Vector Spaces in Physics

Total Page:16

File Type:pdf, Size:1020Kb

Vector Spaces in Physics San Francisco State University Department of Physics and Astronomy August 6, 2015 Vector Spaces in Physics Notes for Ph 385: Introduction to Theoretical Physics I R. Bland TABLE OF CONTENTS Chapter I. Vectors A. The displacement vector. B. Vector addition. C. Vector products. 1. The scalar product. 2. The vector product. D. Vectors in terms of components. E. Algebraic properties of vectors. 1. Equality. 2. Vector Addition. 3. Multiplication of a vector by a scalar. 4. The zero vector. 5. The negative of a vector. 6. Subtraction of vectors. 7. Algebraic properties of vector addition. F. Properties of a vector space. G. Metric spaces and the scalar product. 1. The scalar product. 2. Definition of a metric space. H. The vector product. I. Dimensionality of a vector space and linear independence. J. Components in a rotated coordinate system. K. Other vector quantities. Chapter 2. The special symbols ij and ijk, the Einstein summation convention, and some group theory. A. The Kronecker delta symbol, ij B. The Einstein summation convention. C. The Levi-Civita totally antisymmetric tensor. Groups. The permutation group. The Levi-Civita symbol. D. The cross Product. E. The triple scalar product. F. The triple vector product. The epsilon killer. Chapter 3. Linear equations and matrices. A. Linear independence of vectors. B. Definition of a matrix. C. The transpose of a matrix. D. The trace of a matrix. E. Addition of matrices and multiplication of a matrix by a scalar. F. Matrix multiplication. G. Properties of matrix multiplication. H. The unit matrix I. Square matrices as members of a group. ii J. The determinant of a square matrix. K. The 3x3 determinant expressed as a triple scalar product. L. Other properties of determinants Product law Transpose law Interchanging columns or rows Equal rows or columns M. Cramer's rule for simultaneous linear equations. N. Condition for linear dependence. O. Eigenvectors and eigenvalues Chapter 4. Practical examples A. Simple harmonic motion - a review B. Coupled oscillations - masses and springs. A system of two masses. Three interconnected masses. Systems of many coupled masses. C. The triple pendulum Chapter 5. The inverse; numerical methods A. The inverse of a square matrix. Definition of the inverse. Use of the inverse to solve matrix equations. The inverse matrix by the method of cofactors. B. Time required for numerical calculations. C. The Gauss-Jordan method for solving simultaneous linear equations. D. The Gauss-Jordan method for inverting a matrix. Chapter 6. Rotations and tensors A. Rotation of axes. B. Some properties of rotation matrices. Orthogonality Determinant C. The rotation group. D. Tensors E. Coordinate transformation of an operator on a vector space. F. The conductivity tensor. G. The inertia tensor. Chapter 6a. Space-time four-vectors. A. The origins of special relativity. B. Four-vectors and invariant proper time. C. The Lorentz transformation. D. Space-time events. E. The time dilation. F. The Lorentz contraction. G. The Maxwell field tensor. iii Chapter 7. The Wave Equation A. Qualitative properties of waves on a string. B. The wave equation. Partial derivatives. Wave velocity. C. Sinusoidal solutions. D. General traveling-wave solutions. E. Energy carried by waves on a string. Kinetic energy. Potential energy. F. The superposition principle. G. Group and phase velocity. Chapter 8. Standing Waves on a String A. Boundary Conditions and Initial Conditions String fixed at a boundary. Boundary between two different strings. B. Standing waves on a string. Chapter 9. Fourier Series A. The Fourier sine series. The general solution. Initial conditions. Orthogonality. Completeness. B. The Fourier sine-cosine Series. Odd and even functions. Periodic functions in time. C. The exponential Fourier series. Chapter 10. Fourier Transforms and the Dirac Delta Function A. The Fourier transform. B. The Dirac delta function (x). The rectangular delta function. The Gaussian delta function. Properties of the delta function. C. Application of the Dirac delta function to Fourier transforms. Basis states. Functions of position x. D. Relation to quantum mechanics. Chapter 11. Maxwell's Equations in Special Relativity Appendix A. Useful mathematical facts and formulae. A. Complex numbers. B. Some integrals and identities C. The small-angle approximation. D. Mathematical logical symbols. Appendix B. Using the P&A Computer System 1. Logging on. 2. Running MatLab, Mathematica and IDL. 3. Mathematica. iv Appendix C. Mathematica 1. Calculation of the vector sum using Mathematica. 2. Matrix operations in Mathematica 3. Speed test for Mathematica. References v Vector Spaces in Physics 8/6/2015 Chapter 1. Vectors We are all familiar with the distinction between things which have a direction and those which don't. The velocity of the wind (see figure 1.1) is a classical example of a vector Figure 1-1. Where is the vector? quantity. There are many more of interest in physics, and in this and subsequent chapters we will try to exhibit the fundamental properties of vectors. Vectors are intimately related to the very nature of space. Euclidian geometry (plane and spherical geometry) was an early way of describing space. All the basic concepts of Euclidian geometry can be expressed in terms of angles and distances. A more recent development in describing space was the introduction by Descartes of coordinates along three orthogonal axes. The modern use of Cartesian vectors provides the mathematical basis for much of physics. A. The Displacement Vector The preceding discussion did not lead to a definition of a vector. But you can convince yourself that all of the things we think of as vectors can be related to a single fundamental quantity, the vector r representing the displacement from one point in space to another. Assuming we know how to measure distances and angles, we can define a displacement vector (in two dimensions) in terms of a distance (its magnitude), and an angle: displacement from r12 point 1 to point 2 (1-1) distance, angle measured counterclockwise from due East (See figure 1.2.) Note that to a given pair of points corresponds a unique displacement, but a given displacement can link many different pairs of points. Thus the fundamental definition of a displacement gives just its magnitude and angle. We will use the definition above to discuss certain properties of vectors from a strictly geometrical point of view. Later we will adopt the coordinate representation of vectors for a more general and somewhat more abstract discussion of vectors. 1 - 1 Vector Spaces in Physics 8/6/2015 distance point 2 r angle east point 1 Figure 1-2. A vector, specified by giving a distance and an angle. B. Vector Addition A quantity related to the displacement vector is the position vector for a point. Positions are not absolute – they must be measured relative to a reference point. If we call this point O (the "origin"), then the position vector for point P can be defined as follows: rP displacement from point O to point P (1-2) It seems reasonable that the displacement from point 1 to point 2 should be expressed in terms of the position vectors for 1 and 2. We are be tempted to write r12 r2 r1 (1-3) A "difference law" like this is certainly valid for temperatures, or even for distances along a road, if 1 and 2 are two points on the road. But what does subtraction mean for vectors? Do you subtract the lengths and angles, or what? When are two vectors equal? In order to answer these questions we need to systematically develop the algebraic properties of vectors. We will let A , B , C , etc. represent vectors. For the moment, the only vector quantities we have defined are displacements in space. Other vector quantities which we will define later will obey the same rules. Definition of Vector Addition. The sum of two vector displacements can be defined so as to agree with our intuitive notions of displacements in space. We will define the sum of two displacements as the single displacement which has the same effect as carrying out the two individual displacements, one after the other. To use this definition, we need to be able to calculate the magnitude and angle of the sum vector. This is straightforward using the laws of plane geometry. (The laws of geometry become more complicated in three dimensions, where the coordinate representation is more convenient.) Let and be two displacement vectors, each defined by giving its length and angle: A (A, ), A (1-4) B (B, B ). 1 - 2 Vector Spaces in Physics 8/6/2015 Here we follow the convention of using the quantity A (without an arrow over it) to represent the magnitude of ; and, as stated above, angles are measured counterclockwise from the easterly direction. Now imagine points 1, 2, and 3 such that represents the displacement from 1 to 2, and represents the displacement from 2 to 3. This is illustrated in figure 1-3. 3 B 2 B A A 1 Figure 1-3. Successive displacements and . Definition: The sum of two given displacements and is the third displacement which has the same effect as making displacements and in succession. It is clear that the sum exists, and we know how to find it. An example is shown in figure 1-4 with two given vectors and and their sum . It is fairly clear that the length and angle of can be determined (using trigonometry), since for the triangle 1-2- 3, two sides and the included angle are known. The example below illustrates this calculation. Example: Let and B be the two vectors shown in figure 1-4: =(10 m, 48), B =(14 m, 20). Determine the magnitude and angle from due east of their A B sum , whereC C A B .
Recommended publications
  • Linear Algebra I
    Linear Algebra I Martin Otto Winter Term 2013/14 Contents 1 Introduction7 1.1 Motivating Examples.......................7 1.1.1 The two-dimensional real plane.............7 1.1.2 Three-dimensional real space............... 14 1.1.3 Systems of linear equations over Rn ........... 15 1.1.4 Linear spaces over Z2 ................... 21 1.2 Basics, Notation and Conventions................ 27 1.2.1 Sets............................ 27 1.2.2 Functions......................... 29 1.2.3 Relations......................... 34 1.2.4 Summations........................ 36 1.2.5 Propositional logic.................... 36 1.2.6 Some common proof patterns.............. 37 1.3 Algebraic Structures....................... 39 1.3.1 Binary operations on a set................ 39 1.3.2 Groups........................... 40 1.3.3 Rings and fields...................... 42 1.3.4 Aside: isomorphisms of algebraic structures...... 44 2 Vector Spaces 47 2.1 Vector spaces over arbitrary fields................ 47 2.1.1 The axioms........................ 48 2.1.2 Examples old and new.................. 50 2.2 Subspaces............................. 53 2.2.1 Linear subspaces..................... 53 2.2.2 Affine subspaces...................... 56 2.3 Aside: affine and linear spaces.................. 58 2.4 Linear dependence and independence.............. 60 3 4 Linear Algebra I | Martin Otto 2013 2.4.1 Linear combinations and spans............. 60 2.4.2 Linear (in)dependence.................. 62 2.5 Bases and dimension....................... 65 2.5.1 Bases............................ 65 2.5.2 Finite-dimensional vector spaces............. 66 2.5.3 Dimensions of linear and affine subspaces........ 71 2.5.4 Existence of bases..................... 72 2.6 Products, sums and quotients of spaces............. 73 2.6.1 Direct products...................... 73 2.6.2 Direct sums of subspaces................
    [Show full text]
  • An Attempt to Intuitively Introduce the Dot, Wedge, Cross, and Geometric Products
    An attempt to intuitively introduce the dot, wedge, cross, and geometric products Peeter Joot March 21, 2008 1 Motivation. Both the NFCM and GAFP books have axiomatic introductions of the gener- alized (vector, blade) dot and wedge products, but there are elements of both that I was unsatisfied with. Perhaps the biggest issue with both is that they aren’t presented in a dumb enough fashion. NFCM presents but does not prove the generalized dot and wedge product operations in terms of symmetric and antisymmetric sums, but it is really the grade operation that is fundamental. You need that to define the dot product of two bivectors for example. GAFP axiomatic presentation is much clearer, but the definition of general- ized wedge product as the totally antisymmetric sum is a bit strange when all the differential forms book give such a different definition. Here I collect some of my notes on how one starts with the geometric prod- uct action on colinear and perpendicular vectors and gets the familiar results for two and three vector products. I may not try to generalize this, but just want to see things presented in a fashion that makes sense to me. 2 Introduction. The aim of this document is to introduce a “new” powerful vector multiplica- tion operation, the geometric product, to a student with some traditional vector algebra background. The geometric product, also called the Clifford product 1, has remained a relatively obscure mathematical subject. This operation actually makes a great deal of vector manipulation simpler than possible with the traditional methods, and provides a way to naturally expresses many geometric concepts.
    [Show full text]
  • Dirac Notation 1 Vectors
    Physics 324, Fall 2001 Dirac Notation 1 Vectors 1.1 Inner product T Recall from linear algebra: we can represent a vector V as a column vector; then V y = (V )∗ is a row vector, and the inner product (another name for dot product) between two vectors is written as AyB = A∗B1 + A∗B2 + : (1) 1 2 ··· In conventional vector notation, the above is just A~∗ B~ . Note that the inner product of a vector with itself is positive definite; we can define the· norm of a vector to be V = pV V; (2) j j y which is a non-negative real number. (In conventional vector notation, this is V~ , which j j is the length of V~ ). 1.2 Basis vectors We can expand a vector in a set of basis vectors e^i , provided the set is complete, which means that the basis vectors span the whole vectorf space.g The basis is called orthonormal if they satisfy e^iye^j = δij (orthonormality); (3) and an orthonormal basis is complete if they satisfy e^ e^y = I (completeness); (4) X i i i where I is the unit matrix. (note that a column vectore ^i times a row vectore ^iy is a square matrix, following the usual definition of matrix multiplication). Assuming we have a complete orthonormal basis, we can write V = IV = e^ e^yV V e^ ;V (^eyV ) : (5) X i i X i i i i i ≡ i ≡ The Vi are complex numbers; we say that Vi are the components of V in the e^i basis.
    [Show full text]
  • 1 Sets and Set Notation. Definition 1 (Naive Definition of a Set)
    LINEAR ALGEBRA MATH 2700.006 SPRING 2013 (COHEN) LECTURE NOTES 1 Sets and Set Notation. Definition 1 (Naive Definition of a Set). A set is any collection of objects, called the elements of that set. We will most often name sets using capital letters, like A, B, X, Y , etc., while the elements of a set will usually be given lower-case letters, like x, y, z, v, etc. Two sets X and Y are called equal if X and Y consist of exactly the same elements. In this case we write X = Y . Example 1 (Examples of Sets). (1) Let X be the collection of all integers greater than or equal to 5 and strictly less than 10. Then X is a set, and we may write: X = f5; 6; 7; 8; 9g The above notation is an example of a set being described explicitly, i.e. just by listing out all of its elements. The set brackets {· · ·} indicate that we are talking about a set and not a number, sequence, or other mathematical object. (2) Let E be the set of all even natural numbers. We may write: E = f0; 2; 4; 6; 8; :::g This is an example of an explicity described set with infinitely many elements. The ellipsis (:::) in the above notation is used somewhat informally, but in this case its meaning, that we should \continue counting forever," is clear from the context. (3) Let Y be the collection of all real numbers greater than or equal to 5 and strictly less than 10. Recalling notation from previous math courses, we may write: Y = [5; 10) This is an example of using interval notation to describe a set.
    [Show full text]
  • Low-Level Image Processing with the Structure Multivector
    Low-Level Image Processing with the Structure Multivector Michael Felsberg Bericht Nr. 0202 Institut f¨ur Informatik und Praktische Mathematik der Christian-Albrechts-Universitat¨ zu Kiel Olshausenstr. 40 D – 24098 Kiel e-mail: [email protected] 12. Marz¨ 2002 Dieser Bericht enthalt¨ die Dissertation des Verfassers 1. Gutachter Prof. G. Sommer (Kiel) 2. Gutachter Prof. U. Heute (Kiel) 3. Gutachter Prof. J. J. Koenderink (Utrecht) Datum der mundlichen¨ Prufung:¨ 12.2.2002 To Regina ABSTRACT The present thesis deals with two-dimensional signal processing for computer vi- sion. The main topic is the development of a sophisticated generalization of the one-dimensional analytic signal to two dimensions. Motivated by the fundamental property of the latter, the invariance – equivariance constraint, and by its relation to complex analysis and potential theory, a two-dimensional approach is derived. This method is called the monogenic signal and it is based on the Riesz transform instead of the Hilbert transform. By means of this linear approach it is possible to estimate the local orientation and the local phase of signals which are projections of one-dimensional functions to two dimensions. For general two-dimensional signals, however, the monogenic signal has to be further extended, yielding the structure multivector. The latter approach combines the ideas of the structure tensor and the quaternionic analytic signal. A rich feature set can be extracted from the structure multivector, which contains measures for local amplitudes, the local anisotropy, the local orientation, and two local phases. Both, the monogenic signal and the struc- ture multivector are combined with an appropriate scale-space approach, resulting in generalized quadrature filters.
    [Show full text]
  • Relativistic Inversion, Invariance and Inter-Action
    S S symmetry Article Relativistic Inversion, Invariance and Inter-Action Martin B. van der Mark †,‡ and John G. Williamson *,‡ The Quantum Bicycle Society, 12 Crossburn Terrace, Troon KA1 07HB, Scotland, UK; [email protected] * Correspondence: [email protected] † Formerly of Philips Research, 5656 AE Eindhoven, The Netherlands. ‡ These authors contributed equally to this work. Abstract: A general formula for inversion in a relativistic Clifford–Dirac algebra has been derived. Identifying the base elements of the algebra as those of space and time, the first order differential equations over all quantities proves to encompass the Maxwell equations, leads to a natural extension incorporating rest mass and spin, and allows an integration with relativistic quantum mechanics. Although the algebra is not a division algebra, it parallels reality well: where division is undefined turns out to correspond to physical limits, such as that of the light cone. The divisor corresponds to invariants of dynamical significance, such as the invariant interval, the general invariant quantities in electromagnetism, and the basis set of quantities in the Dirac equation. It is speculated that the apparent 3-dimensionality of nature arises from a beautiful symmetry between the three-vector algebra and each of four sets of three derived spaces in the full 4-dimensional algebra. It is conjectured that elements of inversion may play a role in the interaction of fields and matter. Keywords: invariants; inversion; division; non-division algebra; Dirac algebra; Clifford algebra; geometric algebra; special relativity; photon interaction Citation: van der Mark, M.B.; 1. Introduction Williamson, J.G. Relativistic Inversion, Invariance and Inter-Action.
    [Show full text]
  • 1 Vectors & Tensors
    1 Vectors & Tensors The mathematical modeling of the physical world requires knowledge of quite a few different mathematics subjects, such as Calculus, Differential Equations and Linear Algebra. These topics are usually encountered in fundamental mathematics courses. However, in a more thorough and in-depth treatment of mechanics, it is essential to describe the physical world using the concept of the tensor, and so we begin this book with a comprehensive chapter on the tensor. The chapter is divided into three parts. The first part covers vectors (§1.1-1.7). The second part is concerned with second, and higher-order, tensors (§1.8-1.15). The second part covers much of the same ground as done in the first part, mainly generalizing the vector concepts and expressions to tensors. The final part (§1.16-1.19) (not required in the vast majority of applications) is concerned with generalizing the earlier work to curvilinear coordinate systems. The first part comprises basic vector algebra, such as the dot product and the cross product; the mathematics of how the components of a vector transform between different coordinate systems; the symbolic, index and matrix notations for vectors; the differentiation of vectors, including the gradient, the divergence and the curl; the integration of vectors, including line, double, surface and volume integrals, and the integral theorems. The second part comprises the definition of the tensor (and a re-definition of the vector); dyads and dyadics; the manipulation of tensors; properties of tensors, such as the trace, transpose, norm, determinant and principal values; special tensors, such as the spherical, identity and orthogonal tensors; the transformation of tensor components between different coordinate systems; the calculus of tensors, including the gradient of vectors and higher order tensors and the divergence of higher order tensors and special fourth order tensors.
    [Show full text]
  • Spacetime Algebra As a Powerful Tool for Electromagnetism
    Spacetime algebra as a powerful tool for electromagnetism Justin Dressela,b, Konstantin Y. Bliokhb,c, Franco Norib,d aDepartment of Electrical and Computer Engineering, University of California, Riverside, CA 92521, USA bCenter for Emergent Matter Science (CEMS), RIKEN, Wako-shi, Saitama, 351-0198, Japan cInterdisciplinary Theoretical Science Research Group (iTHES), RIKEN, Wako-shi, Saitama, 351-0198, Japan dPhysics Department, University of Michigan, Ann Arbor, MI 48109-1040, USA Abstract We present a comprehensive introduction to spacetime algebra that emphasizes its prac- ticality and power as a tool for the study of electromagnetism. We carefully develop this natural (Clifford) algebra of the Minkowski spacetime geometry, with a particular focus on its intrinsic (and often overlooked) complex structure. Notably, the scalar imaginary that appears throughout the electromagnetic theory properly corresponds to the unit 4-volume of spacetime itself, and thus has physical meaning. The electric and magnetic fields are combined into a single complex and frame-independent bivector field, which generalizes the Riemann-Silberstein complex vector that has recently resurfaced in stud- ies of the single photon wavefunction. The complex structure of spacetime also underpins the emergence of electromagnetic waves, circular polarizations, the normal variables for canonical quantization, the distinction between electric and magnetic charge, complex spinor representations of Lorentz transformations, and the dual (electric-magnetic field exchange) symmetry that produces helicity conservation in vacuum fields. This latter symmetry manifests as an arbitrary global phase of the complex field, motivating the use of a complex vector potential, along with an associated transverse and gauge-invariant bivector potential, as well as complex (bivector and scalar) Hertz potentials.
    [Show full text]
  • Index Notation
    Index Notation January 10, 2013 One of the hurdles to learning general relativity is the use of vector indices as a calculational tool. While you will eventually learn tensor notation that bypasses some of the index usage, the essential form of calculations often remains the same. Index notation allows us to do more complicated algebraic manipulations than the vector notation that works for simpler problems in Euclidean 3-space. Even there, many vector identities are most easily estab- lished using index notation. When we begin discussing 4-dimensional, curved spaces, our reliance on algebra for understanding what is going on is greatly increased. We cannot make progress without these tools. 1 Three dimensions To begin, we translated some 3-dimensional formulas into index notation. You are familiar with writing boldface letters to stand for vectors. Each such vector may be expanded in a basis. For example, in our usual Cartesian basis, every vector v may be written as a linear combination ^ ^ ^ v = vxi + vyj + vzk We need to make some changes here: 1. Replace the x; y; z labels with a numbers 1; 2; 3: (vx; vy; vz) −! (v1; v2; v3) 2. Write the labels raised instead of lowered. 1 2 3 (v1; v2; v3) −! v ; v ; v 3. Use a lower-case Latin letter to run over the range, i = 1; 2; 3. This means that the single symbol, vi stands for all three components, depending on the value of the index, i. 4. Replace the three unit vectors by an indexed symbol: e^i ^ ^ ^ so that e^1 = i; e^2 = j and e^3 = k With these changes the expansion of a vector v simplifies considerably because we may use a summation: ^ ^ ^ v = vxi + vyj + vzk 1 2 3 = v e^1 + v e^2 + v e^3 3 X i = v e^i i=1 1 We have chosen the index positions, in part, so that inside the sum there is one index up and one down.
    [Show full text]
  • Geometric Intuition
    thesis Geometric intuition Richard Feynman once made a statement represent the consequences of rotations in to the effect that the history of mathematics One day, perhaps, 3-space faithfully. is largely the history of improvements in Clifford’s algebra will It is also completely natural not only to add notation — the progressive invention of or subtract multi-vectors, but to multiply or ever more efficient means for describing be taught routinely to divide them — something not possible with logical relationships and making them students in place of ordinary vectors. The result is always another easier to grasp and manipulate. The Romans multi-vector. In the particular case of a were stymied in their efforts to advance vector analysis. multi-vector that is an ordinary vector V, the mathematics by the clumsiness of Roman inverse turns out to be V/v2, where v2 is the numerals for arithmetic calculations. After to j, that is, eiej = −ejei. Another way to put squared magnitude of V. It’s a vector in the Euclid, geometry stagnated for nearly it is that multiplication between parallel same direction but of reciprocal magnitude. 2,000 years until Descartes invented a new vectors is commutative, whereas it is anti- Write out the components for the notation with his coordinates, which made commutative for orthogonal vectors. product of two vectors U and V, and you it easy to represent points and lines in These rules are enough to define find the resultUV = U•V + ĬU × V, with • space algebraically. the algebra, and it’s then easy to work and × being the usual dot and cross product Feynman himself, of course, introduced out various implications.
    [Show full text]
  • Unit Vector Notation
    Unit Vector Notation 1 Definitions Figure 1 shows the definition of components of a vector V~ . The angles α, β and γ are the angles that the vector makes to the three coordinate axes x, y and z respectively. The dashed lines are perpendiculars drawn from the tip of the vector to the three coordinate axis. The components ~ Vx, Vy and Vz of V are defined to be the segments of the coordinate axes marked out by these perpendiculars as shown. Hence, using the definition of cosine for the three right-angle triangles, we find, Vx = V cos α; Vy = V cos β; Vz = V cos γ; where V (short for jV~ j) is the magnitude of the vector V~ . We also define unit vectors (vectors of magnitude one) along each of the three coordinate axes x, y and z to be ^i, ^j and k^ respectively (figure 2). The following three vectors in the three coordinate directions can now be defined. ~ ^ ~ ^ ~ ^ Vx = Vxi; Vy = Vyj; Vz = Vzk: Using the triangle rule for vector addition twice, this gives, ~ ~ ~ ~ ^ ^ ^ V = Vx + Vy + Vz = Vxi + Vyj + Vzk: This is known as the unit vector notation of a vector. If the vector is restricted to the x-y plane, then γ = 90◦. This makes (figure 3), ◦ Vz = 0; and α + β = 90 : Hence, cos β = cos (90◦ − α) = sin α: Thus the components Vx and Vy can now be written as, Vx = V cos α; Vy = V sin α 1 . y ... ....... ... ... .. ... .. .. .... .. ..... ... .... .... ... ... .. .. ... .. ... ... ..... V . .... .... y . ...... .. ..... ..... ...... .. ... ..... ... .. .... .. ...... .. ~ . ... .. V ...... .... .. β .. ...... .. .. .... .... .. ..... ....... .. .
    [Show full text]
  • Introduction to Vectors and Tensors
    INTRODUCTION TO VECTORS AND TENSORS Vector and Tensor Analysis Volume 2 Ray M. Bowen Mechanical Engineering Texas A&M University College Station, Texas and C.-C. Wang Mathematical Sciences Rice University Houston, Texas Copyright Ray M. Bowen and C.-C. Wang (ISBN 0-306-37509-5 (v. 2)) ____________________________________________________________________________ PREFACE To Volume 2 This is the second volume of a two-volume work on vectors and tensors. Volume 1 is concerned with the algebra of vectors and tensors, while this volume is concerned with the geometrical aspects of vectors and tensors. This volume begins with a discussion of Euclidean manifolds. The principal mathematical entity considered in this volume is a field, which is defined on a domain in a Euclidean manifold. The values of the field may be vectors or tensors. We investigate results due to the distribution of the vector or tensor values of the field on its domain. While we do not discuss general differentiable manifolds, we do include a chapter on vector and tensor fields defined on hypersurfaces in a Euclidean manifold. This volume contains frequent references to Volume 1. However, references are limited to basic algebraic concepts, and a student with a modest background in linear algebra should be able to utilize this volume as an independent textbook. As indicated in the preface to Volume 1, this volume is suitable for a one-semester course on vector and tensor analysis. On occasions when we have taught a one –semester course, we covered material from Chapters 9, 10, and 11 of this volume. This course also covered the material in Chapters 0,3,4,5, and 8 from Volume 1.
    [Show full text]