Efficacy of Ertapenem for Treatment of Bloodstream Infections Caused By

Total Page:16

File Type:pdf, Size:1020Kb

Efficacy of Ertapenem for Treatment of Bloodstream Infections Caused By Efficacy of Ertapenem for Treatment of Bloodstream Infections Caused by Extended-Spectrum-␤-Lactamase-Producing Enterobacteriaceae Vicki L. Collins,a Dror Marchaim,a Jason M. Pogue,b Judy Moshos,a Suchitha Bheemreddy,a Bharath Sunkara,a Alex Shallal,a Neelu Chugh,a Sara Eiseler,a Pragati Bhargava,a Christopher Blunden,a Paul R. Lephart,c Babar Irfan Memon,a Kayoko Hayakawa,a Odaliz Abreu-Lanfranco,a Teena Chopra,a L. Silvia Munoz-Price,d Yehuda Carmeli,e and Keith S. Kayea Division of Infectious Diseases,a Department of Pharmacy Services,b and Department of Clinical Microbiology,c Detroit Medical Center, Wayne State University, Detroit, Michigan, USA; Division of Infectious Diseases, Department of Medicine and Department of Public Health and Epidemiology, University of Miami, Miami, Florida, USAd; and Division of Epidemiology, Tel-Aviv Sourasky Medical Center, Tel-Aviv, Israele Ertapenem is active against extended-spectrum-␤-lactamase (ESBL)-producing Enterobacteriaceae organisms but inactive against Pseudomonas aeruginosa and Acinetobacter baumannii. Due to a lack of therapeutic data for ertapenem in the treatment of ESBL bloodstream infections (BSIs), group 2 carbapenems (e.g., imipenem or meropenem) are often preferred for treatment of ESBL-producing Enterobacteriaceae, although their antipseudomonal activity is unnecessary. From 2005 to 2010, 261 patients with ESBL BSIs were analyzed. Outcomes were equivalent between patients treated with ertapenem and those treated with group .(0.18 ؍ carbapenems (mortality rates of 6% and 18%, respectively; P 2 xtended-spectrum-␤-lactamase (ESBL)-producing Entero- stay (LOS), deterioration in functional status (18), discharge to Ebacteriaceae organisms are recognized as an imminent threat a long-term care facility (LTCF) after being admitted from to public health (7, 26). No prospective, randomized, controlled home, additional hospitalization in the 6 months following trials have been conducted analyzing the preferred therapeutic discharge, and additional isolations of the same organism in management of ESBL-producing Enterobacteriaceae infections. the 3 months following the culture date (i.e., “bacteriologic Few small retrospective trials have demonstrated the relative su- failures”). Bacteria were identified to the species level, and sus- periority of carbapenems over other agents (4, 8, 12, 14, 17, 19, 21, ceptibilities to predefined antimicrobials were determined 24, 31). The carbapenems that were studied were group 2 carbap- based on an automated broth microdilution system (Micro- enems (e.g., imipenem and meropenem). Ertapenem is a group 1 Scan; Siemens AG, Germany) and in accordance with the CLSI carbapenem with no appreciable activity versus Pseudomonas criteria (9). For representative isolates, a positive ESBL test aeruginosa and Acinetobacter baumannii (13). Unfortunately, from the automated system was confirmed with disc diffusion there are limited data pertaining to the efficacy of ertapenem for tests (9). All analyses were performed using IBM SPSS 19 the treatment of serious invasive infections, such as bloodstream (2011). Logistic regression was used for multivariate analyses. infections (BSIs), that are due to ESBL-producing Enterobacteria- Variables chosen for the model were based on clinical impor- ceae (2, 3, 6, 10, 13, 22, 23, 27–30). Due to a lack of data, many tance and the results of bivariate analyses between relevant clinicians rely on group 2 carbapenems for treatment of severe groups (variables with a P value of Յ0.05). Variables with a P ESBL infections. A recent, commonly cited expert opinion review value of Յ0.05 were included in the final model and were ad- article did not even mention ertapenem as an option for the treat- justed for confounds. A propensity score analysis was con- ment of BSIs due to ESBL-producing Enterobacteriaceae (25). This ducted to establish the likelihood of receiving ertapenem and study aimed to compare the efficacies of group 1 carbapenems and incorporated into outcome models. group 2 carbapenems for the treatment of BSIs due to ESBL-pro- The study cohort included 261 unique patients with BSIs due ducing Enterobacteriaceae. to ESBL-producing Enterobacteriaceae (Table 1). The majority of A retrospective cohort study from 1 January 2005 to 30 June patients were elderly (53.6%), and 71% had a permanent device 2010 pertaining to outcomes of ESBL-producing Escherichia coli present for at least 48 h prior to ESBL-producing Enterobacteria- and Klebsiella pneumoniae BSIs was conducted at the Detroit ceae isolation. Most BSIs were from a urinary source (n ϭ 108 Medical Center (DMC) health system after institutional review [41.4%]), and 51 (19.5%) were primary BSIs. Rates of resistance board approvals. Only unique adult (Ͼ18 years old) patient epi- to other antimicrobial agents were high. No resistance to group 2 sodes were included. BSIs were defined according to CDC and carbapenems was noted, but two cases (9.5%) were resistant to systemic inflammatory response syndrome (SIRS) criteria (11, 15). Polymicrobial infectious episodes were excluded. The time to initiation of appropriate therapy was captured in hours. Empir- Received 12 October 2011 Returned for modification 6 November 2011 ical regimens (antimicrobials administered from 48 h before to Accepted 15 January 2012 71 h after the culture) and consolidative regimens (antimicro- Published ahead of print 30 January 2012 bials administered 72 h to 14 days following the culture) were Address correspondence to Dror Marchaim, [email protected]. reviewed. Only drugs for which Ն2 doses were administered Copyright © 2012, American Society for Microbiology. All Rights Reserved. were included as treatment agents. Outcomes captured in- doi:10.1128/AAC.05913-11 cluded in-hospital and 3-month mortality, length of hospital 0066-4804/12/$12.00 Antimicrobial Agents and Chemotherapy p. 2173–2177 aac.asm.org 2173 Collins et al. TABLE 1 Characteristics of patients with bloodstream infections due to TABLE 1 (Continued) ESBL-producing Enterobacteriaceaea Parameter and characteristic Value (%)b b Parameter and characteristic Value (%) Empirical therapy Demographic information Penicillinsc 42 (16.1) Age (yr) (mean Ϯ SD) 65.5 Ϯ 16.1 Cephalosporins 157 (60.2) Elderly (Ն65 years) 140 (53.6) Monobactam 14 (5.4) Female 124 (47.5) Ertapenem 28 (12.6) African American 202 (78.6) Group 2 carbapenems 106 (42.5) Fluoroquinolones 27 (10.3) Source of bloodstream infection Glycopeptides 122 (46.7) Central line associated 52 (19.9) Tetracyclines 18 (6.9) Urinary tract infection 108 (41.4) Polymyxins 5 (1.9) Pneumonia 33 (12.6) Aminoglycosides 41 (15.8) Intra-abdominal 24 (9.2) TMP-SMX 8 (3.1) Skin and soft-tissues, surgical sites, joints, and bones 31 (11.9) Daptomycin 7 (2.7) Linezolid 14 (5.4) Infection strain Macrolides 9 (3.4) Klebsiella pneumoniae 128 (49) Clindamycin 8 (3.1) Escherichia coli 133 (51) Metronidazole 40 (15.4) Rifampin 4 (1.5) Median MIC (IQR) Ertapenem 0.12 (0.06–0.5) Main therapy Piperacillin-tazobactam 11 (4.2) Drug resistance Cephalosporins 29 (11.2) Ertapenem 2 (9.5) Cefepime 13 (5) Colistin 0 (0) Ertapenem 72 (27.8) Tigecycline 0 (0) Group 2 carbapenems 132 (51) Cefepime 252 (96.6) Fluoroquinolones 10 (3.9) Gentamicin 167 (64) Tetracyclines 12 (4.6) Tobramycin 207 (79.3) Polymyxins 8 (3.1) Ciprofloxacin 203 (79.3) Aminoglycosides 26 (10) TMP-SMX 165 (65.3) TMP-SMX 13 (5) Status at admission Outcomes Dependent functional status 161 (61.7) In-hospital mortality 69 (26.4) Rapidly fatal McCabe score 60 (23.0) 90-day mortality 85 (38.3) Diabetes mellitus 129 (49.4) Functional status deterioration compared to 80 (41.2) Chronic renal disease 65 (24.9) preinfection status Pulmonary disease 70 (26.8) Discharged to LTCF after being admitted from 40 (18.0) Congestive heart failure 101 (38.7) home Neurologic disease 84 (32.2) Additional hospitalizations within 6 months of 126 (49.8) Dementia 70 (26.8) isolation Malignancy 56 (21.5) Invasive procedures within 3 months of isolation 117 (45.3) AIDS 4 (1.5) Bacteriological failured 106 (40.6) Median Charlson’s weighted index comorbidity 4 (0–12) Median total LOS (days) (IQR) 14 (7–24.75) score (range) Median LOS after isolation excluding those who 10 (7–16.5) Median Charlson’s combined condition score 6 (0–17) died early (days) (IQR) (range) a Charlson’s 10-year survival probability (%) and 2 (0–98) Data are from patients at the Detroit Medical Center between January 2005 and July 2010. IQR, interquartile range; TMP-SMX, trimethoprim-sulfamethoxazole; LTCF, median (range) long-term care facility; LTAC, long-term acute care facility; LOS, length of hospital stay; Major immunosuppressive state 55 (21.1) ICU, intensive-care unit; ESBL, extended-spectrum ␤-lactamase. b Values in parentheses are percentages unless otherwise noted. The percentages are Exposure to health care setting calculated with the missing data excluded. Admitted from LTCF 141 (54.0) c Including ␤-lactam/␤-lactamase inhibitor combinations. Regular visits to hemodialysis unit 65 (24.9) d Additional isolations of the same type of ESBL-producing bacteria in the 3 months ICU stay 3 months prior to ESBL isolation 120 (46) following index isolation. Severity of illness indices at time of ESBL isolation Impaired consciousness 163 (62.5) ertapenem (9). Sixty-nine patients died in the hospital (26.4%), Severe sepsis/septic shock/multiorgan failure 80 (30.8) and 85 patients died within 90 days (38.3%). In multivariate anal- Antimicrobial therapy ysis, in-hospital mortality was significantly lower among patients
Recommended publications
  • Pharmacodynamic Evaluation of Suppression of in Vitro Resistance In
    www.nature.com/scientificreports OPEN Pharmacodynamic evaluation of suppression of in vitro resistance in Acinetobacter baumannii strains using polymyxin B‑based combination therapy Nayara Helisandra Fedrigo1, Danielle Rosani Shinohara1, Josmar Mazucheli2, Sheila Alexandra Belini Nishiyama1, Floristher Elaine Carrara‑Marroni3, Frederico Severino Martins4, Peijuan Zhu5, Mingming Yu6, Sherwin Kenneth B. Sy2 & Maria Cristina Bronharo Tognim1* The emergence of polymyxin resistance in Gram‑negative bacteria infections has motivated the use of combination therapy. This study determined the mutant selection window (MSW) of polymyxin B alone and in combination with meropenem and fosfomycin against A. baumannii strains belonging to clonal lineages I and III. To evaluate the inhibition of in vitro drug resistance, we investigate the MSW‑derived pharmacodynamic indices associated with resistance to polymyxin B administrated regimens as monotherapy and combination therapy, such as the percentage of each dosage interval that free plasma concentration was within the MSW (%TMSW) and the percentage of each dosage interval that free plasma concentration exceeded the mutant prevention concentration (%T>MPC). The MSW of polymyxin B varied between 1 and 16 µg/mL for polymyxin B‑susceptible strains. The triple combination of polymyxin B with meropenem and fosfomycin inhibited the polymyxin B‑resistant subpopulation in meropenem‑resistant isolates and polymyxin B plus meropenem as a double combination sufciently inhibited meropenem‑intermediate, and susceptible strains. T>MPC 90% was reached for polymyxin B in these combinations, while %TMSW was 0 against all strains. TMSW for meropenem and fosfomycin were also reduced. Efective antimicrobial combinations signifcantly reduced MSW. The MSW‑derived pharmacodynamic indices can be used for the selection of efective combination regimen to combat the polymyxin B‑resistant strain.
    [Show full text]
  • General Items
    Essential Medicines List (EML) 2019 Application for the inclusion of imipenem/cilastatin, meropenem and amoxicillin/clavulanic acid in the WHO Model List of Essential Medicines, as reserve second-line drugs for the treatment of multidrug-resistant tuberculosis (complementary lists of anti-tuberculosis drugs for use in adults and children) General items 1. Summary statement of the proposal for inclusion, change or deletion This application concerns the updating of the forthcoming WHO Model List of Essential Medicines (EML) and WHO Model List of Essential Medicines for Children (EMLc) to include the following medicines: 1) Imipenem/cilastatin (Imp-Cln) to the main list but NOT the children’s list (it is already mentioned on both lists as an option in section 6.2.1 Beta Lactam medicines) 2) Meropenem (Mpm) to both the main and the children’s lists (it is already on the list as treatment for meningitis in section 6.2.1 Beta Lactam medicines) 3) Clavulanic acid to both the main and the children’s lists (it is already listed as amoxicillin/clavulanic acid (Amx-Clv), the only commercially available preparation of clavulanic acid, in section 6.2.1 Beta Lactam medicines) This application makes reference to amendments recommended in particular to section 6.2.4 Antituberculosis medicines in the latest editions of both the main EML (20th list) and the EMLc (6th list) released in 2017 (1),(2). On the basis of the most recent Guideline Development Group advising WHO on the revision of its guidelines for the treatment of multidrug- or rifampicin-resistant (MDR/RR-TB)(3), the applicant considers that the three agents concerned be viewed as essential medicines for these forms of TB in countries.
    [Show full text]
  • Structure of a Penicillin Binding Protein Complexed with a Cephalosporin-Peptidoglycan Mimic M.A
    Structure of a Penicillin Binding Protein Complexed with a Cephalosporin-Peptidoglycan Mimic M.A. McDonough1, W. Lee2, N.R. Silvaggi1, L.P. Kotra 2, Z-H. Li2, Y. Takeda2, S .O. Mobashery2, and J.A. Kelly1 1Department of Molecular and Cell Biology and Institute for Materials Science, Univ. of Connecticut, Storrs, CT 2Institute for Drug Design and the Department of Chemistry, Wayne State Univ., Detroit, MI Many bacteria that are responsible for causing dis- lactams. Also, one questions why ß-lactamases hydro- eases in humans are rapidly developing mutant strains lyze ß-lactams and release them rapidly but they do resistant to existing antibiotics. Proliferation of these not react with peptide substrates. mutant strains is likely to be a serious health-care prob- To help answer these questions, structural studies lem of increasing proportions. Almost sixty percent of of the Streptomyces sp. R61 D-Ala-D-Ala-peptidase all clinically used antibiotics are beta-lactams, which have been undertaken to investigate how the enzyme stop the growth of bacteria by interfering with their cell- wall biosynthesis. The cell walls are made of glycan chains that polymerize to form a structure that gives strength and shape to the bacteria. An understanding of the process how the cell wall is synthesized may help in designing more potent antibiotics. D-Ala-D-Ala-carboxypeptidase/transpeptidases (DD-peptidases) are penicillin-binding proteins (PBPs), the targets of ß-lactam antibiotics such as penicillins and cephalosporins (Figure 1A). These enzymes cata- lyze the final cross-linking step of bacterial cell wall bio- synthesis. In vivo inhibition of PBPs by ß-lactams re- sults in the cessation of bacterial growth.
    [Show full text]
  • Severe Sepsis and Septic Shock Antibiotic Guide
    Stanford Health Issue Date: 05/2017 Stanford Antimicrobial Safety and Sustainability Program Severe Sepsis and Septic Shock Antibiotic Guide Table 1: Antibiotic selection options for healthcare associated and/or immunocompromised patients • Healthcare associated: intravenous therapy, wound care, or intravenous chemotherapy within the prior 30 days, residence in a nursing home or other long-term care facility, hospitalization in an acute care hospital for two or more days within the prior 90 days, attendance at a hospital or hemodialysis clinic within the prior 30 days • Immunocompromised: Receiving chemotherapy, known systemic cancer not in remission, ANC <500, severe cell-mediated immune deficiency Table 2: Antibiotic selection options for community acquired, immunocompetent patients Table 3: Antibiotic selection options for patients with simple sepsis, community acquired, immunocompetent patients requiring hospitalization. Risk Factors for Select Organisms P. aeruginosa MRSA Invasive Candidiasis VRE (and other resistant GNR) Community acquired: • Known colonization with MDROs • Central venous catheter • Liver transplant • Prior IV antibiotics within 90 day • Recent MRSA infection • Broad-spectrum antibiotics • Known colonization • Known colonization with MDROs • Known MRSA colonization • + 1 of the following risk factors: • Prolonged broad antibacterial • Skin & Skin Structure and/or IV access site: ♦ Parenteral nutrition therapy Hospital acquired: ♦ Purulence ♦ Dialysis • Prolonged profound • Prior IV antibiotics within 90 days ♦ Abscess
    [Show full text]
  • Antimicrobial Surgical Prophylaxis
    Antimicrobial Surgical Prophylaxis The antimicrobial surgical prophylaxis protocol establishes evidence-based standards for surgical prophylaxis at The Nebraska Medical Center. The protocol was adapted from the recently published consensus guidelines from the American Society of Health-System Pharmacists (ASHP), Society for Healthcare Epidemiology of America (SHEA), Infectious Disease Society of America (IDSA), and the Surgical Infection Society (SIS) and customized to Nebraska Medicine with the input of the Antimicrobial Stewardship Program in concert with the various surgical groups at the institution. The protocol established here-in will be implemented via standard order sets utilized within One Chart. Routine surgical prophylaxis and current and future surgical order sets are expected to conform to this guidance. Antimicrobial Surgical Prophylaxis Initiation Optimal timing: Within 60 minutes before surgical incision o Exceptions: Fluoroquinolones and vancomycin (within 120 minutes before surgical incision) Successful prophylaxis necessitates that the antimicrobial agent achieve serum and tissue concentrations above the MIC for probable organisms associated with the specific procedure type at the time of incision as well as for the duration of the procedure. Renal Dose Adjustment Guidance The following table can be utilized to determine if adjustments are needed to antimicrobial surgical prophylaxis for both pre-op and post-op dosing. Table 1 Renal Dosage Adjustment Dosing Regimen with Dosing Regimen with CrCl Dosing Regimen with
    [Show full text]
  • Antimicrobial Stewardship Guidance
    Antimicrobial Stewardship Guidance Federal Bureau of Prisons Clinical Practice Guidelines March 2013 Clinical guidelines are made available to the public for informational purposes only. The Federal Bureau of Prisons (BOP) does not warrant these guidelines for any other purpose, and assumes no responsibility for any injury or damage resulting from the reliance thereof. Proper medical practice necessitates that all cases are evaluated on an individual basis and that treatment decisions are patient-specific. Consult the BOP Clinical Practice Guidelines Web page to determine the date of the most recent update to this document: http://www.bop.gov/news/medresources.jsp Federal Bureau of Prisons Antimicrobial Stewardship Guidance Clinical Practice Guidelines March 2013 Table of Contents 1. Purpose ............................................................................................................................................. 3 2. Introduction ...................................................................................................................................... 3 3. Antimicrobial Stewardship in the BOP............................................................................................ 4 4. General Guidance for Diagnosis and Identifying Infection ............................................................. 5 Diagnosis of Specific Infections ........................................................................................................ 6 Upper Respiratory Infections (not otherwise specified) ..............................................................................
    [Show full text]
  • New Β-Lactamase Inhibitor Combinations: Options for Treatment; Challenges for Testing
    MEDICAL/SCIENTIFIC AffAIRS BULLETIN New β-lactamase Inhibitor Combinations: Options for Treatment; Challenges for Testing Background The β-lactam class of antimicrobial agents has played a crucial role in the treatment of infectious diseases since the discovery of penicillin, but β–lactamases (enzymes produced by the bacteria that can hydrolyze the β-lactam core of the antibiotic) have provided an ever expanding threat to their successful use. Over a thousand β-lactamases have been described. They can be divided into classes based on their molecular structure (Classes A, B, C and D) or their function (e.g., penicillinase, oxacillinase, extended-spectrum activity, or carbapenemase activity).1 While the first approach to addressing the problem ofβ -lactamases was to develop β-lactamase stable β-lactam antibiotics, such as extended-spectrum cephalosporins, another strategy that has emerged is to combine existing β-lactam antibiotics with β-lactamase inhibitors. Key β-lactam/β-lactamase inhibitor combinations that have been used widely for over a decade include amoxicillin/clavulanic acid, ampicillin/sulbactam, and pipercillin/tazobactam. The continued use of β-lactams has been threatened by the emergence and spread of extended-spectrum β-lactamases (ESBLs) and more recently by carbapenemases. The global spread of carbapenemase-producing organisms (CPOs) including Enterobacteriaceae, Pseudomonas aeruginosa, and Acinetobacter baumannii, limits the use of all β-lactam agents, including extended-spectrum cephalosporins (e.g., cefotaxime, ceftriaxone, and ceftazidime) and the carbapenems (doripenem, ertapenem, imipenem, and meropenem). This has led to international concern and calls to action, including encouraging the development of new antimicrobial agents, enhancing infection prevention, and strengthening surveillance systems.
    [Show full text]
  • Penicillin Allergy Guidance Document
    Penicillin Allergy Guidance Document Key Points Background Careful evaluation of antibiotic allergy and prior tolerance history is essential to providing optimal treatment The true incidence of penicillin hypersensitivity amongst patients in the United States is less than 1% Alterations in antibiotic prescribing due to reported penicillin allergy has been shown to result in higher costs, increased risk of antibiotic resistance, and worse patient outcomes Cross-reactivity between truly penicillin allergic patients and later generation cephalosporins and/or carbapenems is rare Evaluation of Penicillin Allergy Obtain a detailed history of allergic reaction Classify the type and severity of the reaction paying particular attention to any IgE-mediated reactions (e.g., anaphylaxis, hives, angioedema, etc.) (Table 1) Evaluate prior tolerance of beta-lactam antibiotics utilizing patient interview or the electronic medical record Recommendations for Challenging Penicillin Allergic Patients See Figure 1 Follow-Up Document tolerance or intolerance in the patient’s allergy history Consider referring to allergy clinic for skin testing Created July 2017 by Macey Wolfe, PharmD; John Schoen, PharmD, BCPS; Scott Bergman, PharmD, BCPS; Sara May, MD; and Trevor Van Schooneveld, MD, FACP Disclaimer: This resource is intended for non-commercial educational and quality improvement purposes. Outside entities may utilize for these purposes, but must acknowledge the source. The guidance is intended to assist practitioners in managing a clinical situation but is not mandatory. The interprofessional group of authors have made considerable efforts to ensure the information upon which they are based is accurate and up to date. Any treatments have some inherent risk. Recommendations are meant to improve quality of patient care yet should not replace clinical judgment.
    [Show full text]
  • Carbapenem-Resistant Acinetobacter Threat Level Urgent
    CARBAPENEM-RESISTANT ACINETOBACTER THREAT LEVEL URGENT 8,500 700 $281M Estimated cases Estimated Estimated attributable in hospitalized deaths in 2017 healthcare costs in 2017 patients in 2017 Acinetobacter bacteria can survive a long time on surfaces. Nearly all carbapenem-resistant Acinetobacter infections happen in patients who recently received care in a healthcare facility. WHAT YOU NEED TO KNOW CASES OVER TIME ■ Carbapenem-resistant Acinetobacter cause pneumonia Continued infection control and appropriate antibiotic use and wound, bloodstream, and urinary tract infections. are important to maintain decreases in carbapenem-resistant These infections tend to occur in patients in intensive Acinetobacter infections. care units. ■ Carbapenem-resistant Acinetobacter can carry mobile genetic elements that are easily shared between bacteria. Some can make a carbapenemase enzyme, which makes carbapenem antibiotics ineffective and rapidly spreads resistance that destroys these important drugs. ■ Some Acinetobacter are resistant to nearly all antibiotics and few new drugs are in development. CARBAPENEM-RESISTANT ACINETOBACTER A THREAT IN HEALTHCARE TREATMENT OVER TIME Acinetobacter is a challenging threat to hospitalized Treatment options for infections caused by carbapenem- patients because it frequently contaminates healthcare resistant Acinetobacter baumannii are extremely limited. facility surfaces and shared medical equipment. If not There are few new drugs in development. addressed through infection control measures, including rigorous
    [Show full text]
  • Management of Penicillin and Beta-Lactam Allergy
    Management of Penicillin and Beta-Lactam Allergy (NB Provincial Health Authorities Anti-Infective Stewardship Committee, September 2017) Key Points • Beta-lactams are generally safe; allergic and adverse drug reactions are over diagnosed and over reported • Nonpruritic, nonurticarial rashes occur in up to 10% of patients receiving penicillins. These rashes are usually not allergic and are not a contraindication to the use of a different beta-lactam • The frequently cited risk of 8 to 10% cross-reactivity between penicillins and cephalosporins is an overestimate based on studies from the 1970’s that are now considered flawed • Expect new intolerances (i.e. any allergy or adverse reaction reported in a drug allergy field) to be reported after 0.5 to 4% of all antimicrobial courses depending on the gender and specific antimicrobial. Expect a higher incidence of new intolerances in patients with three or more prior medication intolerances1 • For type-1 immediate hypersensitivity reactions (IgE-mediated), cross-reactivity among penicillins (table 1) is expected due to similar core structure and/or major/minor antigenic determinants, use not recommended without desensitization • For type-1 immediate hypersensitivity reactions, cross-reactivity between penicillins (table 1) and cephalosporins is due to similarities in the side chains; risk of cross-reactivity will only be significant between penicillins and cephalosporins with similar side chains • Only type-1 immediate hypersensitivity to a penicillin manifesting as anaphylaxis, bronchospasm,
    [Show full text]
  • Cephalosporin Administration to Patients with a History of Penicillin Allergy Adverse Reactions to Drugs, Biologicals and Latex Committee
    Work group report May, 2009 Cephalosporin Administration to Patients with a History of Penicillin Allergy Adverse Reactions to Drugs, Biologicals and Latex Committee Work Group Members : Roland Solensky, MD FAAAAI, Chair Aleena Banerji, MD Gordon R. Bloomberg, MD FAAAAI Marianna C. Castells, MD PhD FAAAAI Paul J. Dowling, MD George R. Green, MD FAAAAI Eric M. Macy, MD FAAAAI Myngoc T. Nguyen, MD FAAAAI Antonino G. Romano, MD PhD Fanny Silviu-Dan, MD FAAAAI Clifford M. Tepper, MD FAAAAI INTRODUCTION Penicillins and cephalosporins share a common beta-lactam ring structure, and hence the potential for IgE-mediated allergic cross-reactivity. Allergic cross-reactivity between penicillins and cephalosporins potentially may also occur due to presence of identical or similar R-group side chains, in which case IgE is directed against the side chain, rather the core beta-lactam structure. This work group report will address the administration of cephalosporins in patients with a history of penicillin allergy. First, published data will be reviewed regarding 1) cephalosporin challenges of patients with a history of penicillin allergy (without preceding skin testing or in vitro testing), and 2) cephalosporin challenges of patients proven to have a type I allergy to penicillins (via positive penicillin skin test, in vitro test or challenge). Secondly, 1 2/9/2011 recommendations on cephalosporin administration to patients with a history of penicillin allergy will be presented. Unless specifically noted, the term ‘penicillin allergy’ will be used to indicate an allergy to one or more of the penicillin-class antibiotics, not just to penicillin itself. The following discussion includes references, in certain clinical situations, to performing cephalosporin graded challenges in patients with a history of penicillin allergy.
    [Show full text]
  • Renal Fanconi Syndrome with Meropenem/Amoxicillin-Clavulanate During Treatment of Extensively Drug- Resistant Tuberculosis
    AGORA | CORRESPONDENCE Renal Fanconi syndrome with meropenem/amoxicillin-clavulanate during treatment of extensively drug- resistant tuberculosis To the Editor: We read with interest the papers by TIBERI et al. [1, 2] describing the effectiveness of meropenem/ clavulanate in treating multidrug-resistant (MDR) and extensively drug-resistant (XDR) tuberculosis (TB) patients. In these analyses, 96 patients were treated with meropenem/clavulanate for a median of 85 (interquartile range (IQR) 49–156) days with six adverse events, and 84 patients were treated with imipenem/clavulanate for a median (IQR) of 187 (60–428) days and three adverse events, none renally related. We report a patient with XDR-TB who developed renal Fanconi syndrome apparently due to meropenem/amoxicillin-clavulanate. A 25-year-old South Asian female with intermittently treated pulmonary XDR-TB since 2006, presented to the National Institutes of Health (NIH) in 2015 for treatment under an institutional review board-approved clinical protocol. She was started on daily linezolid, bedaquiline, clofazimine and meropenem 1.5 g i.v. with amoxicillin-clavulanate 500/125 mg orally, both every 8 h. Within 1 month, she − developed mild hypophosphataemia (1.8–2.0 mg·dL 1). Her renal function and urinalysis remained normal at 3 months. Her sputum cultures converted to negative after 98 days of treatment. At 4 months, − she developed a mild normal anion gap metabolic acidosis (bicarbonate 18–19 mmol·L 1). After 6–7 months, she developed fatigue, moderate proteinuria (600 mg/24 h), aminoaciduria, glycosuria (2–3+ with normal serum glucose), worsening hypophosphataemia with a high urine fractional excretion of phosphorus (24%) consistent with inappropriate urinary phosphate wasting, and hypouricaemia (uric acid − 0.9 mg·dL 1), in addition to the normal anion gap metabolic acidosis, all consistent with generalised proximal tubular dysfunction and renal Fanconi syndrome.
    [Show full text]