Journal Club: “Effect of Piperacillin-Tazobactam Vs

Total Page:16

File Type:pdf, Size:1020Kb

Journal Club: “Effect of Piperacillin-Tazobactam Vs Infectious Disease Update 02/25/19 Steven T. Park Division of Infectious Diseases Objectives • Zosyn versus Meropenem for ESBL bacteremia • 7 versus 14 days for gram negative bacteremia • Oral versus IV for osteomyelitis “Effect of Piperacillin-Tazobactam vs Meropenem on 30-Day Mortality for Patients With E coli or Klebsiella pneumoniae Bloodstream Infection and Ceftriaxone Resistance” (MERINO trial) Harris PNA et al. JAMA 2018. Sep 11; 320:984. Introduction • Treatment of choice for ESBL organisms are thought to be carbapenems • Reports of failure of non-carbapenems in the past even when microbiologic data showed susceptibility • Most reported before CLSI lowered the breakpoints for Enterobacteriaceae • Recent reviews looking at retrospective data conclude that you can use non-carbapenems (Zosyn, Cefepime) for urine infections • However no randomized controlled trial testing this hypothesis • First randomized controlled trial testing whether Zosyn is equivalent to meropenem for ESBL bacteremia Design, Setting, Participants • Non-inferiority, parallel group, randomized clinical trial • Hospitalized patients enrolled from 26 sites in 9 countries (mostly from Singapore, Australia, Italy, Saudi Arabia, and Turkey) from February 2014 to July 2017 • Patients over the age of 21 was eligible if he/she had at least 1 positive blood culture with E coli or Klebsiella spp that was non-susceptible to ceftriaxone but susceptible to pip-tazo and meropenem • Of 1646 patients screened, 391 were included in the study. • Meropenem 1g IV q8h (n = 191) or piperacillin/tazobactam 4.5g IV q6h (not extended infusion, n = 188) was given for a minimum of 4 days and up to 14 days. The duration of therapy was determined by the treating clinician. Exclusion Criteria • Patient not expected to survive more than 4 days • Patient allergic to a penicillin or a carbapenem • Patient with significant poly-microbial bacteremia (Gram positive skin contaminant in one set of blood cultures was not regarded as significant poly-microbial bacteremia) • Patients on palliative care • Pregnancy or breast-feeding • Use of concomitant antimicrobials in the first 4 days after enrollment with known activity against Gram-negative bacilli (except Bactrim may be continued as Pneumocystis prophylaxis) Objectives Primary Outcome: 30-day mortality post bloodstream infection. Secondary Outcomes: (1) Time to clinical and microbiologic resolution of infection – defined as number of days from randomization to resolution of fever (temperature > 38.0º C) PLUS sterilization of blood cultures. (2) Clinical and Microbiologic Success – defined as survival PLUS resolution of fever and leukocytosis PLUS sterilization of blood cultures. (Assessed on day 4, counted from the day of randomization--day 1--in order to determine a rapid response from the trial drug.) (3) Microbiologic resolution of infection – defined as sterility of blood cultures collected on or before day 4. (4) Microbiologic relapse – defined as growth of the same organism as in the original blood culture after the end of the period of study drug administration but before day 30. (5) Superinfection with a carbapenem or piperacillin-tazobactam resistant organism or Clostridium difficile - defined as growth of a meropenem or piperacillin-tazobactam resistant organism from any clinical specimen collected from day 4 of study drug administration to day 30 or a positive C. difficile stool test. This endpoint is important since one of the purposes of establishing an alternative to carbapenem therapy is to reduce infections with resistant organisms or C. difficile. Early termination of Trial • Following the Data and Safety Monitoring Board (DSMB) review at 340 patients enrolled, a difference in the primary outcome was observed, at a significance level approximating the pre-specified stopping rule (P = .004) • DSMB recommended temporary suspension of the study on July 8, 2017, pending analysis once all 391 randomized patients had completed 30-day follow-up. • A decision to terminate the study on the grounds of harm and futility was made by the study management team, after discussion with site investigators, on August 10, 2017. This decision was made independently from the DSMB Results • Among 379 patients who were randomized appropriately and were included in the primary analysis population, 378 (99.7%) completed the trial and were assessed for the primary outcome. • A total of 23 of 187 patients (12.3%) randomized to piperacillin- tazobactam met the primary outcome of mortality at 30 days compared with 7 of 191 (3.7%) randomized to meropenem (risk difference, 8.6% [1- sided 97.5%CI, −to 14.5%]; P = .90 for non-inferiority). Effects were consistent in an analysis of the per-protocol population. Nonfatal serious adverse events occurred in 5 of 188 patients (2.7%) in the piperacillin- tazobactam group and 3 of 191 (1.6%) in the meropenem group. Major Limitations • The inherent delays in the processing of blood cultures and susceptibility testing means that empirical therapy was not under control of the study team. Many patients (26.2%, 50/191) randomized to meropenem received a BLBLI empirically and, conversely, (13.8%, 26/188) of those randomized to piperacillin-tazobactam received a carbapenem.. (Although this would tend to bias toward non-inferiority.) • Step-down therapy (which was allowed on day 5 after randomization) with a carbapenem (eg, once-daily ertapenem) occurred in 20.1% (76/379) of all patients, even if randomized to piperacillin-tazobactam (Although this would trend to bias toward non-inferiority) • Unclear whether adequate source control was achieved in patients with a complex source of bloodstream infection • Although patients were recruited from diverse geographical and economic regions, only 2 patients were enrolled from North America (Canada). However, E coli strains causing BSI in this study are consistent with the STs and their associated ESBL genes previously described as prevalent in the United States Discussion • The authors’ inability to demonstrate noninferiority of piperacillin-tazobactam to meropenem is especially interesting because several features of this trial design and patient population favored a non-inferiority effect. (In additional to empirical and step-down antibiotic therapy not being specified, with significant cross-over between antibiotic classes, the acuity of illness was lower than expected.) • Only 3.9% of isolates were resistant to piperacillin-tazobactam. Mortality was unrelated to piperacillin- tazobactam resistance or to the MIC of piperacillin-tazobactam, although the number of isolates in each MIC category was small. This is notable, as some studies have suggested that poor response to piperacillin- tazobactam is seen primarily in ESBL-producing isolates with higher piperacillin-tazobactam MICs.(1) • The authors (on their Twitter, @MerinoTrial) stated that they believe that inadequately treated bloodstream infection pushed people with significant comorbidities over the edge--that is, that death was hastened by suboptimal treatment of bloodstream infection. • Most deaths were not due to infection and deaths were not in the early post-infection period. The authors postulate that the deleterious effects of sepsis may persist long after the infection “resolves,” for up to 2 years. (1) Retamar P, López-Cerero L, Muniain MA, Pascual Á, Rodríguez-Baño J; ESBL-REIPI/GEIH Group. Impact of the MIC of piperacillin-tazobactam on the outcome of patients with bacteremia due to extended-spectrum-β-lactamase-producing Escherichia coli. Antimicrob Agents Chemother. 2013;57(7):3402- 3404. doi:10.1128/AAC.00135-13 7 vs 14 days of Antibiotic Therapy for uncomplicated gram-negative bacteremia: a non-inferiority randomized controlled trial Yahav et al. CID: 11 December 2018 BACKGROUND • GNR bacteremia is an important clinical problem • Unclear how long this should be treated as few retrospective cohort studies have addressed this issue in recent years with conflicting results • This is the first randomized controlled trial assessing antibiotic duration in Gram-negative bacteremia. OBJECTIVES • To assess whether 7 days of appropriate antibiotic therapy is non- inferior to 14 days in patients with uncomplicated gram-negative bacteremia. • Primary outcome: a composite of the following (assessed from randomization to day 90): • All-cause mortality • Failure: including any of the following: • a. Relapse: a recurrent bacteremia due to the same microorganism occurring from day of randomization and until day 90 • b. Local suppurative complication that was not present at infection onset (e.g. renal abscess in pyelonephritis, empyema in pneumonia) • c. Distant complications of initial infection, defined by growth of the same bacteria as in the initial bacteremia • Hospital re-admissions or extended hospitalization; authors defined re-admission as a new hospitalization for any cause occurring after discharge from the index hospitalization. Extended hospitalization was defined as longer than 14 days starting from randomization date. OBJECTIVES • Secondary outcomes (evaluated from day of randomization until day 30 unless stated otherwise) • Clostridium difficile associated diarrhea • Development of either clinically or microbiologically documented infection (other than the original Gram-negative bacteremia) within 90 days. • Number of hospital re-admissions until day 90 • Functional capacity at day 30 and time to return to baseline activity (in weeks, 0- immediate return to baseline activity, 12 – no return to baseline
Recommended publications
  • General Items
    Essential Medicines List (EML) 2019 Application for the inclusion of imipenem/cilastatin, meropenem and amoxicillin/clavulanic acid in the WHO Model List of Essential Medicines, as reserve second-line drugs for the treatment of multidrug-resistant tuberculosis (complementary lists of anti-tuberculosis drugs for use in adults and children) General items 1. Summary statement of the proposal for inclusion, change or deletion This application concerns the updating of the forthcoming WHO Model List of Essential Medicines (EML) and WHO Model List of Essential Medicines for Children (EMLc) to include the following medicines: 1) Imipenem/cilastatin (Imp-Cln) to the main list but NOT the children’s list (it is already mentioned on both lists as an option in section 6.2.1 Beta Lactam medicines) 2) Meropenem (Mpm) to both the main and the children’s lists (it is already on the list as treatment for meningitis in section 6.2.1 Beta Lactam medicines) 3) Clavulanic acid to both the main and the children’s lists (it is already listed as amoxicillin/clavulanic acid (Amx-Clv), the only commercially available preparation of clavulanic acid, in section 6.2.1 Beta Lactam medicines) This application makes reference to amendments recommended in particular to section 6.2.4 Antituberculosis medicines in the latest editions of both the main EML (20th list) and the EMLc (6th list) released in 2017 (1),(2). On the basis of the most recent Guideline Development Group advising WHO on the revision of its guidelines for the treatment of multidrug- or rifampicin-resistant (MDR/RR-TB)(3), the applicant considers that the three agents concerned be viewed as essential medicines for these forms of TB in countries.
    [Show full text]
  • Severe Sepsis and Septic Shock Antibiotic Guide
    Stanford Health Issue Date: 05/2017 Stanford Antimicrobial Safety and Sustainability Program Severe Sepsis and Septic Shock Antibiotic Guide Table 1: Antibiotic selection options for healthcare associated and/or immunocompromised patients • Healthcare associated: intravenous therapy, wound care, or intravenous chemotherapy within the prior 30 days, residence in a nursing home or other long-term care facility, hospitalization in an acute care hospital for two or more days within the prior 90 days, attendance at a hospital or hemodialysis clinic within the prior 30 days • Immunocompromised: Receiving chemotherapy, known systemic cancer not in remission, ANC <500, severe cell-mediated immune deficiency Table 2: Antibiotic selection options for community acquired, immunocompetent patients Table 3: Antibiotic selection options for patients with simple sepsis, community acquired, immunocompetent patients requiring hospitalization. Risk Factors for Select Organisms P. aeruginosa MRSA Invasive Candidiasis VRE (and other resistant GNR) Community acquired: • Known colonization with MDROs • Central venous catheter • Liver transplant • Prior IV antibiotics within 90 day • Recent MRSA infection • Broad-spectrum antibiotics • Known colonization • Known colonization with MDROs • Known MRSA colonization • + 1 of the following risk factors: • Prolonged broad antibacterial • Skin & Skin Structure and/or IV access site: ♦ Parenteral nutrition therapy Hospital acquired: ♦ Purulence ♦ Dialysis • Prolonged profound • Prior IV antibiotics within 90 days ♦ Abscess
    [Show full text]
  • Below Are the CLSI Breakpoints for Selected Bacteria. Please Use Your Clinical Judgement When Assessing Breakpoints
    Below are the CLSI breakpoints for selected bacteria. Please use your clinical judgement when assessing breakpoints. The lowest number does NOT equal most potent antimicrobial. Contact Antimicrobial Stewardship for drug selection and dosing questions. Table 1: 2014 MIC Interpretive Standards for Enterobacteriaceae (includes E.coli, Klebsiella, Enterobacter, Citrobacter, Serratia and Proteus spp) Antimicrobial Agent MIC Interpretive Criteria (g/mL) Enterobacteriaceae S I R Ampicillin ≤ 8 16 ≥ 32 Ampicillin-sulbactam ≤ 8/4 16/8 ≥ 32/16 Aztreonam ≤ 4 8 ≥ 16 Cefazolin (blood) ≤ 2 4 ≥ 8 Cefazolin** (uncomplicated UTI only) ≤ 16 ≥ 32 Cefepime* ≤ 2 4-8* ≥ 16 Cefotetan ≤ 16 32 ≥ 64 Ceftaroline ≤ 0.5 1 ≥ 2 Ceftazidime ≤ 4 8 ≥ 16 Ceftriaxone ≤ 1 2 ≥ 4 Cefpodoxime ≤ 2 4 ≥ 8 Ciprofloxacin ≤ 1 2 ≥ 4 Ertapenem ≤ 0.5 1 ≥ 2 Fosfomycin ≤ 64 128 ≥256 Gentamicin ≤ 4 8 ≥ 16 Imipenem ≤ 1 2 ≥ 4 Levofloxacin ≤ 2 4 ≥ 8 Meropenem ≤ 1 2 ≥ 4 Piperacillin-tazobactam ≤ 16/4 32/4 – 64/4 ≥ 128/4 Trimethoprim-sulfamethoxazole ≤ 2/38 --- ≥ 4/76 *Susceptibile dose-dependent – see chart below **Cefazolin can predict results for cefaclor, cefdinir, cefpodoxime, cefprozil, cefuroxime axetil, cephalexin and loracarbef for uncomplicated UTIs due to E.coli, K.pneumoniae, and P.mirabilis. Cefpodoxime, cefinidir, and cefuroxime axetil may be tested individually because some isolated may be susceptible to these agents while testing resistant to cefazolin. Cefepime dosing for Enterobacteriaceae ( E.coli, Klebsiella, Enterobacter, Citrobacter, Serratia & Proteus spp) Susceptible Susceptible –dose-dependent (SDD) Resistant MIC </= 2 4 8 >/= 16 Based on dose of: 1g q12h 1g every 8h or 2g every 8 h Do not give 2g q12 Total dose 2g 3-4g 6g NA Table 2: 2014 MIC Interpretive Standards for Pseudomonas aeruginosa and Acinetobacter spp.
    [Show full text]
  • New Β-Lactamase Inhibitor Combinations: Options for Treatment; Challenges for Testing
    MEDICAL/SCIENTIFIC AffAIRS BULLETIN New β-lactamase Inhibitor Combinations: Options for Treatment; Challenges for Testing Background The β-lactam class of antimicrobial agents has played a crucial role in the treatment of infectious diseases since the discovery of penicillin, but β–lactamases (enzymes produced by the bacteria that can hydrolyze the β-lactam core of the antibiotic) have provided an ever expanding threat to their successful use. Over a thousand β-lactamases have been described. They can be divided into classes based on their molecular structure (Classes A, B, C and D) or their function (e.g., penicillinase, oxacillinase, extended-spectrum activity, or carbapenemase activity).1 While the first approach to addressing the problem ofβ -lactamases was to develop β-lactamase stable β-lactam antibiotics, such as extended-spectrum cephalosporins, another strategy that has emerged is to combine existing β-lactam antibiotics with β-lactamase inhibitors. Key β-lactam/β-lactamase inhibitor combinations that have been used widely for over a decade include amoxicillin/clavulanic acid, ampicillin/sulbactam, and pipercillin/tazobactam. The continued use of β-lactams has been threatened by the emergence and spread of extended-spectrum β-lactamases (ESBLs) and more recently by carbapenemases. The global spread of carbapenemase-producing organisms (CPOs) including Enterobacteriaceae, Pseudomonas aeruginosa, and Acinetobacter baumannii, limits the use of all β-lactam agents, including extended-spectrum cephalosporins (e.g., cefotaxime, ceftriaxone, and ceftazidime) and the carbapenems (doripenem, ertapenem, imipenem, and meropenem). This has led to international concern and calls to action, including encouraging the development of new antimicrobial agents, enhancing infection prevention, and strengthening surveillance systems.
    [Show full text]
  • Penicillin Allergy Guidance Document
    Penicillin Allergy Guidance Document Key Points Background Careful evaluation of antibiotic allergy and prior tolerance history is essential to providing optimal treatment The true incidence of penicillin hypersensitivity amongst patients in the United States is less than 1% Alterations in antibiotic prescribing due to reported penicillin allergy has been shown to result in higher costs, increased risk of antibiotic resistance, and worse patient outcomes Cross-reactivity between truly penicillin allergic patients and later generation cephalosporins and/or carbapenems is rare Evaluation of Penicillin Allergy Obtain a detailed history of allergic reaction Classify the type and severity of the reaction paying particular attention to any IgE-mediated reactions (e.g., anaphylaxis, hives, angioedema, etc.) (Table 1) Evaluate prior tolerance of beta-lactam antibiotics utilizing patient interview or the electronic medical record Recommendations for Challenging Penicillin Allergic Patients See Figure 1 Follow-Up Document tolerance or intolerance in the patient’s allergy history Consider referring to allergy clinic for skin testing Created July 2017 by Macey Wolfe, PharmD; John Schoen, PharmD, BCPS; Scott Bergman, PharmD, BCPS; Sara May, MD; and Trevor Van Schooneveld, MD, FACP Disclaimer: This resource is intended for non-commercial educational and quality improvement purposes. Outside entities may utilize for these purposes, but must acknowledge the source. The guidance is intended to assist practitioners in managing a clinical situation but is not mandatory. The interprofessional group of authors have made considerable efforts to ensure the information upon which they are based is accurate and up to date. Any treatments have some inherent risk. Recommendations are meant to improve quality of patient care yet should not replace clinical judgment.
    [Show full text]
  • Carbapenem-Resistant Acinetobacter Threat Level Urgent
    CARBAPENEM-RESISTANT ACINETOBACTER THREAT LEVEL URGENT 8,500 700 $281M Estimated cases Estimated Estimated attributable in hospitalized deaths in 2017 healthcare costs in 2017 patients in 2017 Acinetobacter bacteria can survive a long time on surfaces. Nearly all carbapenem-resistant Acinetobacter infections happen in patients who recently received care in a healthcare facility. WHAT YOU NEED TO KNOW CASES OVER TIME ■ Carbapenem-resistant Acinetobacter cause pneumonia Continued infection control and appropriate antibiotic use and wound, bloodstream, and urinary tract infections. are important to maintain decreases in carbapenem-resistant These infections tend to occur in patients in intensive Acinetobacter infections. care units. ■ Carbapenem-resistant Acinetobacter can carry mobile genetic elements that are easily shared between bacteria. Some can make a carbapenemase enzyme, which makes carbapenem antibiotics ineffective and rapidly spreads resistance that destroys these important drugs. ■ Some Acinetobacter are resistant to nearly all antibiotics and few new drugs are in development. CARBAPENEM-RESISTANT ACINETOBACTER A THREAT IN HEALTHCARE TREATMENT OVER TIME Acinetobacter is a challenging threat to hospitalized Treatment options for infections caused by carbapenem- patients because it frequently contaminates healthcare resistant Acinetobacter baumannii are extremely limited. facility surfaces and shared medical equipment. If not There are few new drugs in development. addressed through infection control measures, including rigorous
    [Show full text]
  • Piperacillin/Tazobactam Drug Class1 Antibiotic – Penicillin with Β-Lactamase Inhibitor
    Monographs for Commonly Administered Intravenous Medications in Home and Community Care Piperacillin/Tazobactam Drug Class1 Antibiotic – penicillin with β-lactamase inhibitor Spectrum1 Refer to product monograph for complete spectrum For β-lactamase producing bacteria strains (e.g., Haemophilus influenza, Escherichia coli, and Staphylococcus aureus). Also to susceptible Acinetobacter species, Klebsiella pneumonia, Pseudomonas aeruginosa often combined with aminoglycoside). Cross Sensitivities / Allergies1 Cross sensitivities with penicillin and possibly cephalosporin and/or beta-lactam inhibitors Indications1,2 Intra-abdominal Respiratory tract Skin and skin structure Septicemia Gynecological Urinary tract Other conditions based on culture and sensitivity results Outpatient Considerations1 For patients with a documented allergy to penicillin, cephalosporin or beta-lactam inhibitor, the first dose should be administered in a hospital or clinic setting. Must be able to access laboratory monitoring (either at outpatient laboratory or by arranging in-home lab) if using an interacting oral medication (see Potential Drug Interactions section) Prescribing Considerations At time of ordering please provide the following to the pharmacist: and Dosage in Adults1,2 Height, weight Most recent serum creatinine with date obtained Indication (infection being treated) Usually dosed every 6 to 8 hours. Available as 2 g/0.25 g, 3 g/0.375 g, 4 g/0.5 g piperacillin/tazobactam (dose selected based on indication) Maximum 18 g/ 2.25 g piperacillin/tazobactam daily Dose and administration interval require adjustment for renal impairment Errors have occurred due to unusual ordering as combined dose of piperacillin and tazobactam. Order may be expressed only as piperacillin component or as a total of piperacillin + tazobactam (8:1 ratio).
    [Show full text]
  • Management of Penicillin and Beta-Lactam Allergy
    Management of Penicillin and Beta-Lactam Allergy (NB Provincial Health Authorities Anti-Infective Stewardship Committee, September 2017) Key Points • Beta-lactams are generally safe; allergic and adverse drug reactions are over diagnosed and over reported • Nonpruritic, nonurticarial rashes occur in up to 10% of patients receiving penicillins. These rashes are usually not allergic and are not a contraindication to the use of a different beta-lactam • The frequently cited risk of 8 to 10% cross-reactivity between penicillins and cephalosporins is an overestimate based on studies from the 1970’s that are now considered flawed • Expect new intolerances (i.e. any allergy or adverse reaction reported in a drug allergy field) to be reported after 0.5 to 4% of all antimicrobial courses depending on the gender and specific antimicrobial. Expect a higher incidence of new intolerances in patients with three or more prior medication intolerances1 • For type-1 immediate hypersensitivity reactions (IgE-mediated), cross-reactivity among penicillins (table 1) is expected due to similar core structure and/or major/minor antigenic determinants, use not recommended without desensitization • For type-1 immediate hypersensitivity reactions, cross-reactivity between penicillins (table 1) and cephalosporins is due to similarities in the side chains; risk of cross-reactivity will only be significant between penicillins and cephalosporins with similar side chains • Only type-1 immediate hypersensitivity to a penicillin manifesting as anaphylaxis, bronchospasm,
    [Show full text]
  • Ceftaroline in Complicated Skin and Skin-Structure Infections
    Infection and Drug Resistance Dovepress open access to scientific and medical research Open Access Full Text Article REVIEW Ceftaroline in complicated skin and skin-structure infections Paul O Hernandez1 Abstract: Ceftaroline is an advanced-generation cephalosporin antibiotic recently approved by Sergio Lema2 the US Food and Drug Administration for the treatment of complicated skin and skin-structure Stephen K Tyring3 infections (cSSSIs). This intravenous broad-spectrum antibiotic exerts potent bactericidal activity Natalia Mendoza2,4 by inhibiting bacterial cell wall synthesis. A high affinity for the penicillin-binding protein 2a (PBP2a) of methicillin-resistant Staphylococcus aureus (MRSA) makes the drug especially 1University of Texas School of Medicine at San Antonio, beneficial to patients with MRSA cSSSIs. Ceftaroline has proved in multiple well-conducted San Antonio, TX, 2Woodhull clinical trials to have an excellent safety and efficacy profile. In adjusted doses it is also recom- Medical and Mental Health Center, mended for patients with renal or hepatic impairment. Furthermore, the clinical effectiveness Brooklyn, NY, 3Department of Dermatology, University of Texas and high cure rate demonstrated by ceftaroline in cSSSIs, including those caused by MRSA Health Science Center at Houston, and other multidrug-resistant strains, warrants its consideration as a first-line treatment option 4 Houston, TX, USA; Department of for cSSSIs. This article reviews ceftaroline and its pharmacology, efficacy, and safety data to Dermatology, El
    [Show full text]
  • Β-Lactam/Β-Lactamase Inhibitors for the Treatment of Infections Caused by Extended-Spectrum Β-Lactamase (ESBL)-Producing Enterobacteriaceae
    β-lactam/β-lactamase Inhibitors for the Treatment of Infections Caused by Extended-Spectrum β-Lactamase (ESBL)-producing Enterobacteriaceae Alireza FakhriRavari, Pharm.D. PGY-2 Pharmacotherapy Resident Controversies in Clinical Therapeutics University of the Incarnate Word Feik School of Pharmacy San Antonio, Texas November 13, 2015 Learning Objectives At the completion of this activity, the participant will be able to: 1. Describe different classes of β-lactamases produced by gram-negative bacteria. 2. Identify β-lactamase inhibitors and their spectrum of inhibition of β-lactamases. 3. Evaluate the evidence for use of β-lactam/β-lactamase inhibitors compared to carbapenems for treatment of ESBL infections. β-lactam/β-lactamase inhibitors for the treatment of infections caused by ESBL-producing Enterobacteriaceae 1 1. A Brief History of the Universe A. Timeline: 1940s a. β-lactams and β-lactamases i. Sir Alexander Fleming discovered penicillin from Penicillium notatum (now Penicillium chrysogenum) in 1928.1,2 ii. Chain, Florey, et al isolated penicillin in 1940, leading to its commercial production.3 iii. First β-lactamase was described as a penicillinase in Escherichia coli in 1940.4 iv. Giuseppe Brotzu discovered cephalosporin C from the mold Cephalosporin acremonium (now Acremonium chrysogenum) in 1945, but cephalosporins were not clinically used for another 2 decades.2,5 b. What are β-lactamases? i. β-lactamases are enzymes that hydrolyze the amide bond of the β-lactam ring, thereby inactivating them.6 Figure 1: Mechanism of action of β-lactamases ii. β-lactamase production is the principal mechanism by which gram-negative bacteria resist β-lactam antibiotics.6 iii.
    [Show full text]
  • Non-Penicillin Beta-Lactam Drugs: a CGMP Framework for Preventing Cross- Contamination
    Guidance for Industry Non-Penicillin Beta-Lactam Drugs: A CGMP Framework for Preventing Cross- Contamination U.S. Department of Health and Human Services Food and Drug Administration Center for Drug Evaluation and Research (CDER) April 2013 Current Good Manufacturing Practices (CGMPs) Guidance for Industry Non-Penicillin Beta-Lactam Drugs: A CGMP Framework for Preventing Cross- Contamination Additional copies are available from: Office of Communications Division of Drug Information, WO51, Room 2201 Center for Drug Evaluation and Research Food and Drug Administration 10903 New Hampshire Ave. Silver Spring, MD 20993-0002 Phone: 301-796-3400; Fax: 301-847-8714 [email protected] http://www.fda.gov/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/default.htm U.S. Department of Health and Human Services Food and Drug Administration Center for Drug Evaluation and Research (CDER) April 2013 Current Good Manufacturing Practices (CGMP) Contains Nonbinding Recommendations TABLE OF CONTENTS I. INTRODUCTION....................................................................................................................1 II. BACKGROUND ......................................................................................................................2 III. RECOMMENDATIONS.........................................................................................................7 i Contains Nonbinding Recommendations Guidance for Industry1 Non-Penicillin Beta-Lactam Drugs: A CGMP Framework for Preventing Cross-Contamination This guidance
    [Show full text]
  • Antimicrobials As Single and Combination Therapy for Colistin-Resistant Pseudomonas Aeruginosa at a University Hospital in Thailand
    antibiotics Article Antimicrobials as Single and Combination Therapy for Colistin-Resistant Pseudomonas aeruginosa at a University Hospital in Thailand Supanun Pungcharoenkijkul 1,2, Jantima Traipattanakul 3, Sudaluck Thunyaharn 4 and Wichai Santimaleeworagun 5,6,* 1 College of Pharmacotherapy Thailand, Nontaburi 11000, Thailand; [email protected] 2 Department of Pharmacist, Nopparat Rajathanee Hospital, Bangkok 10230, Thailand 3 Division of Infectious Disease, Department of Medicine, Phramongkutklao Hospital, Bangkok 10400, Thailand; [email protected] 4 Faculty of Medical Technology, Nakhonratchasima College, Nakhon Ratchasima 30000, Thailand; [email protected] 5 Department of Pharmacy, Faculty of Pharmacy, Silpakorn University, Nakorn Pathom 73000, Thailand 6 Pharmaceutical Initiative for Resistant Bacteria and Infectious Disease Working Group (PIRBIG), Nakorn Pathom 73000, Thailand * Correspondence: [email protected]; Tel.: +66-3425-580-0 Received: 29 June 2020; Accepted: 31 July 2020; Published: 3 August 2020 Abstract: Global infections with colistin-resistant Pseudomonas aeruginosa (CoR-PA) are increasing; there are currently very few studies focused on the antimicrobial susceptibility of CoR-PA isolates, and none from Thailand. Here, we investigated the impact of various antimicrobials, alone and in combination, via the in vitro testing of CoR-PA clinical isolates. Eighteen CoR-PA isolates were obtained from patients treated at Phramongkutklao Hospital from January 2010 through June 2019; these were classified into six different clonal types by using the enterobacterial repetitive intergenic consensus (ERIC)-PCR method, with a high prevalence of Group A (27.8%). The antimicrobial susceptibility was determined as the minimal inhibitory concentrations (MICs) using the epsilometer-test (E-test) method. The synergistic activities of six antimicrobial combinations were reported via the fractional-inhibitory-concentration index.
    [Show full text]