1 Scalar.Mcd Fundamental Concepts in Vector Analysis: Scalar Product, Magnitude, Angle, Orthogonality, Projection

Total Page:16

File Type:pdf, Size:1020Kb

1 Scalar.Mcd Fundamental Concepts in Vector Analysis: Scalar Product, Magnitude, Angle, Orthogonality, Projection 1 scalar.mcd Fundamental concepts in vector analysis: scalar product, magnitude, angle, orthogonality, projection. Instructor: Nam Sun Wang In a linear vector space (LVS), there are rules on 1) addition of two vectors and 2) multiplication by a scalar. The resulting vector must also lie in the same LVS. We now impose another rule: multiplication of two vectors to yield a scalar. Real Euclidean Space. Real Euclidean Space is a subspace of LVS where there is a real-valued function (called scalar product) defined on pairs of vectors x and y with the following four properties. 1. Commutative (x, y) (y, x) 2. Associative (.x, y) .(x, y) 3. Distributive (x y, z) (x, z) (y, z) 4. Positive magnitude (x, x)>0 unless x 0 math jargon: (x, x) 0 (x, x) 0 iff x 0 Note that it is up to us to come up with a definition of the scalar product. Any definition that satisfies that above four properties is a valid one. Not only do we define the scalar product accordingly for different types of vectors, we conveniently adopt different definitions of scalar product for different applications even for one type of vectors. A scalar product is also known as an inner product or a dot product. We have vectors in linear vector space if we come up with rules of addition and multiplication by a scalar; furthermore, these vectors are in real Euclidean space if we come up with a rule on multiplication of two vectors. There are two metrics of a vector: magnitude and direction. They are defined in terms of the scalar product. Magnitude, or length or Euclidean norm, of x: x (x, x) (x, y) Direction or angle between two vectors x and y cos() x . y Orthogonal means (is defined as) =/2=90 or (x,y)=0. Schwarz Inequality. (x, y) x . y Schwarz inequality results from the four properties of scalar product. It does not depend on what types of vectors or how the scalar product is defined. Special case. For linearly dependent vectors, (x, y) x . y Triangular Inequality. x y x y Proof. ( x y )2 (x y, x y) (x, x) 2.(x, y) (y, y) . ( x )2 2.(x, y) ( y )2 ( x )2 2. x . y ( y )2 ( x y )2 Thus, x y x y Special case. For orthogonal vectors x and y, the scalar product is 0, i.e., (x,y)=0. Thus, ( x y )2 ( x )2 ( y )2 ... Pythagorean theorem (True not just for the conventional distances, but for all vectors in general). 2 scalar.mcd Example -- A column of real numbers. n Define (x, y) x .y i i i = 1 Show that this definition is valid by demonstrating that it satisfies the four properties. n n Property #1. (x, y) (y, x) (x, y) x .y y .x (y, x) ... ok i i i i i = 1 i = 1 n n Property #2. (.x, y) .(x, y) (.x, y) .x .y . x .y .(x, y) ... ok i i i i i = 1 i = 1 n n Property #3. (x y, z) (x, z) (y, z) (x y, z) x y .z x .z y .z i i i i i i i i = 1 i = 1 n n . x .z y .z (x, z) (y, z)... ok i i i i i = 1 i = 1 n Property #4. (x, x)>0 unless x 0 (x, x) x .x >0 unless all elements are 0. i i i = 1 Thus, the definition is a valid one. Being vectors in real Euclidean space, they automatically inherit all sorts of properties, including Schwarz inequality and triangular inequality, Pythagorean rule, etc. Schwarz inequality: n n n x .y x .x . y .y i i i i i i i = 1 i = 1 i = 1 Is the following definition of a scalar product a valid one? n (x, y) w .x .y i i i i = 1 What about the following? (x, y) x .y x .y 1 1 2 2 What about the following? (x, y) x .y x .y 1 2 2 1 3 scalar.mcd Example -- continuous functions f(t) in 0t1. 1 Define (f, g) f(t).g(t) dt 0 Show that this definition is valid by demonstrating that it satisfies the four properties. 1 1 Property #1. (f, g) (g, f) (f, g) f(t).g(t) dt g(t).f(t) dt (g, f) ... ok 0 0 1 1 Property #2. (.x, y) .(x, y) (.f, g) (.f(t)).g(t) dt . f(t).g(t) dt .(f, g) 0 0 ... ok 1 Property #3. (f g, h) (f, h) (g, h) (f g, h) (f(t) g(t)).h(t) dt 0 1 . (f(t).h(t) g(t).h(t)) dt 0 1 1 . f(t).h(t) dt g(t).h(t) dt 0 0 . (f, h) (g, h) ... ok 1 Property #4. (f, f)>0 unless f 0 (f, f) f(t).f(t) dt>0 ... ok 0 Thus, the definition is a valid one. Schwarz inequality: 1 1 1 f(t).g(t) dt f(t).f(t) dt. g(t).g(t) dt 0 0 0 Is the following definition of a scalar product valid one? 1 (f, g) w(t).f(t).g(t) dt 0 What about the following, where and are within [0, 1], say, [0.5 0.6]? (f, g) f(t).g(t) dt 4 scalar.mcd Gram-Schmidt Process. Given a set of n linearly independent vectors in real Euclidean space, f 1, f2,..., fn, we can construct a set of n vectors g1, g2,..., gn that are pair-wise orthogonal. g i, g j 0 for i j First, we choose any one of the given vectors fi to be the first vector. Here we simply choose f1. g 1 f 1 To construct a second vector that is orthogonal to the first vector, we take any one of the remaining given vectors (typically f2) and subtract from it the component aligned with the first vector g1. Whatever is left behind has nothing in common with the first vector, and, therefore, is orthogonal to the first vector. f , g 2 1 . g 2 f 2 g 1 g 1, g 1 To construct a third vector that is orthogonal to the first two vectors that have already been constructed, we take any one of the remaining given vectors (typically f 3) and subtract from it both the component aligned with the first vector g1 and that aligned with the second vector g2. Whatever is left behind has nothing in common with the first two vectors, and, therefore, is orthogonal to the first two vectors. f , g f , g 3 1 . 3 2 . g 3 f 3 g 1 g 2 g 1, g 1 g 2, g 2 f , g f , g f , g 4 1 . 4 2 . 4 3 . g 4 f 4 g 1 g 2 g 3 g 1, g 1 g 2, g 2 g 3, g 3 We repeat the process. i 1 f , g f , g f , g f , g i 1 . i 2 . i i 1 . i j . g i f i g 1 g 2 ... g f i g j g , g g , g g , g i 1 g , g 1 1 2 2 i 1 i 1 j = 1 j j Finally, the last orthogonal vector is, n 1 f , g f , g f , g f , g n 1 . n 2 . n n 1 . n j . g n f n g 1 g 2 ... g f n g j g , g g , g g , g n 1 g , g 1 1 2 2 n 1 n 1 j = 1 j j In general, we generate orthogonal basis function by the Gram-Schmidt orthogonalization process, i 1 g , f j i . g i f i g j for i 1, 2 .. n g , g j = 1 j j We have an orthonormal basis, if the basis vectors are normalized to have length of unity. g i g i, g i 1 g i, g j 0 for i j g i, g j 1 for i j 5 scalar.mcd Example. All polynomials of degree n or less in -1t1. 1 Define scalar project. (p, q) p(t).q(t) dt 1 Given f (t) 1 f (t) t f (t) t2 ... f tn 1 2 3 n 1 The results of Gram-Schmidt orthogonalization process is a set of polynomials known as Legendre polynomials, L1, L2,..., Ln+1, which form an orthogonal basis for the set of all polynomials of degree n or less. Thus, we have the choice of expressing a continuous function in -1t1 as a linear combination of the power series (which are not orthogonal) or as a linear combination of the Legendre polynomials (which are orthogonal). Because the basis is defined only for finite dimensions, we can only approximate, not represent exactly, a general continuous function in -1t1. g 1 1 g 2 t 2 1 g 3 t 3 3 3. g 4 t t 5 : i i 1 . d 2 g i t 1 2i.i! d ti Example. All functions f(t) of the form in 0t n n . f(t) j cos(j t) j sin(j t) j = 0 j = 1 The following set of 2n+1 vectors provide a basis (not orthogonal in [0 ]). f 1(t) 1 f 2(t) sin(t) f 3(t) cos(t) .
Recommended publications
  • Linear Algebra I
    Linear Algebra I Martin Otto Winter Term 2013/14 Contents 1 Introduction7 1.1 Motivating Examples.......................7 1.1.1 The two-dimensional real plane.............7 1.1.2 Three-dimensional real space............... 14 1.1.3 Systems of linear equations over Rn ........... 15 1.1.4 Linear spaces over Z2 ................... 21 1.2 Basics, Notation and Conventions................ 27 1.2.1 Sets............................ 27 1.2.2 Functions......................... 29 1.2.3 Relations......................... 34 1.2.4 Summations........................ 36 1.2.5 Propositional logic.................... 36 1.2.6 Some common proof patterns.............. 37 1.3 Algebraic Structures....................... 39 1.3.1 Binary operations on a set................ 39 1.3.2 Groups........................... 40 1.3.3 Rings and fields...................... 42 1.3.4 Aside: isomorphisms of algebraic structures...... 44 2 Vector Spaces 47 2.1 Vector spaces over arbitrary fields................ 47 2.1.1 The axioms........................ 48 2.1.2 Examples old and new.................. 50 2.2 Subspaces............................. 53 2.2.1 Linear subspaces..................... 53 2.2.2 Affine subspaces...................... 56 2.3 Aside: affine and linear spaces.................. 58 2.4 Linear dependence and independence.............. 60 3 4 Linear Algebra I | Martin Otto 2013 2.4.1 Linear combinations and spans............. 60 2.4.2 Linear (in)dependence.................. 62 2.5 Bases and dimension....................... 65 2.5.1 Bases............................ 65 2.5.2 Finite-dimensional vector spaces............. 66 2.5.3 Dimensions of linear and affine subspaces........ 71 2.5.4 Existence of bases..................... 72 2.6 Products, sums and quotients of spaces............. 73 2.6.1 Direct products...................... 73 2.6.2 Direct sums of subspaces................
    [Show full text]
  • Vector Spaces in Physics
    San Francisco State University Department of Physics and Astronomy August 6, 2015 Vector Spaces in Physics Notes for Ph 385: Introduction to Theoretical Physics I R. Bland TABLE OF CONTENTS Chapter I. Vectors A. The displacement vector. B. Vector addition. C. Vector products. 1. The scalar product. 2. The vector product. D. Vectors in terms of components. E. Algebraic properties of vectors. 1. Equality. 2. Vector Addition. 3. Multiplication of a vector by a scalar. 4. The zero vector. 5. The negative of a vector. 6. Subtraction of vectors. 7. Algebraic properties of vector addition. F. Properties of a vector space. G. Metric spaces and the scalar product. 1. The scalar product. 2. Definition of a metric space. H. The vector product. I. Dimensionality of a vector space and linear independence. J. Components in a rotated coordinate system. K. Other vector quantities. Chapter 2. The special symbols ij and ijk, the Einstein summation convention, and some group theory. A. The Kronecker delta symbol, ij B. The Einstein summation convention. C. The Levi-Civita totally antisymmetric tensor. Groups. The permutation group. The Levi-Civita symbol. D. The cross Product. E. The triple scalar product. F. The triple vector product. The epsilon killer. Chapter 3. Linear equations and matrices. A. Linear independence of vectors. B. Definition of a matrix. C. The transpose of a matrix. D. The trace of a matrix. E. Addition of matrices and multiplication of a matrix by a scalar. F. Matrix multiplication. G. Properties of matrix multiplication. H. The unit matrix I. Square matrices as members of a group.
    [Show full text]
  • Determinant Notes
    68 UNIT FIVE DETERMINANTS 5.1 INTRODUCTION In unit one the determinant of a 2× 2 matrix was introduced and used in the evaluation of a cross product. In this chapter we extend the definition of a determinant to any size square matrix. The determinant has a variety of applications. The value of the determinant of a square matrix A can be used to determine whether A is invertible or noninvertible. An explicit formula for A–1 exists that involves the determinant of A. Some systems of linear equations have solutions that can be expressed in terms of determinants. 5.2 DEFINITION OF THE DETERMINANT a11 a12 Recall that in chapter one the determinant of the 2× 2 matrix A = was a21 a22 defined to be the number a11a22 − a12 a21 and that the notation det (A) or A was used to represent the determinant of A. For any given n × n matrix A = a , the notation A [ ij ]n×n ij will be used to denote the (n −1)× (n −1) submatrix obtained from A by deleting the ith row and the jth column of A. The determinant of any size square matrix A = a is [ ij ]n×n defined recursively as follows. Definition of the Determinant Let A = a be an n × n matrix. [ ij ]n×n (1) If n = 1, that is A = [a11], then we define det (A) = a11 . n 1k+ (2) If na>=1, we define det(A) ∑(-1)11kk det(A ) k=1 Example If A = []5 , then by part (1) of the definition of the determinant, det (A) = 5.
    [Show full text]
  • Learning Geometric Algebra by Modeling Motions of the Earth and Shadows of Gnomons to Predict Solar Azimuths and Altitudes
    Learning Geometric Algebra by Modeling Motions of the Earth and Shadows of Gnomons to Predict Solar Azimuths and Altitudes April 24, 2018 James Smith [email protected] https://mx.linkedin.com/in/james-smith-1b195047 \Our first step in developing an expression for the orientation of \our" gnomon: Diagramming its location at the instant of the 2016 December solstice." Abstract Because the shortage of worked-out examples at introductory levels is an obstacle to widespread adoption of Geometric Algebra (GA), we use GA to calculate Solar azimuths and altitudes as a function of time via the heliocentric model. We begin by representing the Earth's motions in GA terms. Our representation incorporates an estimate of the time at which the Earth would have reached perihelion in 2017 if not affected by the Moon's gravity. Using the geometry of the December 2016 solstice as a starting 1 point, we then employ GA's capacities for handling rotations to determine the orientation of a gnomon at any given latitude and longitude during the period between the December solstices of 2016 and 2017. Subsequently, we derive equations for two angles: that between the Sun's rays and the gnomon's shaft, and that between the gnomon's shadow and the direction \north" as traced on the ground at the gnomon's location. To validate our equations, we convert those angles to Solar azimuths and altitudes for comparison with simulations made by the program Stellarium. As further validation, we analyze our equations algebraically to predict (for example) the precise timings and locations of sunrises, sunsets, and Solar zeniths on the solstices and equinoxes.
    [Show full text]
  • Schaum's Outline of Linear Algebra (4Th Edition)
    SCHAUM’S SCHAUM’S outlines outlines Linear Algebra Fourth Edition Seymour Lipschutz, Ph.D. Temple University Marc Lars Lipson, Ph.D. University of Virginia Schaum’s Outline Series New York Chicago San Francisco Lisbon London Madrid Mexico City Milan New Delhi San Juan Seoul Singapore Sydney Toronto Copyright © 2009, 2001, 1991, 1968 by The McGraw-Hill Companies, Inc. All rights reserved. Except as permitted under the United States Copyright Act of 1976, no part of this publication may be reproduced or distributed in any form or by any means, or stored in a database or retrieval system, without the prior writ- ten permission of the publisher. ISBN: 978-0-07-154353-8 MHID: 0-07-154353-8 The material in this eBook also appears in the print version of this title: ISBN: 978-0-07-154352-1, MHID: 0-07-154352-X. All trademarks are trademarks of their respective owners. Rather than put a trademark symbol after every occurrence of a trademarked name, we use names in an editorial fashion only, and to the benefit of the trademark owner, with no intention of infringement of the trademark. Where such designations appear in this book, they have been printed with initial caps. McGraw-Hill eBooks are available at special quantity discounts to use as premiums and sales promotions, or for use in corporate training programs. To contact a representative please e-mail us at [email protected]. TERMS OF USE This is a copyrighted work and The McGraw-Hill Companies, Inc. (“McGraw-Hill”) and its licensors reserve all rights in and to the work.
    [Show full text]
  • Determinants Math 122 Calculus III D Joyce, Fall 2012
    Determinants Math 122 Calculus III D Joyce, Fall 2012 What they are. A determinant is a value associated to a square array of numbers, that square array being called a square matrix. For example, here are determinants of a general 2 × 2 matrix and a general 3 × 3 matrix. a b = ad − bc: c d a b c d e f = aei + bfg + cdh − ceg − afh − bdi: g h i The determinant of a matrix A is usually denoted jAj or det (A). You can think of the rows of the determinant as being vectors. For the 3×3 matrix above, the vectors are u = (a; b; c), v = (d; e; f), and w = (g; h; i). Then the determinant is a value associated to n vectors in Rn. There's a general definition for n×n determinants. It's a particular signed sum of products of n entries in the matrix where each product is of one entry in each row and column. The two ways you can choose one entry in each row and column of the 2 × 2 matrix give you the two products ad and bc. There are six ways of chosing one entry in each row and column in a 3 × 3 matrix, and generally, there are n! ways in an n × n matrix. Thus, the determinant of a 4 × 4 matrix is the signed sum of 24, which is 4!, terms. In this general definition, half the terms are taken positively and half negatively. In class, we briefly saw how the signs are determined by permutations.
    [Show full text]
  • An Attempt to Intuitively Introduce the Dot, Wedge, Cross, and Geometric Products
    An attempt to intuitively introduce the dot, wedge, cross, and geometric products Peeter Joot March 21, 2008 1 Motivation. Both the NFCM and GAFP books have axiomatic introductions of the gener- alized (vector, blade) dot and wedge products, but there are elements of both that I was unsatisfied with. Perhaps the biggest issue with both is that they aren’t presented in a dumb enough fashion. NFCM presents but does not prove the generalized dot and wedge product operations in terms of symmetric and antisymmetric sums, but it is really the grade operation that is fundamental. You need that to define the dot product of two bivectors for example. GAFP axiomatic presentation is much clearer, but the definition of general- ized wedge product as the totally antisymmetric sum is a bit strange when all the differential forms book give such a different definition. Here I collect some of my notes on how one starts with the geometric prod- uct action on colinear and perpendicular vectors and gets the familiar results for two and three vector products. I may not try to generalize this, but just want to see things presented in a fashion that makes sense to me. 2 Introduction. The aim of this document is to introduce a “new” powerful vector multiplica- tion operation, the geometric product, to a student with some traditional vector algebra background. The geometric product, also called the Clifford product 1, has remained a relatively obscure mathematical subject. This operation actually makes a great deal of vector manipulation simpler than possible with the traditional methods, and provides a way to naturally expresses many geometric concepts.
    [Show full text]
  • Dirac Notation 1 Vectors
    Physics 324, Fall 2001 Dirac Notation 1 Vectors 1.1 Inner product T Recall from linear algebra: we can represent a vector V as a column vector; then V y = (V )∗ is a row vector, and the inner product (another name for dot product) between two vectors is written as AyB = A∗B1 + A∗B2 + : (1) 1 2 ··· In conventional vector notation, the above is just A~∗ B~ . Note that the inner product of a vector with itself is positive definite; we can define the· norm of a vector to be V = pV V; (2) j j y which is a non-negative real number. (In conventional vector notation, this is V~ , which j j is the length of V~ ). 1.2 Basis vectors We can expand a vector in a set of basis vectors e^i , provided the set is complete, which means that the basis vectors span the whole vectorf space.g The basis is called orthonormal if they satisfy e^iye^j = δij (orthonormality); (3) and an orthonormal basis is complete if they satisfy e^ e^y = I (completeness); (4) X i i i where I is the unit matrix. (note that a column vectore ^i times a row vectore ^iy is a square matrix, following the usual definition of matrix multiplication). Assuming we have a complete orthonormal basis, we can write V = IV = e^ e^yV V e^ ;V (^eyV ) : (5) X i i X i i i i i ≡ i ≡ The Vi are complex numbers; we say that Vi are the components of V in the e^i basis.
    [Show full text]
  • Exercise 7.5
    IN SUMMARY Key Idea • A projection of one vector onto another can be either a scalar or a vector. The difference is the vector projection has a direction. A A a a u u O O b NB b N B Scalar projection of a on b Vector projection of a on b Need to Know ! ! ! ! a # b ! • The scalar projection of a on b ϭϭ! 0 a 0 cos u, where u is the angle @ b @ ! ! between a and b. ! ! ! ! ! ! a # b ! a # b ! • The vector projection of a on b ϭ ! b ϭ a ! ! b b @ b @ 2 b # b ! • The direction cosines for OP ϭ 1a, b, c2 are a b cos a ϭ , cos b ϭ , 2 2 2 2 2 2 Va ϩ b ϩ c Va ϩ b ϩ c c cos g ϭ , where a, b, and g are the direction angles 2 2 2 Va ϩ b ϩ c ! between the position vector OP and the positive x-axis, y-axis and z-axis, respectively. Exercise 7.5 PART A ! 1. a. The vector a ϭ 12, 32 is projected onto the x-axis. What is the scalar projection? What is the vector projection? ! b. What are the scalar and vector projections when a is projected onto the y-axis? 2. Explain why it is not possible to obtain! either a scalar! projection or a vector projection when a nonzero vector x is projected on 0. 398 7.5 SCALAR AND VECTOR PROJECTIONS NEL ! ! 3. Consider two nonzero vectors,a and b, that are perpendicular! ! to each other.! Explain why the scalar and vector projections of a on b must! be !0 and 0, respectively.
    [Show full text]
  • MATH 304 Linear Algebra Lecture 24: Scalar Product. Vectors: Geometric Approach
    MATH 304 Linear Algebra Lecture 24: Scalar product. Vectors: geometric approach B A B′ A′ A vector is represented by a directed segment. • Directed segment is drawn as an arrow. • Different arrows represent the same vector if • they are of the same length and direction. Vectors: geometric approach v B A v B′ A′ −→AB denotes the vector represented by the arrow with tip at B and tail at A. −→AA is called the zero vector and denoted 0. Vectors: geometric approach v B − A v B′ A′ If v = −→AB then −→BA is called the negative vector of v and denoted v. − Vector addition Given vectors a and b, their sum a + b is defined by the rule −→AB + −→BC = −→AC. That is, choose points A, B, C so that −→AB = a and −→BC = b. Then a + b = −→AC. B b a C a b + B′ b A a C ′ a + b A′ The difference of the two vectors is defined as a b = a + ( b). − − b a b − a Properties of vector addition: a + b = b + a (commutative law) (a + b) + c = a + (b + c) (associative law) a + 0 = 0 + a = a a + ( a) = ( a) + a = 0 − − Let −→AB = a. Then a + 0 = −→AB + −→BB = −→AB = a, a + ( a) = −→AB + −→BA = −→AA = 0. − Let −→AB = a, −→BC = b, and −→CD = c. Then (a + b) + c = (−→AB + −→BC) + −→CD = −→AC + −→CD = −→AD, a + (b + c) = −→AB + (−→BC + −→CD) = −→AB + −→BD = −→AD. Parallelogram rule Let −→AB = a, −→BC = b, −−→AB′ = b, and −−→B′C ′ = a. Then a + b = −→AC, b + a = −−→AC ′.
    [Show full text]
  • Linear Algebra - Part II Projection, Eigendecomposition, SVD
    Linear Algebra - Part II Projection, Eigendecomposition, SVD (Adapted from Punit Shah's slides) 2019 Linear Algebra, Part II 2019 1 / 22 Brief Review from Part 1 Matrix Multiplication is a linear tranformation. Symmetric Matrix: A = AT Orthogonal Matrix: AT A = AAT = I and A−1 = AT L2 Norm: s X 2 jjxjj2 = xi i Linear Algebra, Part II 2019 2 / 22 Angle Between Vectors Dot product of two vectors can be written in terms of their L2 norms and the angle θ between them. T a b = jjajj2jjbjj2 cos(θ) Linear Algebra, Part II 2019 3 / 22 Cosine Similarity Cosine between two vectors is a measure of their similarity: a · b cos(θ) = jjajj jjbjj Orthogonal Vectors: Two vectors a and b are orthogonal to each other if a · b = 0. Linear Algebra, Part II 2019 4 / 22 Vector Projection ^ b Given two vectors a and b, let b = jjbjj be the unit vector in the direction of b. ^ Then a1 = a1 · b is the orthogonal projection of a onto a straight line parallel to b, where b a = jjajj cos(θ) = a · b^ = a · 1 jjbjj Image taken from wikipedia. Linear Algebra, Part II 2019 5 / 22 Diagonal Matrix Diagonal matrix has mostly zeros with non-zero entries only in the diagonal, e.g. identity matrix. A square diagonal matrix with diagonal elements given by entries of vector v is denoted: diag(v) Multiplying vector x by a diagonal matrix is efficient: diag(v)x = v x is the entrywise product. Inverting a square diagonal matrix is efficient: 1 1 diag(v)−1 = diag [ ;:::; ]T v1 vn Linear Algebra, Part II 2019 6 / 22 Determinant Determinant of a square matrix is a mapping to a scalar.
    [Show full text]
  • 1 Sets and Set Notation. Definition 1 (Naive Definition of a Set)
    LINEAR ALGEBRA MATH 2700.006 SPRING 2013 (COHEN) LECTURE NOTES 1 Sets and Set Notation. Definition 1 (Naive Definition of a Set). A set is any collection of objects, called the elements of that set. We will most often name sets using capital letters, like A, B, X, Y , etc., while the elements of a set will usually be given lower-case letters, like x, y, z, v, etc. Two sets X and Y are called equal if X and Y consist of exactly the same elements. In this case we write X = Y . Example 1 (Examples of Sets). (1) Let X be the collection of all integers greater than or equal to 5 and strictly less than 10. Then X is a set, and we may write: X = f5; 6; 7; 8; 9g The above notation is an example of a set being described explicitly, i.e. just by listing out all of its elements. The set brackets {· · ·} indicate that we are talking about a set and not a number, sequence, or other mathematical object. (2) Let E be the set of all even natural numbers. We may write: E = f0; 2; 4; 6; 8; :::g This is an example of an explicity described set with infinitely many elements. The ellipsis (:::) in the above notation is used somewhat informally, but in this case its meaning, that we should \continue counting forever," is clear from the context. (3) Let Y be the collection of all real numbers greater than or equal to 5 and strictly less than 10. Recalling notation from previous math courses, we may write: Y = [5; 10) This is an example of using interval notation to describe a set.
    [Show full text]