Linear Algebra I: 2017/18 Revision Checklist for the Examination
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Learning Geometric Algebra by Modeling Motions of the Earth and Shadows of Gnomons to Predict Solar Azimuths and Altitudes
Learning Geometric Algebra by Modeling Motions of the Earth and Shadows of Gnomons to Predict Solar Azimuths and Altitudes April 24, 2018 James Smith [email protected] https://mx.linkedin.com/in/james-smith-1b195047 \Our first step in developing an expression for the orientation of \our" gnomon: Diagramming its location at the instant of the 2016 December solstice." Abstract Because the shortage of worked-out examples at introductory levels is an obstacle to widespread adoption of Geometric Algebra (GA), we use GA to calculate Solar azimuths and altitudes as a function of time via the heliocentric model. We begin by representing the Earth's motions in GA terms. Our representation incorporates an estimate of the time at which the Earth would have reached perihelion in 2017 if not affected by the Moon's gravity. Using the geometry of the December 2016 solstice as a starting 1 point, we then employ GA's capacities for handling rotations to determine the orientation of a gnomon at any given latitude and longitude during the period between the December solstices of 2016 and 2017. Subsequently, we derive equations for two angles: that between the Sun's rays and the gnomon's shaft, and that between the gnomon's shadow and the direction \north" as traced on the ground at the gnomon's location. To validate our equations, we convert those angles to Solar azimuths and altitudes for comparison with simulations made by the program Stellarium. As further validation, we analyze our equations algebraically to predict (for example) the precise timings and locations of sunrises, sunsets, and Solar zeniths on the solstices and equinoxes. -
Schaum's Outline of Linear Algebra (4Th Edition)
SCHAUM’S SCHAUM’S outlines outlines Linear Algebra Fourth Edition Seymour Lipschutz, Ph.D. Temple University Marc Lars Lipson, Ph.D. University of Virginia Schaum’s Outline Series New York Chicago San Francisco Lisbon London Madrid Mexico City Milan New Delhi San Juan Seoul Singapore Sydney Toronto Copyright © 2009, 2001, 1991, 1968 by The McGraw-Hill Companies, Inc. All rights reserved. Except as permitted under the United States Copyright Act of 1976, no part of this publication may be reproduced or distributed in any form or by any means, or stored in a database or retrieval system, without the prior writ- ten permission of the publisher. ISBN: 978-0-07-154353-8 MHID: 0-07-154353-8 The material in this eBook also appears in the print version of this title: ISBN: 978-0-07-154352-1, MHID: 0-07-154352-X. All trademarks are trademarks of their respective owners. Rather than put a trademark symbol after every occurrence of a trademarked name, we use names in an editorial fashion only, and to the benefit of the trademark owner, with no intention of infringement of the trademark. Where such designations appear in this book, they have been printed with initial caps. McGraw-Hill eBooks are available at special quantity discounts to use as premiums and sales promotions, or for use in corporate training programs. To contact a representative please e-mail us at [email protected]. TERMS OF USE This is a copyrighted work and The McGraw-Hill Companies, Inc. (“McGraw-Hill”) and its licensors reserve all rights in and to the work. -
Discover Linear Algebra Incomplete Preliminary Draft
Discover Linear Algebra Incomplete Preliminary Draft Date: November 28, 2017 L´aszl´oBabai in collaboration with Noah Halford All rights reserved. Approved for instructional use only. Commercial distribution prohibited. c 2016 L´aszl´oBabai. Last updated: November 10, 2016 Preface TO BE WRITTEN. Babai: Discover Linear Algebra. ii This chapter last updated August 21, 2016 c 2016 L´aszl´oBabai. Contents Notation ix I Matrix Theory 1 Introduction to Part I 2 1 (F, R) Column Vectors 3 1.1 (F) Column vector basics . 3 1.1.1 The domain of scalars . 3 1.2 (F) Subspaces and span . 6 1.3 (F) Linear independence and the First Miracle of Linear Algebra . 8 1.4 (F) Dot product . 12 1.5 (R) Dot product over R ................................. 14 1.6 (F) Additional exercises . 14 2 (F) Matrices 15 2.1 Matrix basics . 15 2.2 Matrix multiplication . 18 2.3 Arithmetic of diagonal and triangular matrices . 22 2.4 Permutation Matrices . 24 2.5 Additional exercises . 26 3 (F) Matrix Rank 28 3.1 Column and row rank . 28 iii iv CONTENTS 3.2 Elementary operations and Gaussian elimination . 29 3.3 Invariance of column and row rank, the Second Miracle of Linear Algebra . 31 3.4 Matrix rank and invertibility . 33 3.5 Codimension (optional) . 34 3.6 Additional exercises . 35 4 (F) Theory of Systems of Linear Equations I: Qualitative Theory 38 4.1 Homogeneous systems of linear equations . 38 4.2 General systems of linear equations . 40 5 (F, R) Affine and Convex Combinations (optional) 42 5.1 (F) Affine combinations . -
Exercise 7.5
IN SUMMARY Key Idea • A projection of one vector onto another can be either a scalar or a vector. The difference is the vector projection has a direction. A A a a u u O O b NB b N B Scalar projection of a on b Vector projection of a on b Need to Know ! ! ! ! a # b ! • The scalar projection of a on b ϭϭ! 0 a 0 cos u, where u is the angle @ b @ ! ! between a and b. ! ! ! ! ! ! a # b ! a # b ! • The vector projection of a on b ϭ ! b ϭ a ! ! b b @ b @ 2 b # b ! • The direction cosines for OP ϭ 1a, b, c2 are a b cos a ϭ , cos b ϭ , 2 2 2 2 2 2 Va ϩ b ϩ c Va ϩ b ϩ c c cos g ϭ , where a, b, and g are the direction angles 2 2 2 Va ϩ b ϩ c ! between the position vector OP and the positive x-axis, y-axis and z-axis, respectively. Exercise 7.5 PART A ! 1. a. The vector a ϭ 12, 32 is projected onto the x-axis. What is the scalar projection? What is the vector projection? ! b. What are the scalar and vector projections when a is projected onto the y-axis? 2. Explain why it is not possible to obtain! either a scalar! projection or a vector projection when a nonzero vector x is projected on 0. 398 7.5 SCALAR AND VECTOR PROJECTIONS NEL ! ! 3. Consider two nonzero vectors,a and b, that are perpendicular! ! to each other.! Explain why the scalar and vector projections of a on b must! be !0 and 0, respectively. -
MATH 304 Linear Algebra Lecture 24: Scalar Product. Vectors: Geometric Approach
MATH 304 Linear Algebra Lecture 24: Scalar product. Vectors: geometric approach B A B′ A′ A vector is represented by a directed segment. • Directed segment is drawn as an arrow. • Different arrows represent the same vector if • they are of the same length and direction. Vectors: geometric approach v B A v B′ A′ −→AB denotes the vector represented by the arrow with tip at B and tail at A. −→AA is called the zero vector and denoted 0. Vectors: geometric approach v B − A v B′ A′ If v = −→AB then −→BA is called the negative vector of v and denoted v. − Vector addition Given vectors a and b, their sum a + b is defined by the rule −→AB + −→BC = −→AC. That is, choose points A, B, C so that −→AB = a and −→BC = b. Then a + b = −→AC. B b a C a b + B′ b A a C ′ a + b A′ The difference of the two vectors is defined as a b = a + ( b). − − b a b − a Properties of vector addition: a + b = b + a (commutative law) (a + b) + c = a + (b + c) (associative law) a + 0 = 0 + a = a a + ( a) = ( a) + a = 0 − − Let −→AB = a. Then a + 0 = −→AB + −→BB = −→AB = a, a + ( a) = −→AB + −→BA = −→AA = 0. − Let −→AB = a, −→BC = b, and −→CD = c. Then (a + b) + c = (−→AB + −→BC) + −→CD = −→AC + −→CD = −→AD, a + (b + c) = −→AB + (−→BC + −→CD) = −→AB + −→BD = −→AD. Parallelogram rule Let −→AB = a, −→BC = b, −−→AB′ = b, and −−→B′C ′ = a. Then a + b = −→AC, b + a = −−→AC ′. -
Linear Algebra - Part II Projection, Eigendecomposition, SVD
Linear Algebra - Part II Projection, Eigendecomposition, SVD (Adapted from Punit Shah's slides) 2019 Linear Algebra, Part II 2019 1 / 22 Brief Review from Part 1 Matrix Multiplication is a linear tranformation. Symmetric Matrix: A = AT Orthogonal Matrix: AT A = AAT = I and A−1 = AT L2 Norm: s X 2 jjxjj2 = xi i Linear Algebra, Part II 2019 2 / 22 Angle Between Vectors Dot product of two vectors can be written in terms of their L2 norms and the angle θ between them. T a b = jjajj2jjbjj2 cos(θ) Linear Algebra, Part II 2019 3 / 22 Cosine Similarity Cosine between two vectors is a measure of their similarity: a · b cos(θ) = jjajj jjbjj Orthogonal Vectors: Two vectors a and b are orthogonal to each other if a · b = 0. Linear Algebra, Part II 2019 4 / 22 Vector Projection ^ b Given two vectors a and b, let b = jjbjj be the unit vector in the direction of b. ^ Then a1 = a1 · b is the orthogonal projection of a onto a straight line parallel to b, where b a = jjajj cos(θ) = a · b^ = a · 1 jjbjj Image taken from wikipedia. Linear Algebra, Part II 2019 5 / 22 Diagonal Matrix Diagonal matrix has mostly zeros with non-zero entries only in the diagonal, e.g. identity matrix. A square diagonal matrix with diagonal elements given by entries of vector v is denoted: diag(v) Multiplying vector x by a diagonal matrix is efficient: diag(v)x = v x is the entrywise product. Inverting a square diagonal matrix is efficient: 1 1 diag(v)−1 = diag [ ;:::; ]T v1 vn Linear Algebra, Part II 2019 6 / 22 Determinant Determinant of a square matrix is a mapping to a scalar. -
Matroidal Subdivisions, Dressians and Tropical Grassmannians
Matroidal subdivisions, Dressians and tropical Grassmannians vorgelegt von Diplom-Mathematiker Benjamin Frederik Schröter geboren in Frankfurt am Main Von der Fakultät II – Mathematik und Naturwissenschaften der Technischen Universität Berlin zur Erlangung des akademischen Grades Doktor der Naturwissenschaften – Dr. rer. nat. – genehmigte Dissertation Promotionsausschuss: Vorsitzender: Prof. Dr. Wilhelm Stannat Gutachter: Prof. Dr. Michael Joswig Prof. Dr. Hannah Markwig Senior Lecturer Ph.D. Alex Fink Tag der wissenschaftlichen Aussprache: 17. November 2017 Berlin 2018 Zusammenfassung In dieser Arbeit untersuchen wir verschiedene Aspekte von tropischen linearen Räumen und deren Modulräumen, den tropischen Grassmannschen und Dressschen. Tropische lineare Räume sind dual zu Matroidunterteilungen. Motiviert durch das Konzept der Splits, dem einfachsten Fall einer polytopalen Unterteilung, wird eine neue Klasse von Matroiden eingeführt, die mit Techniken der polyedrischen Geometrie untersucht werden kann. Diese Klasse ist sehr groß, da sie alle Paving-Matroide und weitere Matroide enthält. Die strukturellen Eigenschaften von Split-Matroiden können genutzt werden, um neue Ergebnisse in der tropischen Geometrie zu erzielen. Vor allem verwenden wir diese, um Strahlen der tropischen Grassmannschen zu konstruieren und die Dimension der Dressschen zu bestimmen. Dazu wird die Beziehung zwischen der Realisierbarkeit von Matroiden und der von tropischen linearen Räumen weiter entwickelt. Die Strahlen einer Dressschen entsprechen den Facetten des Sekundärpolytops eines Hypersimplexes. Eine besondere Klasse von Facetten bildet die Verallgemeinerung von Splits, die wir Multi-Splits nennen und die Herrmann ursprünglich als k-Splits bezeichnet hat. Wir geben eine explizite kombinatorische Beschreibung aller Multi-Splits eines Hypersimplexes. Diese korrespondieren mit Nested-Matroiden. Über die tropische Stiefelabbildung erhalten wir eine Beschreibung aller Multi-Splits für Produkte von Simplexen. -
1 Sets and Set Notation. Definition 1 (Naive Definition of a Set)
LINEAR ALGEBRA MATH 2700.006 SPRING 2013 (COHEN) LECTURE NOTES 1 Sets and Set Notation. Definition 1 (Naive Definition of a Set). A set is any collection of objects, called the elements of that set. We will most often name sets using capital letters, like A, B, X, Y , etc., while the elements of a set will usually be given lower-case letters, like x, y, z, v, etc. Two sets X and Y are called equal if X and Y consist of exactly the same elements. In this case we write X = Y . Example 1 (Examples of Sets). (1) Let X be the collection of all integers greater than or equal to 5 and strictly less than 10. Then X is a set, and we may write: X = f5; 6; 7; 8; 9g The above notation is an example of a set being described explicitly, i.e. just by listing out all of its elements. The set brackets {· · ·} indicate that we are talking about a set and not a number, sequence, or other mathematical object. (2) Let E be the set of all even natural numbers. We may write: E = f0; 2; 4; 6; 8; :::g This is an example of an explicity described set with infinitely many elements. The ellipsis (:::) in the above notation is used somewhat informally, but in this case its meaning, that we should \continue counting forever," is clear from the context. (3) Let Y be the collection of all real numbers greater than or equal to 5 and strictly less than 10. Recalling notation from previous math courses, we may write: Y = [5; 10) This is an example of using interval notation to describe a set. -
Basics of Linear Algebra
Basics of Linear Algebra Jos and Sophia Vectors ● Linear Algebra Definition: A list of numbers with a magnitude and a direction. ○ Magnitude: a = [4,3] |a| =sqrt(4^2+3^2)= 5 ○ Direction: angle vector points ● Computer Science Definition: A list of numbers. ○ Example: Heights = [60, 68, 72, 67] Dot Product of Vectors Formula: a · b = |a| × |b| × cos(θ) ● Definition: Multiplication of two vectors which results in a scalar value ● In the diagram: ○ |a| is the magnitude (length) of vector a ○ |b| is the magnitude of vector b ○ Θ is the angle between a and b Matrix ● Definition: ● Matrix elements: ● a)Matrix is an arrangement of numbers into rows and columns. ● b) A matrix is an m × n array of scalars from a given field F. The individual values in the matrix are called entries. ● Matrix dimensions: the number of rows and columns of the matrix, in that order. Multiplication of Matrices ● The multiplication of two matrices ● Result matrix dimensions ○ Notation: (Row, Column) ○ Columns of the 1st matrix must equal the rows of the 2nd matrix ○ Result matrix is equal to the number of (1, 2, 3) • (7, 9, 11) = 1×7 +2×9 + 3×11 rows in 1st matrix and the number of = 58 columns in the 2nd matrix ○ Ex. 3 x 4 ॱ 5 x 3 ■ Dot product does not work ○ Ex. 5 x 3 ॱ 3 x 4 ■ Dot product does work ■ Result: 5 x 4 Dot Product Application ● Application: Ray tracing program ○ Quickly create an image with lower quality ○ “Refinement rendering pass” occurs ■ Removes the jagged edges ○ Dot product used to calculate ■ Intersection between a ray and a sphere ■ Measure the length to the intersection points ● Application: Forward Propagation ○ Input matrix * weighted matrix = prediction matrix http://immersivemath.com/ila/ch03_dotprodu ct/ch03.html#fig_dp_ray_tracer Projections One important use of dot products is in projections. -
Quantum Flatland and Monolayer Graphene from a Viewpoint of Geometric Algebra A
Vol. 124 (2013) ACTA PHYSICA POLONICA A No. 4 Quantum Flatland and Monolayer Graphene from a Viewpoint of Geometric Algebra A. Dargys∗ Center for Physical Sciences and Technology, Semiconductor Physics Institute A. Go²tauto 11, LT-01108 Vilnius, Lithuania (Received May 11, 2013) Quantum mechanical properties of the graphene are, as a rule, treated within the Hilbert space formalism. However a dierent approach is possible using the geometric algebra, where quantum mechanics is done in a real space rather than in the abstract Hilbert space. In this article the geometric algebra is applied to a simple quantum system, a single valley of monolayer graphene, to show the advantages and drawbacks of geometric algebra over the Hilbert space approach. In particular, 3D and 2D Euclidean space algebras Cl3;0 and Cl2;0 are applied to analyze relativistic properties of the graphene. It is shown that only three-dimensional Cl3;0 rather than two-dimensional Cl2;0 algebra is compatible with a relativistic atland. DOI: 10.12693/APhysPolA.124.732 PACS: 73.43.Cd, 81.05.U−, 03.65.Pm 1. Introduction mension has been reduced, one is automatically forced to change the type of Cliord algebra and its irreducible Graphene is a two-dimensional crystal made up of car- representation. bon atoms. The intense interest in graphene is stimulated On the other hand, if the problem was formulated in by its potential application in the construction of novel the Hilbert space terms then, generally, the neglect of nanodevices based on relativistic physics, or at least with one of space dimensions does not spoil the Hilbert space. -
Online Homework 2 with Solutions
Mei Qin Chen citadel-math231 WeBWorK assignment number Homework2 is due : 09/02/2011 at 09:00am EDT. The (* replace with url for the course home page *) for the course contains the syllabus, grading policy and other information. This file is /conf/snippets/setHeader.pg you can use it as a model for creating files which introduce each problem set. The primary purpose of WeBWorK is to let you know that you are getting the correct answer or to alert you if you are making some kind of mistake. Usually you can attempt a problem as many times as you want before the due date. However, if you are having trouble figuring out your error, you should consult the book, or ask a fellow student, one of the TA’s or your professor for help. Don’t spend a lot of time guessing – it’s not very efficient or effective. Give 4 or 5 significant digits for (floating point) numerical answers. For most problems when entering numerical answers, you can if you wish enter elementary expressions such as 2 ^ 3 instead of 8, sin(3 ∗ pi=2)instead of -1, e ^ (ln(2)) instead of 2, (2 +tan(3)) ∗ (4 − sin(5)) ^ 6 − 7=8 instead of 27620.3413, etc. Here’s the list of the functions which WeBWorK understands. You can use the Feedback button on each problem page to send e-mail to the professors. 1. (1 pt) local/Library/Rochester/setVectors2DotProduct- ~u ·~v +~v ·~w = /UR VC 1 11.pg Correct Answers: Find a · b if jjajj = 7, jjbjj = 2, and the angle between a and b is • 1 p − 10 radians. -
Linear Algebra (VII)
Linear Algebra (VII) Yijia Chen 1. Review Basis and Dimension. We fix a vector space V. Lemma 1.1. Let A, B ⊆ V be two finite sets of vectors in V, possibly empty. If A is linearly indepen- dent and can be represented by B. Then jAj 6 jBj. Theorem 1.2. Let S ⊆ V and A, B ⊆ S be both maximally linearly independent in S. Then jAj = jBj. Definition 1.3. Let e1,..., en 2 V. Assume that – e1,..., en are linearly independent, – and every v 2 V can be represented by e1,..., en. Equivalently, fe1,..., eng is maximally linearly independent in V. Then fe1,..., eng is a basis of V. Note that n = 0 is allowed, and in that case, it is easy to see that V = f0g. By Theorem 1.2: 0 0 Lemma 1.4. If fe1,..., eng and fe1,..., emg be both bases of V with pairwise distinct ei’s and with 0 pairwise distinct ei, then n = m. Definition 1.5. Let fe1,..., eng be a basis of V with pairwise distinct ei’s. Then the dimension of V, denoted by dim(V), is n. Equivalently, if rank(V) is defined, then dim(V) := rank(V). 1 Theorem 1.6. Assume dim(V) = n and let u1,..., un 2 V. (1) If u1,..., un are linearly independent, then fu1,..., ung is a basis. (2) If every v 2 V can be represented by u1,..., un, then fu1,..., ung is a basis. Steinitz exchange lemma. Theorem 1.7. Assume that dim(V) = n and v1,..., vm 2 V with 1 6 m 6 n are linearly indepen- dent.