03 - Introduction Me338 - Syllabus to Vectors and Tensors

Total Page:16

File Type:pdf, Size:1020Kb

03 - Introduction Me338 - Syllabus to Vectors and Tensors 03 - introduction me338 - syllabus to vectors and tensors holzapfel ‘nonlinear solid mechanics‘ [2000], chapter 1.6-1.9, pages 32-55 03 - tensor calculus 1 introduction 2 tensor calculus tensor calculus tensor the word tensor was introduced • vector algebra in 1846 by william rowan hamilton. it was notation, euklidian vector space, scalar product, vector used in its current meaning by woldemar voigt in 1899. tensor calculus was deve- product, scalar triple product loped around 1890 by gregorio ricci-curba- • tensor algebra stro under the title absolute differential notation, scalar products, dyadic product, invariants, trace, calculus. in the 20th century, the subject determinant, inverse, spectral decomposition, sym-skew came to be known as tensor analysis, and achieved broader acceptance with the intro- decomposition, vol-dev decomposition, orthogonal tensor duction of einsteins's theory of general • tensor analysis relativity around 1915. tensors are used derivatives, gradient, divergence, laplace operator, integral also in other fields such as continuum transformations mechanics. tensor calculus 3 tensor calculus 4 vector algebra - scalar product vector algebra - vector product • euklidian norm enables definition of scalar (inner) product • vector product • properties of scalar product • properties of vector product • positive definiteness • orthogonality tensor calculus 5 tensor calculus 6 vector algebra - scalar triple product tensor algebra - scalar product • scalar triple product • scalar (inner) product area volume of second order tensor and vector • zero and identity • properties of scalar triple product • positive definiteness • properties of scalar product • linear independency tensor calculus 7 tensor calculus 8 tensor algebra - scalar product tensor algebra - scalar product • scalar (inner) product • scalar (inner) product · of two second order tensors of two second order tensors and • scalar (inner) product • zero and identity • properties of scalar product of fourth order tensors and second order tensor • zero and identity tensor calculus 9 tensor calculus 10 tensor algebra - dyadic product tensor algebra - invariants • dyadic (outer) product • (principal) invariants of second order tensor of two vectors introduces second order tensor • properties of dyadic product (tensor notation) • derivatives of invariants wrt second order tensor tensor calculus 11 tensor calculus 12 tensor algebra - trace tensor algebra - determinant • trace of second order tensor • determinant of second order tensor • properties of traces of second order tensors • properties of determinants of second order tensors tensor calculus 13 tensor calculus 14 tensor algebra - determinant tensor algebra - inverse • determinant defining vector product • inverse of second order tensor in particular • adjoint and cofactor • determinant defining scalar triple product • properties of inverse tensor calculus 15 tensor calculus 16 tensor algebra - spectral decomposition tensor algebra - sym/skw decomposition • eigenvalue problem of second order tensor • symmetric - skew-symmetric decomposition • solution in terms of scalar triple product • symmetric and skew-symmetric tensor • characteristic equation • symmetric tensor • spectral decomposition • cayleigh hamilton theorem • skew-symmetric tensor tensor calculus 17 tensor calculus 18 tensor algebra - symmetric tensor tensor algebra - skew-symmetric tensor • symmetric second order tensor • skew-symmetric second order tensor • processes three real eigenvalues and corresp.eigenvectors • processes three independent entries defining axial vector such that • square root, inverse, exponent and log • invariants of skew-symmetric tensor tensor calculus 19 tensor calculus 20 tensor algebra - vol/dev decomposition tensor algebra - orthogonal tensor • volumetric - deviatoric decomposition • orthogonal second order tensor • decomposition of second order tensor • volumetric and deviatoric tensor such that and • volumetric tensor • proper orthogonal tensor has eigenvalue with • deviatoric tensor interpretation: finite rotation around axis tensor calculus 21 tensor calculus 22 tensor analysis - frechet derivative tensor analysis - gateaux derivative • consider smooth differentiable scalar field with • consider smooth differentiable scalar field with scalar argument scalar argument vector argument vector argument tensor argument tensor argument • frechet derivative (tensor notation) • gateaux derivative,i.e.,frechet wrt direction (tensor notation) scalar argument scalar argument vector argument vector argument tensor argument tensor argument tensor calculus 23 tensor calculus 24 tensor analysis - gradient tensor analysis - divergence • consider scalar- and vector field in domain • consider vector- and 2nd order tensor field in domain • divergence of vector- and 2nd order tensor field • gradient of scalar- and vector field renders vector- and 2nd order tensor field renders scalar- and vector field tensor calculus 25 tensor calculus 26 tensor analysis - laplace operator tensor analysis - transformations • consider scalar- and vector field in domain • consider scalar,vector and 2nd order tensor field on • laplace operator acting on scalar- and vector field • useful transformation formulae (tensor notation) renders scalar- and vector field tensor calculus 27 tensor calculus 28 tensor analysis - integral theorems tensor analysis - integral theorems • consider scalar,vector and 2nd order tensor field on • consider scalar,vector and 2nd order tensor field on • integral theorems (tensor notation) • integral theorems (tensor notation) green green gauss gauss gauss gauss tensor calculus 29 tensor calculus 30 voigt / matrix vector notation voigt / matrix vector notation • strain tensors as vectors in voigt notation • fourth order material operators as matrix in voigt notation • stress tensors as vectors in voigt notation • why are strain & stress different? check these expressions! • why are strain & stress different? check energy expression! tensor calculus 31 tensor calculus 32.
Recommended publications
  • DERIVATIONS and PROJECTIONS on JORDAN TRIPLES an Introduction to Nonassociative Algebra, Continuous Cohomology, and Quantum Functional Analysis
    DERIVATIONS AND PROJECTIONS ON JORDAN TRIPLES An introduction to nonassociative algebra, continuous cohomology, and quantum functional analysis Bernard Russo July 29, 2014 This paper is an elaborated version of the material presented by the author in a three hour minicourse at V International Course of Mathematical Analysis in Andalusia, at Almeria, Spain September 12-16, 2011. The author wishes to thank the scientific committee for the opportunity to present the course and to the organizing committee for their hospitality. The author also personally thanks Antonio Peralta for his collegiality and encouragement. The minicourse on which this paper is based had its genesis in a series of talks the author had given to undergraduates at Fullerton College in California. I thank my former student Dana Clahane for his initiative in running the remarkable undergraduate research program at Fullerton College of which the seminar series is a part. With their knowledge only of the product rule for differentiation as a starting point, these enthusiastic students were introduced to some aspects of the esoteric subject of non associative algebra, including triple systems as well as algebras. Slides of these talks and of the minicourse lectures, as well as other related material, can be found at the author's website (www.math.uci.edu/∼brusso). Conversely, these undergraduate talks were motivated by the author's past and recent joint works on derivations of Jordan triples ([116],[117],[200]), which are among the many results discussed here. Part I (Derivations) is devoted to an exposition of the properties of derivations on various algebras and triple systems in finite and infinite dimensions, the primary questions addressed being whether the derivation is automatically continuous and to what extent it is an inner derivation.
    [Show full text]
  • Linear Algebra I
    Linear Algebra I Martin Otto Winter Term 2013/14 Contents 1 Introduction7 1.1 Motivating Examples.......................7 1.1.1 The two-dimensional real plane.............7 1.1.2 Three-dimensional real space............... 14 1.1.3 Systems of linear equations over Rn ........... 15 1.1.4 Linear spaces over Z2 ................... 21 1.2 Basics, Notation and Conventions................ 27 1.2.1 Sets............................ 27 1.2.2 Functions......................... 29 1.2.3 Relations......................... 34 1.2.4 Summations........................ 36 1.2.5 Propositional logic.................... 36 1.2.6 Some common proof patterns.............. 37 1.3 Algebraic Structures....................... 39 1.3.1 Binary operations on a set................ 39 1.3.2 Groups........................... 40 1.3.3 Rings and fields...................... 42 1.3.4 Aside: isomorphisms of algebraic structures...... 44 2 Vector Spaces 47 2.1 Vector spaces over arbitrary fields................ 47 2.1.1 The axioms........................ 48 2.1.2 Examples old and new.................. 50 2.2 Subspaces............................. 53 2.2.1 Linear subspaces..................... 53 2.2.2 Affine subspaces...................... 56 2.3 Aside: affine and linear spaces.................. 58 2.4 Linear dependence and independence.............. 60 3 4 Linear Algebra I | Martin Otto 2013 2.4.1 Linear combinations and spans............. 60 2.4.2 Linear (in)dependence.................. 62 2.5 Bases and dimension....................... 65 2.5.1 Bases............................ 65 2.5.2 Finite-dimensional vector spaces............. 66 2.5.3 Dimensions of linear and affine subspaces........ 71 2.5.4 Existence of bases..................... 72 2.6 Products, sums and quotients of spaces............. 73 2.6.1 Direct products...................... 73 2.6.2 Direct sums of subspaces................
    [Show full text]
  • Vector Spaces in Physics
    San Francisco State University Department of Physics and Astronomy August 6, 2015 Vector Spaces in Physics Notes for Ph 385: Introduction to Theoretical Physics I R. Bland TABLE OF CONTENTS Chapter I. Vectors A. The displacement vector. B. Vector addition. C. Vector products. 1. The scalar product. 2. The vector product. D. Vectors in terms of components. E. Algebraic properties of vectors. 1. Equality. 2. Vector Addition. 3. Multiplication of a vector by a scalar. 4. The zero vector. 5. The negative of a vector. 6. Subtraction of vectors. 7. Algebraic properties of vector addition. F. Properties of a vector space. G. Metric spaces and the scalar product. 1. The scalar product. 2. Definition of a metric space. H. The vector product. I. Dimensionality of a vector space and linear independence. J. Components in a rotated coordinate system. K. Other vector quantities. Chapter 2. The special symbols ij and ijk, the Einstein summation convention, and some group theory. A. The Kronecker delta symbol, ij B. The Einstein summation convention. C. The Levi-Civita totally antisymmetric tensor. Groups. The permutation group. The Levi-Civita symbol. D. The cross Product. E. The triple scalar product. F. The triple vector product. The epsilon killer. Chapter 3. Linear equations and matrices. A. Linear independence of vectors. B. Definition of a matrix. C. The transpose of a matrix. D. The trace of a matrix. E. Addition of matrices and multiplication of a matrix by a scalar. F. Matrix multiplication. G. Properties of matrix multiplication. H. The unit matrix I. Square matrices as members of a group.
    [Show full text]
  • An Approximate Nodal Is Developed to Calculate the Change of •Laatio Constants Induced by Point Defect* in Hep Metals
    1 - INTBOPUCTIOB the elastic conatants.aa well aa othernmechanieal pro partita of* IC/79/lW irradiated materiale (are vary sensitive to tne oonoantration of i- INTERNAL REPORT (Limited distribution) rradiation produced point defeota.One of the firat eatimatee of thla effect waa done by Dienea [l"J who aiaply averaged over the whole la- International Atomic Energy Agency ttice the locally changed interatoalo bonds due to the pxesense of" and the defect.With tola nodal ha predioted an inoreaee of the alaatle United Nations Educational Scientific and Cultural Organization constant* of about 10* par atonic f of interatitlala in Ou and a da. oreaee of l]t par at. % of vacanolea. INTERNATIONAL CENTRE FOE THEORETICAL PHYSICS Later on,experlaental etudiea by Konlg at al.[2]and wanal lilgar* very large decrease a of about 5O}( per at.)t of Vrenlcal dafaota.fha theory waa than iaproved in order to relate the change of a la* tic con a tan t a to the defect lnduoed change of force oonatanta and tno equivalent aethoda were devalopedi the energy-»athod of ludwig [4] CHANGE OF ELASTIC CONSTANTS and the t-aatrix method of Slllot et al.C ?]. INDUCED BY FOIMT DEFECTS IN hep CRYSTALS * Iheoretioal eetlnates for oublo oryetala have been oarrie* out by Ludwig[4] for the caae of vacancleafby Piatorlueld for intarati- Carlos Tome •• tiala and by Sederloaa et al.t?] for duabell interotitiala. International Centre for Theoretical Physics, Trieste, Italy. Re thaoretloal work baa been done ao far for hexagonal cryatmlaj and the experimental neaeurentanta (available only for Kg) ax* eona- ABSTRACT what crude t8,9i,ayan though in the last few.
    [Show full text]
  • Triple Product Formula and the Subconvexity Bound of Triple Product L-Function in Level Aspect
    TRIPLE PRODUCT FORMULA AND THE SUBCONVEXITY BOUND OF TRIPLE PRODUCT L-FUNCTION IN LEVEL ASPECT YUEKE HU Abstract. In this paper we derived a nice general formula for the local integrals of triple product formula whenever one of the representations has sufficiently higher level than the other two. As an application we generalized Venkatesh and Woodbury’s work on the subconvexity bound of triple product L-function in level aspect, allowing joint ramifications, higher ramifications, general unitary central characters and general special values of local epsilon factors. 1. introduction 1.1. Triple product formula. Let F be a number field. Let ⇡i, i = 1, 2, 3 be three irreducible unitary cuspidal automorphic representations, such that the product of their central characters is trivial: (1.1) w⇡i = 1. Yi Let ⇧=⇡ ⇡ ⇡ . Then one can define the triple product L-function L(⇧, s) associated to them. 1 ⌦ 2 ⌦ 3 It was first studied in [6] by Garrett in classical languages, where explicit integral representation was given. In particular the triple product L-function has analytic continuation and functional equation. Later on Shapiro and Rallis in [19] reformulated his work in adelic languages. In this paper we shall study the following integral representing the special value of triple product L function (see Section 2.2 for more details): − ⇣2(2)L(⇧, 1/2) (1.2) f (g) f (g) f (g)dg 2 = F I0( f , f , f ), | 1 2 3 | ⇧, , v 1,v 2,v 3,v 8L( Ad 1) v ZAD (FZ) D (A) ⇤ \ ⇤ Y D D Here fi ⇡i for a specific quaternion algebra D, and ⇡i is the image of ⇡i under Jacquet-Langlands 2 0 correspondence.
    [Show full text]
  • Gravitation in the Surface Tension Model of Spacetime
    IARD 2018 IOP Publishing IOP Conf. Series: Journal of Physics: Conf. Series 1239 (2019) 012010 doi:10.1088/1742-6596/1239/1/012010 Gravitation in the surface tension model of spacetime H A Perko1 1Office 14, 140 E. 4th Street, Loveland, CO, USA 80537 E-mail: [email protected] Abstract. A mechanical model of spacetime was introduced at a prior conference for describing perturbations of stress, strain, and displacement within a spacetime exhibiting surface tension. In the prior work, equations governing spacetime dynamics described by the model show some similarities to fundamental equations of quantum mechanics. Similarities were identified between the model and equations of Klein-Gordon, Schrödinger, Heisenberg, and Weyl. The introduction did not explain how gravitation arises within the model. In this talk, the model will be summarized, corrected, and extended for comparison with general relativity. An anisotropic elastic tensor is proposed as a constitutive relation between stress energy and curvature instead of the traditional Einstein constant. Such a relation permits spatial geometric terms in the mechanical model to resemble quantum mechanics while temporal terms and the overall structure of tensor equations remain consistent with general relativity. This work is in its infancy; next steps are to show how the anisotropic tensor affects cosmological predictions and to further explore if geometry and quantum mechanics can be related in more than just appearance. 1. Introduction The focus of this research is to find a mechanism by which spacetime might curl, warp, or re-configure at small scales to provide a geometrical explanation for quantum mechanics while remaining consistent with gravity and general relativity.
    [Show full text]
  • Vectors, Matrices and Coordinate Transformations
    S. Widnall 16.07 Dynamics Fall 2009 Lecture notes based on J. Peraire Version 2.0 Lecture L3 - Vectors, Matrices and Coordinate Transformations By using vectors and defining appropriate operations between them, physical laws can often be written in a simple form. Since we will making extensive use of vectors in Dynamics, we will summarize some of their important properties. Vectors For our purposes we will think of a vector as a mathematical representation of a physical entity which has both magnitude and direction in a 3D space. Examples of physical vectors are forces, moments, and velocities. Geometrically, a vector can be represented as arrows. The length of the arrow represents its magnitude. Unless indicated otherwise, we shall assume that parallel translation does not change a vector, and we shall call the vectors satisfying this property, free vectors. Thus, two vectors are equal if and only if they are parallel, point in the same direction, and have equal length. Vectors are usually typed in boldface and scalar quantities appear in lightface italic type, e.g. the vector quantity A has magnitude, or modulus, A = |A|. In handwritten text, vectors are often expressed using the −→ arrow, or underbar notation, e.g. A , A. Vector Algebra Here, we introduce a few useful operations which are defined for free vectors. Multiplication by a scalar If we multiply a vector A by a scalar α, the result is a vector B = αA, which has magnitude B = |α|A. The vector B, is parallel to A and points in the same direction if α > 0.
    [Show full text]
  • Matrices and Tensors
    APPENDIX MATRICES AND TENSORS A.1. INTRODUCTION AND RATIONALE The purpose of this appendix is to present the notation and most of the mathematical tech- niques that are used in the body of the text. The audience is assumed to have been through sev- eral years of college-level mathematics, which included the differential and integral calculus, differential equations, functions of several variables, partial derivatives, and an introduction to linear algebra. Matrices are reviewed briefly, and determinants, vectors, and tensors of order two are described. The application of this linear algebra to material that appears in under- graduate engineering courses on mechanics is illustrated by discussions of concepts like the area and mass moments of inertia, Mohr’s circles, and the vector cross and triple scalar prod- ucts. The notation, as far as possible, will be a matrix notation that is easily entered into exist- ing symbolic computational programs like Maple, Mathematica, Matlab, and Mathcad. The desire to represent the components of three-dimensional fourth-order tensors that appear in anisotropic elasticity as the components of six-dimensional second-order tensors and thus rep- resent these components in matrices of tensor components in six dimensions leads to the non- traditional part of this appendix. This is also one of the nontraditional aspects in the text of the book, but a minor one. This is described in §A.11, along with the rationale for this approach. A.2. DEFINITION OF SQUARE, COLUMN, AND ROW MATRICES An r-by-c matrix, M, is a rectangular array of numbers consisting of r rows and c columns: ¯MM..
    [Show full text]
  • An Attempt to Intuitively Introduce the Dot, Wedge, Cross, and Geometric Products
    An attempt to intuitively introduce the dot, wedge, cross, and geometric products Peeter Joot March 21, 2008 1 Motivation. Both the NFCM and GAFP books have axiomatic introductions of the gener- alized (vector, blade) dot and wedge products, but there are elements of both that I was unsatisfied with. Perhaps the biggest issue with both is that they aren’t presented in a dumb enough fashion. NFCM presents but does not prove the generalized dot and wedge product operations in terms of symmetric and antisymmetric sums, but it is really the grade operation that is fundamental. You need that to define the dot product of two bivectors for example. GAFP axiomatic presentation is much clearer, but the definition of general- ized wedge product as the totally antisymmetric sum is a bit strange when all the differential forms book give such a different definition. Here I collect some of my notes on how one starts with the geometric prod- uct action on colinear and perpendicular vectors and gets the familiar results for two and three vector products. I may not try to generalize this, but just want to see things presented in a fashion that makes sense to me. 2 Introduction. The aim of this document is to introduce a “new” powerful vector multiplica- tion operation, the geometric product, to a student with some traditional vector algebra background. The geometric product, also called the Clifford product 1, has remained a relatively obscure mathematical subject. This operation actually makes a great deal of vector manipulation simpler than possible with the traditional methods, and provides a way to naturally expresses many geometric concepts.
    [Show full text]
  • Arxiv:1704.01012V1 [Cond-Mat.Mtrl-Sci] 1 Apr 2017 Is the Second Most Important Material After Silicon
    Symmetry and Piezoelectricity: Evaluation of α-Quartz coefficients C. Tannous Laboratoire des Sciences et Techniques de l'Information, de la Communication et de la Connaissance, UMR-6285 CNRS, Brest Cedex3, FRANCE Piezoelectric coefficients of α-Quartz are derived from symmetry arguments based on Neumann's Principle with three different methods: Fumi, Landau-Lifshitz and Royer-Dieulesaint. While Fumi method is tedious and Landau-Lifshitz requires additional physical principles to evaluate the piezo- electric coefficients, Royer-Dieulesaint is the most elegant and most efficient of the three techniques. PACS numbers: 77.65.-j, 77.65.Bn, 77.84.-s Keywords: Piezoelectricity, piezoelectric constants, piezoelectric materials I. INTRODUCTION AND MOTIVATION Physics students are exposed to various types of symmetry [1] and conservation laws in Graduate/Undergraduate Mechanics and Electromagnetism with Lorentz transformation and Gauge symmetries, in Graduate/Undergraduate Quantum Mechanics during the study of Atoms and Molecules. In undergraduate courses such as Special Relativity, Lorentz Transformation is used to unify symmetries between Mechanics and Electromagnetism. In Graduate High Energy Physics, the CPT theorem where C denotes charge conjugation (Q ! −Q), P is parity (r ! −r) and T is time reversal (t ! −t) as well as Gauge symmetry (Ai ! Ai + @iχ) provide an important insight into the role of symmetry in the building blocks of matter and unification of fundamental forces and interaction between particles. Graduate/undergraduate Solid State Physics provide a direct illustration of how Crystal Symmetry plays a fun- damental role in the determination of physical constants and transport coefficients as well as conservation and sim- plification of physical laws. The relation between symmetry and dispersion relations through Kramers theorem (T symmetry) is another example of the power of symmetry in Solid State physics.
    [Show full text]
  • Dirac Notation 1 Vectors
    Physics 324, Fall 2001 Dirac Notation 1 Vectors 1.1 Inner product T Recall from linear algebra: we can represent a vector V as a column vector; then V y = (V )∗ is a row vector, and the inner product (another name for dot product) between two vectors is written as AyB = A∗B1 + A∗B2 + : (1) 1 2 ··· In conventional vector notation, the above is just A~∗ B~ . Note that the inner product of a vector with itself is positive definite; we can define the· norm of a vector to be V = pV V; (2) j j y which is a non-negative real number. (In conventional vector notation, this is V~ , which j j is the length of V~ ). 1.2 Basis vectors We can expand a vector in a set of basis vectors e^i , provided the set is complete, which means that the basis vectors span the whole vectorf space.g The basis is called orthonormal if they satisfy e^iye^j = δij (orthonormality); (3) and an orthonormal basis is complete if they satisfy e^ e^y = I (completeness); (4) X i i i where I is the unit matrix. (note that a column vectore ^i times a row vectore ^iy is a square matrix, following the usual definition of matrix multiplication). Assuming we have a complete orthonormal basis, we can write V = IV = e^ e^yV V e^ ;V (^eyV ) : (5) X i i X i i i i i ≡ i ≡ The Vi are complex numbers; we say that Vi are the components of V in the e^i basis.
    [Show full text]
  • A Manifold Learning Approach to Data-Driven Computational Mechanics
    A Manifold Learning Approach to Data-Driven Computational Mechanics Ruben Ibanez, Emmanuelle Abisset-Chavanne, Jose Vicente Aguado, David Gonzalez, Elías Cueto, Francisco Chinesta To cite this version: Ruben Ibanez, Emmanuelle Abisset-Chavanne, Jose Vicente Aguado, David Gonzalez, Elías Cueto, et al.. A Manifold Learning Approach to Data-Driven Computational Mechanics. 13e colloque national en calcul des structures, Université Paris-Saclay, May 2017, Giens, Var, France. hal-01926477 HAL Id: hal-01926477 https://hal.archives-ouvertes.fr/hal-01926477 Submitted on 19 Nov 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. CSMA 2017 13ème Colloque National en Calcul des Structures 15-19 Mai 2017, Presqu’île de Giens (Var) A Manifold Learning Approach to Data-Driven Computational Me- chanics R. Ibañez1, E. Abisset-Chavanne1, J.V. Aguado1, D. Gonzalez2, E. Cueto2, F. Chinesta1 1 ICI Institute, Ecole Centrale Nantes, {Ruben.Ibanez-Pinillo,Emmanuelle.Abisset-Chavanne,Jose.Aguado-Lopez,Francisco.Chinesta}@ec-nantes.fr 2 Aragon Institute of Engineering Research, Universidad de Zaragoza, Spain, {gonzal;ecueto}@unizar.es Résumé — Standard simulation in classical mechanics is based on the use of two very different types of equations.
    [Show full text]