subdivided into four major steps: This article is freely accessible online. initiation, elongation, termination and ribosome recycling. Initiation constitutes the rate-limiting step and is concerted by Correspondence to: Prof. Johannes Haybaeck, MD, Ph.D., an abundance of eukaryotic translation initiation factors (eIFs), Department of Pathology, Neuropathology and Molecular acting in different ways to generate the fully functional Pathology, Medical University of Innsbruck, Müllerstraße 44, A- ribosomal apparatus with its associated interaction partners, 6020 Innsbruck, Austria. Tel: +43 0512900371300, Fax: +49 3916715818, e-mail: [email protected] such as the formyl-methionine-tRNA and the consecutively translated messenger RNA (mRNA) (5). Briefly, translation Key Words: Pancreatic cancer, eukaryotic translation initiation initiation starts with the formation of the 43S-preinitiation factors, PI3K/AKT/mTOR pathway, biomarker. complex, consisting of the 40S ribosomal subunit, the ternary 3109 ANTICANCER RESEARCH 40 : 3109-3118 (2020) complex (which is composed of the initiating methionyl-tRNA Table I. Clinical and pathological characteristics of 174 patients with bound to eIF2-GTP), eIF1, eIF1A and eIF3. This assembly pancreatic cancer. For each biochemically assessed PDAC patient, the clinical and pathological characteristics, including sex, age, TNM, consecutively scans the mRNA for the first start codon (AUG) stage and the presence of positive lymph nodes, are listed. in the 5´ untranslated region (UTR), leading to codon- anticodon interaction assisted by eIF1 and eIF1A. The scanning Total (%) Male (%) Female (%) process is further assisted by the heterotrimeric eIF4F complex (eIF4A, eIF4E and eIF4G). Binding to the matching start n 174 (100) 98 (56.3) 76 (43.7) Mean age 64.14 62.44 66.33 codon leads to eIF2-GTP hydrolysis and dissociation of the pT respective eIF2-GDP. Ribosomal subunit joining is mediated 1/2 35 (20.1) 15 (15.3) 20 (26.3) through eIF5B, forming the fully functional ribosome (5). 3/4 139 (79.9) 83 (84.7) 56 (73.7) Dysfunction in translational control is an important pN downstream endpoint of oncogenic pathways, such as the 0 42 (24.1) 22 (22.4) 20 (26.3) 1 132 (75.9) 76 (77.6) 56 (73.7) PI3K/AKT/mTOR and RAS/RAF/MAPK pathways, which pM support cellular transformation and tumor development (6). 0 168 (96.6) 93 (94.9) 75 (98.7) In normal cells, these pathways operate as sensors of nutrient 1 6 (3.4) 5 (5.1) 1 (1.3) availability, stress or energy, adapting ribosome production Grading and gene expression to the cellular conditions. eIFs have 1 7 (4) 4 (4.1) 3 (3.9) 2 92 (52.9) 51 (52) 41 (54) recently been discovered to be involved in tumor 3 75 (43.1) 43 (43.9) 32 (42.1) development in a variety of malignancies (6, 7), and have therefore been suggested as potential therapeutic targets with some substances currently under preclinical and early clinical investigation (7-10). Dysregulation of translation initiation Immunohistochemistry. IHC was performed on a Ventana and its interaction with the PI3K/AKT/mTOR signaling Immunostainer XT (Ventana Medical Systems, Tucson, AZ, USA) pathway are just starting to be understood in pancreatic by heat-induced epitope retrieval (HIER) in cell conditioning cancer. Previously described alterations include up-regulation solution for 30 min and an ultra-VIEW universal DAB Detection of eIF3A, eIF4E and eIF5A, as well as down-regulation of Kit (Ventana Medical Systems, Tucson, AZ, USA). The primary eIF3F (11-16). However, the molecular mechanism antibodies were incubated for 30 minutes using different dilutions regulating eIFs in tumor biology is still not fully understood. (Table II). Each core was semi-quantitatively scored, and an intensity score was defined as follows: 0=no staining, 1=weak To address this issue, we investigated the involvement of staining, 2=moderate staining and 3=strong staining. Additionally, the PI3K/AKT/mTOR signaling cascade and various eIF the percentage of stained tumor cells was determined (0-100%) and subunits, focusing on PDAC. For this purpose, we used assigned to 5 groups, 0=0%, 1=1-49%, 3=50-79% and 4= 80-100%. protein analyses, immunohistochemistry and immunoblotting The intensity score (0-3) was then multiplied by the percentage to characterize the expression pattern of the mTOR signaling score (0-4), and the values obtained were subdivided as follows: members and various eIF subunits. 0=no staining, 1-4=weak staining, 5-8=moderate staining, 9- 12=strong staining, and displayed in stacked plots. Materials and Methods Human pancreatic cancer patient samples. Human pancreas cancer samples (n=56) and non-neoplastic tissue (NNT) (n=56) were Ethics statement. The collection and use of human derived pancreas provided by the Department of Pathology, Medical University of specimens were approved by the Ethics Committee of the Medical Magdeburg, Germany. Informed consent was obtained from all University of Graz, Graz, Austria, according to the ethical guidelines patients. All samples were acquired during surgery, immediately of the 1975 Declaration of Helsinki (EK 28-294 ex 15/16). All samples snap frozen in liquid nitrogen, and stored at –80˚C until protein or and medical data used in this study were irreversibly anonymized, and RNA extraction. their clinical and pathological data are listed in Tables I and II. Protein extraction and western blot analysis. To prepare protein Tissue microarray (TMA). A total of 174 formalin-fixed, paraffin- lysates, frozen tissue samples were homogenized with a MagNA embedded patient samples were retrospectively collected from the Lyser homogenizer (Roche Diagnostics, Risch-Rotkreuz, Switzerland) Institute of Pathology, Technical University Munich, Germany. and lysed in Nonidet-P40-based lysis buffer (0.05 M Tris-HCl, 0.15 Hematoxylin-eosin stained (H/E) slides were reviewed by experienced, M NaCl, 0.5% NP-40, 0.1 mM pefabloc, 1 mM DTT, complete mini board certified pathologists (J.H. and I.B.), who confirmed the EDTA-free, PhosSTOP (Roche Austria GmbH, Vienna, Austria). diagnosis and identified the areas of tumor and non-neoplastic tissue Protein concentrations were determined using Bradford protein assay for each tissue microarray core. Tissue cylinders of 1.2 mm in (Biorad Protein Assay Dye Reagent; BioRad Laboratories GmbH, diameter were punched out from the
Recommended publications
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • A Chemical-Genetic Screen for Identifying Substrates of the Er Kinase Perk
    University of Pennsylvania ScholarlyCommons Publicly Accessible Penn Dissertations 2014 A Chemical-Genetic Screen for Identifying Substrates of the Er Kinase Perk Nancy L. Maas University of Pennsylvania, [email protected] Follow this and additional works at: https://repository.upenn.edu/edissertations Part of the Biology Commons, Cell Biology Commons, and the Molecular Biology Commons Recommended Citation Maas, Nancy L., "A Chemical-Genetic Screen for Identifying Substrates of the Er Kinase Perk" (2014). Publicly Accessible Penn Dissertations. 1354. https://repository.upenn.edu/edissertations/1354 This paper is posted at ScholarlyCommons. https://repository.upenn.edu/edissertations/1354 For more information, please contact [email protected]. A Chemical-Genetic Screen for Identifying Substrates of the Er Kinase Perk Abstract Cells constantly encounter changing environments that challenge the ability to adapt and survive. Signal transduction networks enable cells to appropriately sense and respond to these changes, and are often mediated through the activity of protein kinases. Protein kinases are a class of enzyme responsible for regulating a broad spectrum of cellular functions by transferring phosphate groups from ATP to substrate proteins, thereby altering substrate activity and function. PERK is a resident kinase of the endoplasmic reticulum, and is responsible for sensing perturbations in the protein folding capacity of the ER. When the influx of unfolded, nascent proteins exceeds the folding capacity of the ER, PERK initiates a cascade of signaling events that enable cell adaptation and ER stress resolution. These signaling pathways are not only essential for the survival of normal cells undergoing ER stress, but are also co-opted by tumor cells in order to survive the oxygen and nutrient-restricted conditions of the tumor microenvironment.
    [Show full text]
  • WO 2019/079361 Al 25 April 2019 (25.04.2019) W 1P O PCT
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization I International Bureau (10) International Publication Number (43) International Publication Date WO 2019/079361 Al 25 April 2019 (25.04.2019) W 1P O PCT (51) International Patent Classification: CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO, C12Q 1/68 (2018.01) A61P 31/18 (2006.01) DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, C12Q 1/70 (2006.01) HR, HU, ID, IL, IN, IR, IS, JO, JP, KE, KG, KH, KN, KP, KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, (21) International Application Number: MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, PCT/US2018/056167 OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, (22) International Filing Date: SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, 16 October 2018 (16. 10.2018) TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (25) Filing Language: English (84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, (26) Publication Language: English GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ, (30) Priority Data: UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, 62/573,025 16 October 2017 (16. 10.2017) US TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, ΓΕ , IS, IT, LT, LU, LV, (71) Applicant: MASSACHUSETTS INSTITUTE OF MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, TECHNOLOGY [US/US]; 77 Massachusetts Avenue, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, Cambridge, Massachusetts 02139 (US).
    [Show full text]
  • Comparative Sequence and Structure Analysis of Eif1a and Eif1ad Jielin Yu and Assen Marintchev*
    Yu and Marintchev BMC Structural Biology (2018) 18:11 https://doi.org/10.1186/s12900-018-0091-6 RESEARCHARTICLE Open Access Comparative sequence and structure analysis of eIF1A and eIF1AD Jielin Yu and Assen Marintchev* Abstract Background: Eukaryotic translation initiation factor 1A (eIF1A) is universally conserved in all organisms. It has multiple functions in translation initiation, including assembly of the ribosomal pre-initiation complexes, mRNA binding, scanning, and ribosomal subunit joining. eIF1A binds directly to the small ribosomal subunit, as well as to several other translation initiation factors. The structure of an eIF1A homolog, the eIF1A domain-containing protein (eIF1AD) was recently determined but its biological functions are unknown. Since eIF1AD has a known structure, as well as a homolog, whose structure and functions have been extensively studied, it is a very attractive target for sequence and structure analysis. Results: Structure/sequence analysis of eIF1AD found significant conservation in the surfaces corresponding to the ribosome-binding surfaces of its paralog eIF1A, including a nearly invariant surface-exposed tryptophan residue, which plays an important role in the interaction of eIF1A with the ribosome. These results indicate that eIF1AD may bind to the ribosome, similar to its paralog eIF1A, and could have roles in ribosome biogenenesis or regulation of translation. We identified conserved surfaces and sequence motifs in the folded domain as well as the C-terminal tail of eIF1AD, which are likely protein-protein interaction sites. The roles of these regions for eIF1AD function remain to be determined. We have also identified a set of trypanosomatid-specific surface determinants in eIF1A that could be a promising target for development of treatments against these parasites.
    [Show full text]
  • Eef3 Promotes Late Stages of Trna Translocation on the Ribosome
    bioRxiv preprint doi: https://doi.org/10.1101/2020.07.01.182105; this version posted July 1, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. eEF3 promotes late stages of tRNA translocation on the ribosome Namit Ranjan1,6,*, Agnieszka A. Pochopien2,3,6, Colin Chih-Chien Wu4,6, Bertrand Beckert3, Sandra Blanchet1, Rachel Green4,5,*, Marina V. Rodnina1,*, Daniel N. Wilson2,3,7,* 1 Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany. 2 Gene Center, Department for Biochemistry and Center for integrated Protein Science Munich (CiPSM), University of Munich, Feodor-Lynenstr. 25, 81377 Munich, Germany 3 Institute for Biochemistry and Molecular Biology, University of Hamburg, Martin- Luther-King-Platz 6, 20146 Hamburg, Germany 4 Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, MD21205 Baltimore, United States. 5 Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, MD21205 Baltimore, United States. 6 These authors contributed equally *Correspondence: [email protected], [email protected], [email protected], [email protected] 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.07.01.182105; this version posted July 1, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.
    [Show full text]
  • Eukaryotic Translation Initiation Factor 3 Plays Distinct Roles at The
    RESEARCH ARTICLE Eukaryotic translation initiation factor 3 plays distinct roles at the mRNA entry and exit channels of the ribosomal preinitiation complex Colin Echeverrı´aAitken1, Petra Beznoskova´ 2, Vladislava Vlcˇkova2, Wen-Ling Chiu3†, Fujun Zhou1, Leosˇ Shivaya Vala´ sˇek2*, Alan G Hinnebusch3*, Jon R Lorsch1* 1Laboratory on the Mechanism and Regulation of Protein Synthesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, United States; 2Laboratory of Regulation of Gene Expression, Institute of Microbiology ASCR, Prague, Czech Republic; 3Laboratory of Gene Regulation and Development, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, United States Abstract Eukaryotic translation initiation factor 3 (eIF3) is a central player in recruitment of the pre-initiation complex (PIC) to mRNA. We probed the effects on mRNA recruitment of a library of S. cerevisiae eIF3 functional variants spanning its 5 essential subunits using an in vitro-reconstituted *For correspondence: valasekl@ system. Mutations throughout eIF3 disrupt its interaction with the PIC and diminish its ability to biomed.cas.cz (LSV); [email protected] (AGH); jon. accelerate recruitment to a native yeast mRNA. Alterations to the eIF3a CTD and eIF3b/i/g . [email protected] (JRL) significantly slow mRNA recruitment, and mutations within eIF3b/i/g destabilize eIF2 GTP Met- tRNAi binding to the PIC. Using model mRNAs lacking contacts with the 40S entry or exit channels, Present address: we uncovered a critical role for eIF3 requiring the eIF3a NTD, in stabilizing mRNA interactions at †PharmaEssentia Corp., Taipei, the exit channel, and an ancillary role at the entry channel requiring residues of the eIF3a CTD.
    [Show full text]
  • The H Subunit of Eif3 Promotes Reinitiation Competence During Translation of Mrnas Harboring Upstream Open Reading Frames
    Downloaded from rnajournal.cshlp.org on September 26, 2021 - Published by Cold Spring Harbor Laboratory Press The h subunit of eIF3 promotes reinitiation competence during translation of mRNAs harboring upstream open reading frames BIJOYITA ROY,1 JUSTIN N. VAUGHN,1 BYUNG-HOON KIM,1 FUJUN ZHOU,2 MICHAEL A. GILCHRIST,3 and ALBRECHT G. VON ARNIM1,2 1Department of Biochemistry and Cellular and Molecular Biology, The University of Tennessee, Knoxville, Tennessee 37996, USA 2Graduate Program in Genome Science and Technology, The University of Tennessee, Knoxville, Tennessee 37996, USA 3Department of Ecology and Evolutionary Biology, The University of Tennessee, Knoxville, Tennessee 37996, USA ABSTRACT Upstream open reading frames (uORFs) are protein coding elements in the 59 leader of messenger RNAs. uORFs generally inhibit translation of the main ORF because ribosomes that perform translation elongation suffer either permanent or conditional loss of reinitiation competence. After conditional loss, reinitiation competence may be regained by, at the minimum, reacquisition of a fresh methionyl-tRNA. The conserved h subunit of Arabidopsis eukaryotic initiation factor 3 (eIF3) mitigates the inhibitory effects of certain uORFs. Here, we define more precisely how this occurs, by combining gene expres- sion data from mutated 59 leaders of Arabidopsis AtbZip11 (At4g34590) and yeast GCN4 with a computational model of translation initiation in wild-type and eif3h mutant plants. Of the four phylogenetically conserved uORFs in AtbZip11, three are inhibitory to translation, while one is anti-inhibitory. The mutation in eIF3h has no major effect on uORF start codon recognition. Instead, eIF3h supports efficient reinitiation after uORF translation. Modeling suggested that the permanent loss of reinitiation competence during uORF translation occurs at a faster rate in the mutant than in the wild type.
    [Show full text]
  • Ribosome and Translational Control in Stem Cells
    cells Review Ribosome and Translational Control in Stem Cells Mathieu Gabut 1,2 , Fleur Bourdelais 1,2 and Sébastien Durand 1,2,* 1 Equipe ‘Transcriptome Diversity in Stem Cells’, Cancer Cell Plasticity Department, INSERM 1052, CNRS 5286, Cancer Research Center of Lyon, Centre Léon Bérard, 69008 Lyon, France; [email protected] (M.G.); fl[email protected] (F.B.) 2 Université Claude Bernard Lyon 1, 69100 Villeurbanne, France * Correspondence: [email protected]; Tel.: +33-469-856-092 Received: 15 January 2020; Accepted: 17 February 2020; Published: 21 February 2020 Abstract: Embryonic stem cells (ESCs) and adult stem cells (ASCs) possess the remarkable capacity to self-renew while remaining poised to differentiate into multiple progenies in the context of a rapidly developing embryo or in steady-state tissues, respectively. This ability is controlled by complex genetic programs, which are dynamically orchestrated at different steps of gene expression, including chromatin remodeling, mRNA transcription, processing, and stability. In addition to maintaining stem cell homeostasis, these molecular processes need to be rapidly rewired to coordinate complex physiological modifications required to redirect cell fate in response to environmental clues, such as differentiation signals or tissue injuries. Although chromatin remodeling and mRNA expression have been extensively studied in stem cells, accumulating evidence suggests that stem cell transcriptomes and proteomes are poorly correlated and that stem cell properties require finely tuned protein synthesis. In addition, many studies have shown that the biogenesis of the translation machinery, the ribosome, is decisive for sustaining ESC and ASC properties. Therefore, these observations emphasize the importance of translational control in stem cell homeostasis and fate decisions.
    [Show full text]
  • Systematically Profiling the Expression of Eif3 Subunits in Glioma Reveals
    Chai et al. Cancer Cell Int (2019) 19:155 https://doi.org/10.1186/s12935-019-0867-1 Cancer Cell International PRIMARY RESEARCH Open Access Systematically profling the expression of eIF3 subunits in glioma reveals the expression of eIF3i has prognostic value in IDH-mutant lower grade glioma Rui‑Chao Chai1,4,6†, Ning Wang2†, Yu‑Zhou Chang3, Ke‑Nan Zhang1,6, Jing‑Jun Li1,6, Jun‑Jie Niu5, Fan Wu1,6*, Yu‑Qing Liu1,6* and Yong‑Zhi Wang1,3,4,6* Abstract Background: Abnormal expression of the eukaryotic initiation factor 3 (eIF3) subunits plays critical roles in tumo‑ rigenesis and progression, and also has potential prognostic value in cancers. However, the expression and clinical implications of eIF3 subunits in glioma remain unknown. Methods: Expression data of eIF3 for patients with gliomas were obtained from the Chinese Glioma Genome Atlas (CGGA) (n 272) and The Cancer Genome Atlas (TCGA) (n 595). Cox regression, the receiver operating characteristic (ROC) curves= and Kaplan–Meier analysis were used to study= the prognostic value. Gene oncology (GO) and gene set enrichment analysis (GSEA) were utilized for functional prediction. Results: In both the CGGA and TCGA datasets, the expression levels of eIF3d, eIF3e, eIF3f, eIF3h and eIF3l highly were associated with the IDH mutant status of gliomas. The expression of eIF3b, eIF3i, eIF3k and eIF3m was increased with the tumor grade, and was associated with poorer overall survival [All Hazard ratio (HR) > 1 and P < 0.05]. By contrast, the expression of eIF3a and eIF3l was decreased in higher grade gliomas and was associated with better overall sur‑ vival (Both HR < 1 and P < 0.05).
    [Show full text]
  • Translation Initiation Factor Eif3h Targets Specific Transcripts To
    Translation initiation factor eIF3h targets specific transcripts to polysomes during embryogenesis Avik Choudhuria,b, Umadas Maitraa,1, and Todd Evansb,1 aDepartment of Developmental and Molecular Biology, Albert Einstein College of Medicine of Yeshiva University, Bronx, NY 10461; and bDepartment of Surgery, Weill Cornell Medical College, New York, NY 10065 Edited by Igor B. Dawid, The Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, and approved April 30, 2013 (received for review February 14, 2013) Eukaryotic translation initiation factor 3 (eIF3) plays a central role eukaryotes. These—eIF3d, eIF3e, eIF3f, eIF3h, eIF3j, eIF3k, in translation initiation and consists of five core (conserved) sub- eIF3l, and eIF3m—were designated “non-core” subunits (4). units present in both budding yeast and higher eukaryotes. Higher In contrast to the budding yeast, the genome of the fission eukaryotic eIF3 contains additional (noncore or nonconserved) yeast Schizosaccharomyces pombe contains structural homologs subunits of poorly defined function, including sub-unit h (eIF3h), of at least five noncore (nonconserved) eIF3 subunits—eIF3d, which in zebrafish is encoded by two distinct genes (eif3ha and eIF3e, eIF3f, eIF3h, and eIF3m. The gene encoding eIF3f is eif3hb). Previously we showed that eif3ha encodes the predominant essential for growth, whereas eIF3d, eIF3e, and eIF3h are dis- isoform during zebrafish embryogenesis and that depletion of this pensable for growth and viability (5–11). However, deleted factor causes defects in the development of the brain and eyes. To strains show specific phenotypes including defects in meiosis/ investigate the molecular mechanism governing this regulation, we sporulation (6, 9, 11).
    [Show full text]
  • Relevance of Translation Initiation in Diffuse Glioma Biology and Its
    cells Review Relevance of Translation Initiation in Diffuse Glioma Biology and its Therapeutic Potential Digregorio Marina 1, Lombard Arnaud 1,2, Lumapat Paul Noel 1, Scholtes Felix 1,2, Rogister Bernard 1,3 and Coppieters Natacha 1,* 1 Laboratory of Nervous System Disorders and Therapy, GIGA-Neurosciences Research Centre, University of Liège, 4000 Liège, Belgium; [email protected] (D.M.); [email protected] (L.A.); [email protected] (L.P.N.); [email protected] (S.F.); [email protected] (R.B.) 2 Department of Neurosurgery, CHU of Liège, 4000 Liège, Belgium 3 Department of Neurology, CHU of Liège, 4000 Liège, Belgium * Correspondence: [email protected] Received: 18 October 2019; Accepted: 26 November 2019; Published: 29 November 2019 Abstract: Cancer cells are continually exposed to environmental stressors forcing them to adapt their protein production to survive. The translational machinery can be recruited by malignant cells to synthesize proteins required to promote their survival, even in times of high physiological and pathological stress. This phenomenon has been described in several cancers including in gliomas. Abnormal regulation of translation has encouraged the development of new therapeutics targeting the protein synthesis pathway. This approach could be meaningful for glioma given the fact that the median survival following diagnosis of the highest grade of glioma remains short despite current therapy. The identification of new targets for the development of novel therapeutics is therefore needed in order to improve this devastating overall survival rate. This review discusses current literature on translation in gliomas with a focus on the initiation step covering both the cap-dependent and cap-independent modes of initiation.
    [Show full text]
  • Host Cell Factors Necessary for Influenza a Infection: Meta-Analysis of Genome Wide Studies
    Host Cell Factors Necessary for Influenza A Infection: Meta-Analysis of Genome Wide Studies Juliana S. Capitanio and Richard W. Wozniak Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta Abstract: The Influenza A virus belongs to the Orthomyxoviridae family. Influenza virus infection occurs yearly in all countries of the world. It usually kills between 250,000 and 500,000 people and causes severe illness in millions more. Over the last century alone we have seen 3 global influenza pandemics. The great human and financial cost of this disease has made it the second most studied virus today, behind HIV. Recently, several genome-wide RNA interference studies have focused on identifying host molecules that participate in Influen- za infection. We used nine of these studies for this meta-analysis. Even though the overlap among genes identified in multiple screens was small, network analysis indicates that similar protein complexes and biological functions of the host were present. As a result, several host gene complexes important for the Influenza virus life cycle were identified. The biological function and the relevance of each identified protein complex in the Influenza virus life cycle is further detailed in this paper. Background and PA bound to the viral genome via nucleoprotein (NP). The viral core is enveloped by a lipid membrane derived from Influenza virus the host cell. The viral protein M1 underlies the membrane and anchors NEP/NS2. Hemagglutinin (HA), neuraminidase Viruses are the simplest life form on earth. They parasite host (NA), and M2 proteins are inserted into the envelope, facing organisms and subvert the host cellular machinery for differ- the viral exterior.
    [Show full text]