Diapositiva 1
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Saul Perlmutter Receives Nobel Prize in Physics 27 October 2011
Saul Perlmutter receives Nobel Prize in physics 27 October 2011 wonderful that the Nobel Prize is being awarded for results which reflect humanity's long quest to understand our world and how we got here. The ideas and discoveries that led to our ability to measure the expansion history of the universe have a truly international heritage, with key contributions from almost every continent and culture. And quite appropriately, our result - the acceleration of the universe - was the product of two teams of scientists from around the world. These are the kinds of discoveries that the whole world can feel a part of and celebrate, as humanity advances its knowledge of our universe." Saul Perlmutter addresses reporters and Berkeley Lab "I offer my congratulations to Dr. Perlmutter and the staff at a press conference on the morning of October 4 entire Berkeley Lab team for their extraordinary following the announcement of his Nobel Prize in contributions to science, which are being Physics. Credit: Roy Kaltschmidt, Lawrence Berkeley recognized with the 2011 Nobel Prize in Physics," National Laboratory said Energy Secretary Steven Chu, former director of Berkeley Lab and himself a winner of the Nobel Prize in Physics in 1997. "His groundbreaking work showed us that the expansion of the universe is Saul Perlmutter, an astrophysicist at the U.S. actually speeding up rather than slowing down. Dr. Department of Energy's Lawrence Berkeley Perlmutter's award is another reminder of the National Laboratory and a professor of physics at incredible talent and world-leading expertise the University of California at Berkeley, has won America has at our National Laboratories. -
Nobel Laureates Endorse Joe Biden
Nobel Laureates endorse Joe Biden 81 American Nobel Laureates in Physics, Chemistry, and Medicine have signed this letter to express their support for former Vice President Joe Biden in the 2020 election for President of the United States. At no time in our nation’s history has there been a greater need for our leaders to appreciate the value of science in formulating public policy. During his long record of public service, Joe Biden has consistently demonstrated his willingness to listen to experts, his understanding of the value of international collaboration in research, and his respect for the contribution that immigrants make to the intellectual life of our country. As American citizens and as scientists, we wholeheartedly endorse Joe Biden for President. Name Category Prize Year Peter Agre Chemistry 2003 Sidney Altman Chemistry 1989 Frances H. Arnold Chemistry 2018 Paul Berg Chemistry 1980 Thomas R. Cech Chemistry 1989 Martin Chalfie Chemistry 2008 Elias James Corey Chemistry 1990 Joachim Frank Chemistry 2017 Walter Gilbert Chemistry 1980 John B. Goodenough Chemistry 2019 Alan Heeger Chemistry 2000 Dudley R. Herschbach Chemistry 1986 Roald Hoffmann Chemistry 1981 Brian K. Kobilka Chemistry 2012 Roger D. Kornberg Chemistry 2006 Robert J. Lefkowitz Chemistry 2012 Roderick MacKinnon Chemistry 2003 Paul L. Modrich Chemistry 2015 William E. Moerner Chemistry 2014 Mario J. Molina Chemistry 1995 Richard R. Schrock Chemistry 2005 K. Barry Sharpless Chemistry 2001 Sir James Fraser Stoddart Chemistry 2016 M. Stanley Whittingham Chemistry 2019 James P. Allison Medicine 2018 Richard Axel Medicine 2004 David Baltimore Medicine 1975 J. Michael Bishop Medicine 1989 Elizabeth H. Blackburn Medicine 2009 Michael S. -
2015 Annual Report
2015 AMERICAN PHYSICAL SOCIETY ANNUAL TM ADVANCING PHYSICS REPORT TM THE AMERICAN PHYSICAL SOCIETY STRIVES TO Be the leading voice for physics and an authoritative source of physics information for the advancement of physics and the benefit of humanity Collaborate with national scientific societies for the advancement of science, science education, and the science community Cooperate with international physics societies to promote physics, to support physicists worldwide, and to foster international collaboration Have an active, engaged, and diverse membership, and support the activities of its units and members © 2016 American Physical Society During 2015, APS worked to institute the governance objective: “the advancement and diffusion of the knowledge changes approved by the membership in late 2014. In of physics.” APS is fully committed to the principles of OA accordance with the new Constitution & Bylaws, in to the extent that we can continue to support the production February the Board appointed our first Chief Executive of high-quality peer-reviewed journals. For many years APS Officer—Kate Kirby, the former Executive Officer—to has supported “green” OA and we have been fully compliant head the APS. Kate’s major task has been to transition with the 2013 directive from the Office of Science and the management of APS to a CEO model with a Senior Technology Policy that the publications resulting from Management Team. She appointed Mark Doyle as Chief U.S. federally funded research be accessible to the public 12 Information Officer, James Taylor as Chief Operating months after publication. Since APS is a major international Officer, and Matthew Salter as the new Publisher. -
HOPE Meetings Are Held for Excellent Graduate Students and Young Researchers Specially Selected from Countries Around the 9Th Asia-Pacific and Africa Region
For Overseas Cooperating Institutions Objective HOPE Meetings are held for excellent graduate students and young researchers specially selected from countries around the 9th Asia-Pacific and Africa region. These meetings give an opportunity for the participants to engage in interdisciplinary discussions with Nobel laureates and other distinguished HOPE MEETING scientists pioneering the frontiers of knowledge. They also give the participants, who lodge together over the course of the event, a chance to make friends and form collegial networks with Nobel Laureates with peers from the regions. The title “HOPE Meeting” signifies the promise held for the future roles of young researchers and optimism for creating a bright S&T future within the global community. Date F ebruary 26- ■ Saturday, February 25: Orientation & Registration M arch 2, 2017 ■ Sunday, February 26: Nobel Prize Dialogue Tokyo 2017 Organizer Venue Tokyo , JAPAN Office of the HOPE Meetings, JSPS E-mail [email protected] Tel: +81-3-3263-2414 Fax:+81-3-3234-3700 HOPE MEETINGS with Nobel Laureates Organizing Committee of the HOPE Meetings ■ Chair Makoto Kobayashi <Nobel Laureate in Physics 2008> Honorary Professor Emeritus, High Energy Accelerator Research Organization (KEK) ■ Members Noriko Osumi Mitsuhiko Shionoya Tohoku University The University of Tokyo Takaaki Kajita <Nobel Laureate in Physics 2015> Yousuke Takahama The University of Tokyo Tokushima University Kazuhiro Kosuge Fumio Hanaoka Tohoku University Tsukuba University Program of the HOPE Meeting The program -
Luis Alvarez: the Ideas Man
CERN Courier March 2012 Commemoration Luis Alvarez: the ideas man The years from the early 1950s to the late 1980s came alive again during a symposium to commemorate the birth of one of the great scientists and inventors of the 20th century. Luis Alvarez – one of the greatest experimental physicists of the 20th century – combined the interests of a scientist, an inventor, a detective and an explorer. He left his mark on areas that ranged from radar through to cosmic rays, nuclear physics, particle accel- erators, detectors and large-scale data analysis, as well as particles and astrophysics. On 19 November, some 200 people gathered at Berkeley to commemorate the 100th anniversary of his birth. Alumni of the Alvarez group – among them physicists, engineers, programmers and bubble-chamber film scanners – were joined by his collaborators, family, present-day students and admirers, as well as scientists whose professional lineage traces back to him. Hosted by the Lawrence Berkeley National Laboratory (LBNL) and the University of California at Berkeley, the symposium reviewed his long career and lasting legacy. A recurring theme of the symposium was, as one speaker put it, a “Shakespeare-type dilemma”: how could one person have accom- plished all of that in one lifetime? Beyond his own initiatives, Alvarez created a culture around him that inspired others to, as George Smoot put it, “think big,” as well as to “think broadly and then deep” and to take risks. Combined with Alvarez’s strong scientific standards and great care in execut- ing them, these principles led directly to the awarding of two Nobel Luis Alvarez celebrating the announcement of his 1968 Nobel prizes in physics to scientists at Berkeley – George Smoot in 2006 prize. -
Final Report
Revealing the Hidden Nature of Space and Time: Charting the Course for Elementary Particle Physics Committee on Elementary Particle Physics in the 21st Century, National Research Council ISBN: 0-309-66039-4, 176 pages, 7 x 10, (2006) This free PDF was downloaded from: http://www.nap.edu/catalog/11641.html Visit the National Academies Press online, the authoritative source for all books from the National Academy of Sciences, the National Academy of Engineering, the Institute of Medicine, and the National Research Council: • Download hundreds of free books in PDF • Read thousands of books online, free • Sign up to be notified when new books are published • Purchase printed books • Purchase PDFs • Explore with our innovative research tools Thank you for downloading this free PDF. If you have comments, questions or just want more information about the books published by the National Academies Press, you may contact our customer service department toll-free at 888-624-8373, visit us online, or send an email to [email protected]. This free book plus thousands more books are available at http://www.nap.edu. Copyright © National Academy of Sciences. Permission is granted for this material to be shared for noncommercial, educational purposes, provided that this notice appears on the reproduced materials, the Web address of the online, full authoritative version is retained, and copies are not altered. To disseminate otherwise or to republish requires written permission from the National Academies Press. Revealing the Hidden Nature of Space and Time: Charting the Course for Elementary Particle Physics http://www.nap.edu/catalog/11641.html REVEALING THE HIDDEN NATURE OF SPACE AND TIME Charting the Course for Elementary Particle Physics Committee on Elementary Particle Physics in the 21st Century Board on Physics and Astronomy Division on Engineering and Physical Sciences THE NATIONAL ACADEMIES PRESS Washington, D.C. -
Nobel Lecture: Accelerating Expansion of the Universe Through Observations of Distant Supernovae*
REVIEWS OF MODERN PHYSICS, VOLUME 84, JULY–SEPTEMBER 2012 Nobel Lecture: Accelerating expansion of the Universe through observations of distant supernovae* Brian P. Schmidt (published 13 August 2012) DOI: 10.1103/RevModPhys.84.1151 This is not just a narrative of my own scientific journey, but constant, and suggested that Hubble’s data and Slipher’s also my view of the journey made by cosmology over the data supported this conclusion (Lemaˆitre, 1927). His work, course of the 20th century that has lead to the discovery of the published in a Belgium journal, was not initially widely read, accelerating Universe. It is complete from the perspective of but it did not escape the attention of Einstein who saw the the activities and history that affected me, but I have not tried work at a conference in 1927, and commented to Lemaˆitre, to make it an unbiased account of activities that occurred ‘‘Your calculations are correct, but your grasp of physics is around the world. abominable.’’ (Gaither and Cavazos-Gaither, 2008). 20th Century Cosmological Models: In 1907 Einstein had In 1928, Robertson, at Caltech (just down the road from what he called the ‘‘wonderful thought’’ that inertial accel- Edwin Hubble’s office at the Carnegie Observatories), pre- eration and gravitational acceleration were equivalent. It took dicted the Hubble law, and claimed to see it when he com- Einstein more than 8 years to bring this thought to its fruition, pared Slipher’s redshift versus Hubble’s galaxy brightness his theory of general Relativity (Norton and Norton, 1984)in measurements, but this observation was not substantiated November, 1915. -
The Titans of the Cosmos
FALL 2018 Titans of the Cosmos Exploring the Mysteries of Neutron Star Mergers & Supermassive Black Holes 10 | Educating the next generation of innovators in science and industry 16 | Berkeley leads the way in data science education Research Highlights, Department News & More CONTENTS CHAIR’SLETTER RESEARCH HIGHLIGHTS2 Recent breakthroughs in faculty-led investigations PHOTO: BEN AILES PHOTO: TITANS OF THE COSMOS Fall classes are underway, our introductory courses ON THE COVER: Exploring the Mysteries of are packed, and we have good news on several fronts. Berkeley astrophysicist Daniel Kasen's research group uses Neutron Star Mergers and On July 1 we welcomed our newest faculty member, supercomputers at the National Supermassive Black Holes condensed matter theorist Mike Zalatel. In August the Energy Research Scientific Com- puting Center at LBNL to model 2018 Academic Rankings of World Universities were cosmic explosions. See page 4. announced, with Berkeley Physics second, between MIT CHAIR and Stanford – fine company. In September we learned Wick Haxton 4 that Professor Barbara Jacak will be awarded the 2019 MANAGING EDITOR & Tom Bonner Prize of the American Physical Society for DIRECTOR OF DEVELOPMENT her leadership of the PHENIX detector at Brookhaven’s Rachel Schafer Relativistic Heavy Ion Collider, and new graduate stu- CONTRIBUTING EDITOR & dent Nick Sherman will receive the LeRoy Apker Award SCIENCE WRITER for outstanding undergraduate research in theoretical Devi Mathieu PHYSICS INNOVATORS condensed matter and mathematical physics. Most re- DESIGN 10INITIATIVE cently, Assistant Professor Norman Yao has been named Sarah Wittmer Educating the Next a Packard Fellow, one of the most prestigious awards CONTRIBUTORS Generation of Innovators available in STEM disciplines. -
Panel Discussion on the Nobel Prize in Physics 2015 Tommy Ohlsson Motivation for the Nobel Prize in Physics 2015
KTH ROYAL INSTITUTE OF TECHNOLOGY Panel Discussion on the Nobel Prize in Physics 2015 Tommy Ohlsson Motivation for the Nobel Prize in Physics 2015 The Nobel Prize in Physics 2015 was awarded jointly to Takaaki Kajita and Arthur B. McDonald "for the discovery of neutrino oscillations, which shows that neutrinos have mass" Takaaki Kajita Arthur B. McDonald (Super-Kamiokande) (SNO) Motivation for the Nobel Prize in Physics 2015 The Nobel Prize in Physics 2015 was awarded jointly to Takaaki Kajita and Arthur B. McDonald "for the discovery of neutrino oscillations, which shows that neutrinos have mass" Ed Kearns Takaaki Kajita Arthur B. McDonald Dave Wark (Super-Kamiokande) (Super-Kamiokande) (SNO) (SNO) Super-Kamiokande (in Japan) In June 1998, the Super-Kamiokande collaboration presented its first results of measurements of atmospheric neutrinos that give evidence for neutrino oscillations (i.e. quantum mechanical effects over distances of thousands of kilometers). This result is the first solid evidence for physics beyond the Standard Model of particle physics. The atmospheric neutrino analysis of the Super-Kamiokande collaboration was led by Takaaki Kajita. SNO (in Canada) In April 2002, the SNO collaboration presented the first direct measurement of the total flux of all active boron-8 neutrinos arriving from the Sun, which provided additional evidence for neutrino flavor transitions. The SNO collaboration was led by Art McDonald. ) -1 8 SNO SNO s q q -2 7 ES CC cm 6 6 (10 o 5 µ q SNO 4 qNC 3 qSSM 2 1 0 0123456 6 -2 -1 qe (10 cm s ) Other neutrino oscillation experiments • KamLAND • first results on anti-electron neutrino flux from distant nuclear reactors • demonstrated disappearance of anti-electron neutrinos and showed that the LMA solution is the only remaining solar neu. -
Reversed out (White) Reversed
Berkeley rev.( white) Berkeley rev.( FALL 2014 reversed out (white) reversed IN THIS ISSUE Berkeley’s Space Sciences Laboratory Tabletop Physics Bringing More Women into Physics ALUMNI NEWS AND MORE! Cover: The MAVEN satellite mission uses instrumentation developed at UC Berkeley's Space Sciences Laboratory to explore the physics behind the loss of the Martian atmosphere. It’s a continuation of Berkeley astrophysicist Robert Lin’s pioneering work in solar physics. See p 7. photo credit: Lockheed Martin Physics at Berkeley 2014 Published annually by the Department of Physics Steven Boggs: Chair Anil More: Director of Administration Maria Hjelm: Director of Development, College of Letters and Science Devi Mathieu: Editor, Principal Writer Meg Coughlin: Design Additional assistance provided by Sarah Wittmer, Sylvie Mehner and Susan Houghton Department of Physics 366 LeConte Hall #7300 University of California, Berkeley Berkeley, CA 94720-7300 Copyright 2014 by The Regents of the University of California FEATURES 4 12 18 Berkeley’s Space Tabletop Physics Bringing More Women Sciences Laboratory BERKELEY THEORISTS INVENT into Physics NEW WAYS TO SEARCH FOR GOING ON SIX DECADES UC BERKELEY HOSTS THE 2014 NEW PHYSICS OF EDUCATION AND SPACE WEST COAST CONFERENCE EXPLORATION Berkeley theoretical physicists Ashvin FOR UNDERGRADUATE WOMEN Vishwanath and Surjeet Rajendran IN PHYSICS Since the Space Lab’s inception are developing new, small-scale in 1959, Berkeley physicists have Women physics students from low-energy approaches to questions played important roles in many California, Oregon, Washington, usually associated with large-scale of the nation’s space-based scientific Alaska, and Hawaii gathered on high-energy particle experiments. -
Communications-Mathematics and Applied Mathematics/Download/8110
A Mathematician's Journey to the Edge of the Universe "The only true wisdom is in knowing you know nothing." ― Socrates Manjunath.R #16/1, 8th Main Road, Shivanagar, Rajajinagar, Bangalore560010, Karnataka, India *Corresponding Author Email: [email protected] *Website: http://www.myw3schools.com/ A Mathematician's Journey to the Edge of the Universe What’s the Ultimate Question? Since the dawn of the history of science from Copernicus (who took the details of Ptolemy, and found a way to look at the same construction from a slightly different perspective and discover that the Earth is not the center of the universe) and Galileo to the present, we (a hoard of talking monkeys who's consciousness is from a collection of connected neurons − hammering away on typewriters and by pure chance eventually ranging the values for the (fundamental) numbers that would allow the development of any form of intelligent life) have gazed at the stars and attempted to chart the heavens and still discovering the fundamental laws of nature often get asked: What is Dark Matter? ... What is Dark Energy? ... What Came Before the Big Bang? ... What's Inside a Black Hole? ... Will the universe continue expanding? Will it just stop or even begin to contract? Are We Alone? Beginning at Stonehenge and ending with the current crisis in String Theory, the story of this eternal question to uncover the mysteries of the universe describes a narrative that includes some of the greatest discoveries of all time and leading personalities, including Aristotle, Johannes Kepler, and Isaac Newton, and the rise to the modern era of Einstein, Eddington, and Hawking. -
Nobel Prize 2015 , Vol
The Royal Swedish Academy of Sciences has decided to award the Nobel Prize in Physics 2015 to Takaaki Kajita and Arthur B. McDonald “for the discovery of neutrino oscillations, which shows that The Nobel Prize 2015 in Physics neutrinos have mass”. the Nobel Foundation. Nobel the Nobel Prize® and the Nobel Prize® medal design mark are registered trademarks of Only electron neutrinos Atmospheric neutrinos are produced in the Sun. are produced in collisions between Chameleons cosmic rays and the Earth’s atmosphere. of space Takaaki Kajita in Japan and Arthur B. McDonald in Canada were key scientists in two large research groups that discovered that neutrinos change identities, which requires that neutrinos have mass. The discovery has changed our understanding of the innermost workings of matter and may prove crucial to our view of the universe. B The discovery of neutrino identity changes between cosmic radiation and the Earth's A Sudbury Neutrino Observatory has resolved a neutrino puzzle that physicists atmosphere. Others are produced in nuclear The detector measured neutrinos from the Sun. had wrestled with for decades. Compared reactions inside the Sun. Thousands of billions Its tank, filled with heavy water, was placed to theoretical calculations of the number of neutrinos stream through our bodies every two kilometres under the surface of the Earth. of neutrinos, up to two-thirds of them were second. The combined weight of neutrinos Signals from all three types of neutrinos were missing in measurements performed on Earth. is estimated to be roughly equal to that of all registered in the tank. The sum of the neutrinos The two research groups discovered that the visible stars in the universe.