Geometric Intuition

Total Page:16

File Type:pdf, Size:1020Kb

Geometric Intuition thesis Geometric intuition Richard Feynman once made a statement represent the consequences of rotations in to the effect that the history of mathematics One day, perhaps, 3-space faithfully. is largely the history of improvements in Clifford’s algebra will It is also completely natural not only to add notation — the progressive invention of or subtract multi-vectors, but to multiply or ever more efficient means for describing be taught routinely to divide them — something not possible with logical relationships and making them students in place of ordinary vectors. The result is always another easier to grasp and manipulate. The Romans multi-vector. In the particular case of a were stymied in their efforts to advance vector analysis. multi-vector that is an ordinary vector V, the mathematics by the clumsiness of Roman inverse turns out to be V/v2, where v2 is the numerals for arithmetic calculations. After to j, that is, eiej = −ejei. Another way to put squared magnitude of V. It’s a vector in the Euclid, geometry stagnated for nearly it is that multiplication between parallel same direction but of reciprocal magnitude. 2,000 years until Descartes invented a new vectors is commutative, whereas it is anti- Write out the components for the notation with his coordinates, which made commutative for orthogonal vectors. product of two vectors U and V, and you it easy to represent points and lines in These rules are enough to define find the resultUV = U•V + ĬU × V, with • space algebraically. the algebra, and it’s then easy to work and × being the usual dot and cross product Feynman himself, of course, introduced out various implications. For example, of vector analysis. Hence, geometric algebra 2 2 2 into physics a profound change in notation (e1e2) = (e2e3) = (e3e1) = −1. Something blends both operations in a natural way. with his space–time diagrams for quantum like e1e2 is called a bi-vector, but isn’t a For nearly 40 years, physicist field theory. Previously, writing out the vector at all; rather it is a novel thing in its David Hestenes of Arizona State University terms in an infinite series for a probability own right. Similarly, e1e2e3 also isn’t a vector, has waged a one-man crusade to advertise amplitude involved a laborious algebraic or a bi-vector, but a tri-vector, another Clifford’s geometric algebra and to lift it procedure, which Feynman replaced totally new thing, the square of which also up to what he sees as its rightful place in with simple pictures and explicit rules comes to −1. Within this algebra, the most physics. It hasn’t worked yet. The standard to translate them into mathematical general object is a multi-vector — the sum techniques of vector analysis as originally expressions. This was an advance in of a scalar, vector, bi-vector and tri-vector. introduced by Gibbs remain dominant housekeeping, if you will, but also among In a sense, this is an advance over Descartes instead, which is too bad. the most important advances in twentieth- in that it provides a way to combine lines, Maxwell’s equations in vector notation century mathematical physics. areas and volumes within one formalism. are often cited as a prime example of the However, one of the most important The resulting algebra has remarkable beauty of physics, but the elegance is only and elegant advances in mathematical richness within it. The bi-vectorse 1e2, e2e3, enhanced in geometric algebra. It’s natural notation has perhaps not yet achieved the e3e1, for example, can be thought of as to combine the electric and magnetic fields wide recognition it deserves. In 1873, the oriented areas. They are linked to rotations into one field quantity: F = E + ĬcB. The full English mathematician and philosopher respectively about the e3, e1, e2 axes, and act equations then take the simple form ∇F = J William Clifford invented a deceptively identically to the basis elements of William where ∇ is the four-gradient 1/c ∂t + ∂r and J simple algebraic system unifying Cartesian Rowan’s quaternions, which he introduced the four-current 1/ε0 ρ – cμ0J. By combining coordinates with complex numbers, and in 1843 in an attempt to generalize complex the dot and cross products, Maxwell’s four offering a compact representation of lines, numbers to three dimensions. The tri- equations collapse into one (of course, this areas and volumes, as well as rotations, vector — for simplicity, we can— denote it as can also be achieved in tensor notation). in 3-space. In more advanced physics, Ĭ — acts analogously to i = √−1; it’s square The improvement is even more startling for Clifford’s algebra — he called it ‘geometric is −1 and it commutes with all the basis the Dirac equation, which actually takes the algebra’ — is now well recognized as the vectors. Using this shorthand, the bi-vectors form of a simple generalization of Maxwell’s natural algebra for describing physics and tri-vectors together satisfy the Pauli equations in which the field F becomes a full in 3-space, but it hasn’t yet caught on in algebra eiej = Ĭεijkek central to the description multi-vector. This and other examples are engineering, or even in standard treatments of rotations in three dimensions (here k is explored in more detail in a short review of of electricity and magnetism or fluid summed over, and ε123 = 1 changes sign for geometric algebra (J. M. Chapell et al., http:// dynamics, where vector analysis with its any permutation of indices, and vanishes if arxiv.org/abs/1101.3619; 2011), and Hestenes ugly cross product still holds sway. any two are equal). has created a wide variety of introductory Clifford’s geometric algebra begins For example, the rotation of any materials (http://geocalc.clas.asu.edu). with the three coordinate vectors e1, e2, vector about the e3 axis is generated by One day, perhaps, Clifford’s geometric e3 inherited from Descartes for the three multiplying the vector from the left by algebra will be taught routinely to students independent directions in space. These e2e1; this bi-vector is a ‘rotor’ that acts as in place of vector analysis. It would probably satisfy the usual rules of orthonormality, an operator generating a rotation through eliminate a great deal of confusion, and ei • ej = δij,; they are mutually perpendicular the arc defined as e1 sweeps through to improve the geometric intuition of many and of unit length. Clifford then introduced e2. For any two unit vectors ea and eb, ebea practising scientists. ❐ another kind of multiplication between generates a similar rotation in the plane vectors, denoted as eiej. His key point was defined by the two vectors. Of course, MARK BUCHANAN to assume that this kind of multiplication these rotations satisfy a non-commutative would be anti-commutative for i not equal algebra as must be true if they are to Corrected online: 28 October 2011 442 NATURE PHYSICS | VOL 7 | JUNE 2011 | www.nature.com/naturephysics © 2011 Macmillan Publishers Limited. All rights reserved Correction In the Thesis article, ‘Geometric intuition’ (Nature Phys. 7, 442; 2011), in the final equation quoted in the article, the term 1/c should instead have been 1/ε0. This error has been rectified in the HTML and PDF versions. © 2011 Macmillan Publishers Limited. All rights reserved. .
Recommended publications
  • Linear Algebra I
    Linear Algebra I Martin Otto Winter Term 2013/14 Contents 1 Introduction7 1.1 Motivating Examples.......................7 1.1.1 The two-dimensional real plane.............7 1.1.2 Three-dimensional real space............... 14 1.1.3 Systems of linear equations over Rn ........... 15 1.1.4 Linear spaces over Z2 ................... 21 1.2 Basics, Notation and Conventions................ 27 1.2.1 Sets............................ 27 1.2.2 Functions......................... 29 1.2.3 Relations......................... 34 1.2.4 Summations........................ 36 1.2.5 Propositional logic.................... 36 1.2.6 Some common proof patterns.............. 37 1.3 Algebraic Structures....................... 39 1.3.1 Binary operations on a set................ 39 1.3.2 Groups........................... 40 1.3.3 Rings and fields...................... 42 1.3.4 Aside: isomorphisms of algebraic structures...... 44 2 Vector Spaces 47 2.1 Vector spaces over arbitrary fields................ 47 2.1.1 The axioms........................ 48 2.1.2 Examples old and new.................. 50 2.2 Subspaces............................. 53 2.2.1 Linear subspaces..................... 53 2.2.2 Affine subspaces...................... 56 2.3 Aside: affine and linear spaces.................. 58 2.4 Linear dependence and independence.............. 60 3 4 Linear Algebra I | Martin Otto 2013 2.4.1 Linear combinations and spans............. 60 2.4.2 Linear (in)dependence.................. 62 2.5 Bases and dimension....................... 65 2.5.1 Bases............................ 65 2.5.2 Finite-dimensional vector spaces............. 66 2.5.3 Dimensions of linear and affine subspaces........ 71 2.5.4 Existence of bases..................... 72 2.6 Products, sums and quotients of spaces............. 73 2.6.1 Direct products...................... 73 2.6.2 Direct sums of subspaces................
    [Show full text]
  • Vectors and Beyond: Geometric Algebra and Its Philosophical
    dialectica Vol. 63, N° 4 (2010), pp. 381–395 DOI: 10.1111/j.1746-8361.2009.01214.x Vectors and Beyond: Geometric Algebra and its Philosophical Significancedltc_1214 381..396 Peter Simons† In mathematics, like in everything else, it is the Darwinian struggle for life of ideas that leads to the survival of the concepts which we actually use, often believed to have come to us fully armed with goodness from some mysterious Platonic repository of truths. Simon Altmann 1. Introduction The purpose of this paper is to draw the attention of philosophers and others interested in the applicability of mathematics to a quiet revolution that is taking place around the theory of vectors and their application. It is not that new math- ematics is being invented – on the contrary, the basic concepts are over a century old – but rather that this old theory, having languished for many decades as a quaint backwater, is being rediscovered and properly applied for the first time. The philosophical importance of this quiet revolution is not that new applications for old mathematics are being found. That presumably happens much of the time. Rather it is that this new range of applications affords us a novel insight into the reasons why vectors and their mathematical kin find application at all in the real world. Indirectly, it tells us something general but interesting about the nature of the spatiotemporal world we all inhabit, and that is of philosophical significance. Quite what this significance amounts to is not yet clear. I should stress that nothing here is original: the history is quite accessible from several sources, and the mathematics is commonplace to those who know it.
    [Show full text]
  • Vector Spaces in Physics
    San Francisco State University Department of Physics and Astronomy August 6, 2015 Vector Spaces in Physics Notes for Ph 385: Introduction to Theoretical Physics I R. Bland TABLE OF CONTENTS Chapter I. Vectors A. The displacement vector. B. Vector addition. C. Vector products. 1. The scalar product. 2. The vector product. D. Vectors in terms of components. E. Algebraic properties of vectors. 1. Equality. 2. Vector Addition. 3. Multiplication of a vector by a scalar. 4. The zero vector. 5. The negative of a vector. 6. Subtraction of vectors. 7. Algebraic properties of vector addition. F. Properties of a vector space. G. Metric spaces and the scalar product. 1. The scalar product. 2. Definition of a metric space. H. The vector product. I. Dimensionality of a vector space and linear independence. J. Components in a rotated coordinate system. K. Other vector quantities. Chapter 2. The special symbols ij and ijk, the Einstein summation convention, and some group theory. A. The Kronecker delta symbol, ij B. The Einstein summation convention. C. The Levi-Civita totally antisymmetric tensor. Groups. The permutation group. The Levi-Civita symbol. D. The cross Product. E. The triple scalar product. F. The triple vector product. The epsilon killer. Chapter 3. Linear equations and matrices. A. Linear independence of vectors. B. Definition of a matrix. C. The transpose of a matrix. D. The trace of a matrix. E. Addition of matrices and multiplication of a matrix by a scalar. F. Matrix multiplication. G. Properties of matrix multiplication. H. The unit matrix I. Square matrices as members of a group.
    [Show full text]
  • Recent Books on Vector Analysis. 463
    1921.] RECENT BOOKS ON VECTOR ANALYSIS. 463 RECENT BOOKS ON VECTOR ANALYSIS. Einführung in die Vehtoranalysis, mit Anwendungen auf die mathematische Physik. By R. Gans. 4th edition. Leip­ zig and Berlin, Teubner, 1921. 118 pp. Elements of Vector Algebra. By L. Silberstein. New York, Longmans, Green, and Company, 1919. 42 pp. Vehtor analysis. By C. Runge. Vol. I. Die Vektoranalysis des dreidimensionalen Raumes. Leipzig, Hirzel, 1919. viii + 195 pp. Précis de Calcul géométrique. By R. Leveugle. Preface by H. Fehr. Paris, Gauthier-Villars, 1920. lvi + 400 pp. The first of these books is for the most part a reprint of the third edition, which has been reviewed in this BULLETIN (vol. 21 (1915), p. 360). Some small condensation of results has been accomplished by making deductions by purely vector methods. The author still clings to the rather common idea that a vector is a certain triple on a certain set of coordinate axes, so that his development is rather that of a shorthand than of a study of expressions which are not dependent upon axes. The second book is a quite brief exposition of the bare fundamentals of vector algebra, the notation being that of Heaviside, which Silberstein has used before. It is designed primarily to satisfy the needs of those studying geometric optics. However the author goes so far as to mention a linear vector operator and the notion of dyad. The exposition is very simple and could be followed by high school students who had had trigonometry. The third of the books mentioned is an elementary exposition of vectors from the standpoint of Grassmann.
    [Show full text]
  • Geometric-Algebra Adaptive Filters Wilder B
    1 Geometric-Algebra Adaptive Filters Wilder B. Lopes∗, Member, IEEE, Cassio G. Lopesy, Senior Member, IEEE Abstract—This paper presents a new class of adaptive filters, namely Geometric-Algebra Adaptive Filters (GAAFs). They are Faces generated by formulating the underlying minimization problem (a deterministic cost function) from the perspective of Geometric Algebra (GA), a comprehensive mathematical language well- Edges suited for the description of geometric transformations. Also, (directed lines) differently from standard adaptive-filtering theory, Geometric Calculus (the extension of GA to differential calculus) allows Fig. 1. A polyhedron (3-dimensional polytope) can be completely described for applying the same derivation techniques regardless of the by the geometric multiplication of its edges (oriented lines, vectors), which type (subalgebra) of the data, i.e., real, complex numbers, generate the faces and hypersurfaces (in the case of a general n-dimensional quaternions, etc. Relying on those characteristics (among others), polytope). a deterministic quadratic cost function is posed, from which the GAAFs are devised, providing a generalization of regular adaptive filters to subalgebras of GA. From the obtained update rule, it is shown how to recover the following least-mean squares perform calculus with hypercomplex quantities, i.e., elements (LMS) adaptive filter variants: real-entries LMS, complex LMS, that generalize complex numbers for higher dimensions [2]– and quaternions LMS. Mean-square analysis and simulations in [10]. a system identification scenario are provided, showing very good agreement for different levels of measurement noise. GA-based AFs were first introduced in [11], [12], where they were successfully employed to estimate the geometric Index Terms—Adaptive filtering, geometric algebra, quater- transformation (rotation and translation) that aligns a pair of nions.
    [Show full text]
  • An Attempt to Intuitively Introduce the Dot, Wedge, Cross, and Geometric Products
    An attempt to intuitively introduce the dot, wedge, cross, and geometric products Peeter Joot March 21, 2008 1 Motivation. Both the NFCM and GAFP books have axiomatic introductions of the gener- alized (vector, blade) dot and wedge products, but there are elements of both that I was unsatisfied with. Perhaps the biggest issue with both is that they aren’t presented in a dumb enough fashion. NFCM presents but does not prove the generalized dot and wedge product operations in terms of symmetric and antisymmetric sums, but it is really the grade operation that is fundamental. You need that to define the dot product of two bivectors for example. GAFP axiomatic presentation is much clearer, but the definition of general- ized wedge product as the totally antisymmetric sum is a bit strange when all the differential forms book give such a different definition. Here I collect some of my notes on how one starts with the geometric prod- uct action on colinear and perpendicular vectors and gets the familiar results for two and three vector products. I may not try to generalize this, but just want to see things presented in a fashion that makes sense to me. 2 Introduction. The aim of this document is to introduce a “new” powerful vector multiplica- tion operation, the geometric product, to a student with some traditional vector algebra background. The geometric product, also called the Clifford product 1, has remained a relatively obscure mathematical subject. This operation actually makes a great deal of vector manipulation simpler than possible with the traditional methods, and provides a way to naturally expresses many geometric concepts.
    [Show full text]
  • Dirac Notation 1 Vectors
    Physics 324, Fall 2001 Dirac Notation 1 Vectors 1.1 Inner product T Recall from linear algebra: we can represent a vector V as a column vector; then V y = (V )∗ is a row vector, and the inner product (another name for dot product) between two vectors is written as AyB = A∗B1 + A∗B2 + : (1) 1 2 ··· In conventional vector notation, the above is just A~∗ B~ . Note that the inner product of a vector with itself is positive definite; we can define the· norm of a vector to be V = pV V; (2) j j y which is a non-negative real number. (In conventional vector notation, this is V~ , which j j is the length of V~ ). 1.2 Basis vectors We can expand a vector in a set of basis vectors e^i , provided the set is complete, which means that the basis vectors span the whole vectorf space.g The basis is called orthonormal if they satisfy e^iye^j = δij (orthonormality); (3) and an orthonormal basis is complete if they satisfy e^ e^y = I (completeness); (4) X i i i where I is the unit matrix. (note that a column vectore ^i times a row vectore ^iy is a square matrix, following the usual definition of matrix multiplication). Assuming we have a complete orthonormal basis, we can write V = IV = e^ e^yV V e^ ;V (^eyV ) : (5) X i i X i i i i i ≡ i ≡ The Vi are complex numbers; we say that Vi are the components of V in the e^i basis.
    [Show full text]
  • Josiah Willard Gibbs
    GENERAL ARTICLE Josiah Willard Gibbs V Kumaran The foundations of classical thermodynamics, as taught in V Kumaran is a professor textbooks today, were laid down in nearly complete form by of chemical engineering at the Indian Institute of Josiah Willard Gibbs more than a century ago. This article Science, Bangalore. His presentsaportraitofGibbs,aquietandmodestmanwhowas research interests include responsible for some of the most important advances in the statistical mechanics and history of science. fluid mechanics. Thermodynamics, the science of the interconversion of heat and work, originated from the necessity of designing efficient engines in the late 18th and early 19th centuries. Engines are machines that convert heat energy obtained by combustion of coal, wood or other types of fuel into useful work for running trains, ships, etc. The efficiency of an engine is determined by the amount of useful work obtained for a given amount of heat input. There are two laws related to the efficiency of an engine. The first law of thermodynamics states that heat and work are inter-convertible, and it is not possible to obtain more work than the amount of heat input into the machine. The formulation of this law can be traced back to the work of Leibniz, Dalton, Joule, Clausius, and a host of other scientists in the late 17th and early 18th century. The more subtle second law of thermodynamics states that it is not possible to convert all heat into work; all engines have to ‘waste’ some of the heat input by transferring it to a heat sink. The second law also established the minimum amount of heat that has to be wasted based on the absolute temperatures of the heat source and the heat sink.
    [Show full text]
  • 1 Sets and Set Notation. Definition 1 (Naive Definition of a Set)
    LINEAR ALGEBRA MATH 2700.006 SPRING 2013 (COHEN) LECTURE NOTES 1 Sets and Set Notation. Definition 1 (Naive Definition of a Set). A set is any collection of objects, called the elements of that set. We will most often name sets using capital letters, like A, B, X, Y , etc., while the elements of a set will usually be given lower-case letters, like x, y, z, v, etc. Two sets X and Y are called equal if X and Y consist of exactly the same elements. In this case we write X = Y . Example 1 (Examples of Sets). (1) Let X be the collection of all integers greater than or equal to 5 and strictly less than 10. Then X is a set, and we may write: X = f5; 6; 7; 8; 9g The above notation is an example of a set being described explicitly, i.e. just by listing out all of its elements. The set brackets {· · ·} indicate that we are talking about a set and not a number, sequence, or other mathematical object. (2) Let E be the set of all even natural numbers. We may write: E = f0; 2; 4; 6; 8; :::g This is an example of an explicity described set with infinitely many elements. The ellipsis (:::) in the above notation is used somewhat informally, but in this case its meaning, that we should \continue counting forever," is clear from the context. (3) Let Y be the collection of all real numbers greater than or equal to 5 and strictly less than 10. Recalling notation from previous math courses, we may write: Y = [5; 10) This is an example of using interval notation to describe a set.
    [Show full text]
  • Low-Level Image Processing with the Structure Multivector
    Low-Level Image Processing with the Structure Multivector Michael Felsberg Bericht Nr. 0202 Institut f¨ur Informatik und Praktische Mathematik der Christian-Albrechts-Universitat¨ zu Kiel Olshausenstr. 40 D – 24098 Kiel e-mail: [email protected] 12. Marz¨ 2002 Dieser Bericht enthalt¨ die Dissertation des Verfassers 1. Gutachter Prof. G. Sommer (Kiel) 2. Gutachter Prof. U. Heute (Kiel) 3. Gutachter Prof. J. J. Koenderink (Utrecht) Datum der mundlichen¨ Prufung:¨ 12.2.2002 To Regina ABSTRACT The present thesis deals with two-dimensional signal processing for computer vi- sion. The main topic is the development of a sophisticated generalization of the one-dimensional analytic signal to two dimensions. Motivated by the fundamental property of the latter, the invariance – equivariance constraint, and by its relation to complex analysis and potential theory, a two-dimensional approach is derived. This method is called the monogenic signal and it is based on the Riesz transform instead of the Hilbert transform. By means of this linear approach it is possible to estimate the local orientation and the local phase of signals which are projections of one-dimensional functions to two dimensions. For general two-dimensional signals, however, the monogenic signal has to be further extended, yielding the structure multivector. The latter approach combines the ideas of the structure tensor and the quaternionic analytic signal. A rich feature set can be extracted from the structure multivector, which contains measures for local amplitudes, the local anisotropy, the local orientation, and two local phases. Both, the monogenic signal and the struc- ture multivector are combined with an appropriate scale-space approach, resulting in generalized quadrature filters.
    [Show full text]
  • Relativistic Inversion, Invariance and Inter-Action
    S S symmetry Article Relativistic Inversion, Invariance and Inter-Action Martin B. van der Mark †,‡ and John G. Williamson *,‡ The Quantum Bicycle Society, 12 Crossburn Terrace, Troon KA1 07HB, Scotland, UK; [email protected] * Correspondence: [email protected] † Formerly of Philips Research, 5656 AE Eindhoven, The Netherlands. ‡ These authors contributed equally to this work. Abstract: A general formula for inversion in a relativistic Clifford–Dirac algebra has been derived. Identifying the base elements of the algebra as those of space and time, the first order differential equations over all quantities proves to encompass the Maxwell equations, leads to a natural extension incorporating rest mass and spin, and allows an integration with relativistic quantum mechanics. Although the algebra is not a division algebra, it parallels reality well: where division is undefined turns out to correspond to physical limits, such as that of the light cone. The divisor corresponds to invariants of dynamical significance, such as the invariant interval, the general invariant quantities in electromagnetism, and the basis set of quantities in the Dirac equation. It is speculated that the apparent 3-dimensionality of nature arises from a beautiful symmetry between the three-vector algebra and each of four sets of three derived spaces in the full 4-dimensional algebra. It is conjectured that elements of inversion may play a role in the interaction of fields and matter. Keywords: invariants; inversion; division; non-division algebra; Dirac algebra; Clifford algebra; geometric algebra; special relativity; photon interaction Citation: van der Mark, M.B.; 1. Introduction Williamson, J.G. Relativistic Inversion, Invariance and Inter-Action.
    [Show full text]
  • 1 Vectors & Tensors
    1 Vectors & Tensors The mathematical modeling of the physical world requires knowledge of quite a few different mathematics subjects, such as Calculus, Differential Equations and Linear Algebra. These topics are usually encountered in fundamental mathematics courses. However, in a more thorough and in-depth treatment of mechanics, it is essential to describe the physical world using the concept of the tensor, and so we begin this book with a comprehensive chapter on the tensor. The chapter is divided into three parts. The first part covers vectors (§1.1-1.7). The second part is concerned with second, and higher-order, tensors (§1.8-1.15). The second part covers much of the same ground as done in the first part, mainly generalizing the vector concepts and expressions to tensors. The final part (§1.16-1.19) (not required in the vast majority of applications) is concerned with generalizing the earlier work to curvilinear coordinate systems. The first part comprises basic vector algebra, such as the dot product and the cross product; the mathematics of how the components of a vector transform between different coordinate systems; the symbolic, index and matrix notations for vectors; the differentiation of vectors, including the gradient, the divergence and the curl; the integration of vectors, including line, double, surface and volume integrals, and the integral theorems. The second part comprises the definition of the tensor (and a re-definition of the vector); dyads and dyadics; the manipulation of tensors; properties of tensors, such as the trace, transpose, norm, determinant and principal values; special tensors, such as the spherical, identity and orthogonal tensors; the transformation of tensor components between different coordinate systems; the calculus of tensors, including the gradient of vectors and higher order tensors and the divergence of higher order tensors and special fourth order tensors.
    [Show full text]