Supernovae, Dark Energy, and the Accelerating Universe: the Status of the Cosmological Parameters

Total Page:16

File Type:pdf, Size:1020Kb

Supernovae, Dark Energy, and the Accelerating Universe: the Status of the Cosmological Parameters Supernovae, Dark Energy, and the Accelerating Universe: The Status of the Cosmological Parameters Saul Perlmutter Supernova Cosmology Project Lawrence Berkeley National Laboratory Berkeley, CA 94720 1 Introduction I was asked to present the status of the cosmological parameters, and in partic- ular the status of the recent results concerning the accelerating universe—and the possible cosmological constant or dark energy that is responsible for the universe’s acceleration. This result comes most directly from the recent type Ia supernova work, so although I will mention a few of the approaches to the cos- mological parameters, I will emphasize the work with the type Ia supernovae. I will try to give you a sense of exactly how we reached the current conclusions and what the current level of confidence is in that conclusion. Because this presentation will be emphasizing the supernova work, I would like to highlight the strong team of scientists in our Supernova Cosmology Project [1, 2]; you will probably recognize some of the particle physics heritage of this particular team. I also would like to list the names of the members of the other supernova team, led by Brian Schmidt of the Australian National University, that has been working in this field [3]. These two groups together comprise a good fraction of the entire community of scientists working on supernovae. 2 Supernovae as a simple, direct cosmological measurement tool The particular advantage of the type Ia supernova approach to measuring the cosmological parameters is the fact that you can explain essentially the entire method in one graph. The basic idea is that you want to find an object of known brightness, a “standard candle," and then plot it on the astronomer’s Hubble diagram (Fig. 1), which is a plot of brightness (magnitude) against redshift. We 733 Saul Perlmutter Status of the Cosmological Parameters should interpret this graph as follows: for an object of known brightness, the fainter the object the farther away it is and the further back in time you are looking, so you can treat the y-axis as the time axis. The x-axis, the redshift, is a very direct measurement of the relative expansion of the universe, because as the universe expands the wavelengths of the photons travelling to us stretch exactly proportionately—and that is the redshift. Thus the Hubble diagram is showing you the “stretching" of the universe as a function of time. As you look farther and farther away, and further back in time, you can find the deviations in the expansion rate that are caused by the cosmological parameters. At a given time... 0.001 FAINTER Less redshift (Farther) = Slower expansion in past (Further back = Expansion is accelerating in time) = Less mass More redshift = Faster expansion in past = Expansion is slowing 0.01 = More mass 0.1 relative brightness “Nearby” Standard Candles 1.0 0.02 0.05 0.1 0.2 0.5 1.0 MORE REDSHIFT (More total expansion of universe since light left the Standard Candle) Figure 1: The Hubble plot: A history of the “size" of the Universe. In particular, you can think of making a measurement of a supernova explo- sion at one given time in history. If, for example, you found more redshift at that time than expected from the current expansion rate, that would imply that the expansion was faster in the past and has been slowing down. This would lead you to conclude that there was a higher mass density in the universe. 734 Saul Perlmutter Status of the Cosmological Parameters 3 Type Ia supernovae as ‘difficult’ standard candles: A strategy to make them manageable For a standard candle, we use the type Ia supernova, the brightest of the super- nova types. They brighten in just a few weeks and fade away within a few months, so it is necessary to explain what I mean here when I refer to this standard can- dle’s brightness. Generally, we will use the magnitude at peak, which turns out to be a very consistent brightness (after a bit of calibration, as discussed below). These are the brightest of the supernova explosion events by about a factor of six, so at high redshift most of the supernovae that we find are type Ia. Although such a bright, standard candle should make an excellent cosmolog- ical measurement tool, the problem with using the supernovae is that they turn out to be a real “pain in the neck” for any kind of research work: one can never predict a supernova explosion and supernovae only explode a couple of times per millennium in any given galaxy. This makes it very difficult to apply for the world’s largest telescopes, which are necessary to observe the most distant su- pernovae that exploded far back in time. Proposals for telescope time must be written six months in advance, and of course it is necessary to guarantee that there will be something to observe. The first steps of this project, then, involved developing the strategies to make it possible to guarantee the discovery of the supernovae. We came up with what is essentially a “batch" approach (see Fig. 2) [4]. We observe a number of wide fields of apparently empty sky, out of the plane of our Galaxy. If you open the shutter long enough, any patch of sky will have hundreds of distant galaxies in it. We observe tens of thousands of galaxies, in a few patches of sky, and then come back in three weeks to observe the same galaxies over again. In these tens of thousands of galaxies there will be a dozen to two dozen supernova explosions that were not there three weeks earlier. This is a new batch of supernovae that are ready to be followed up, and the photometry and spectroscopy observations can now be scheduled in advance to follow the supernovae as they brighten to peak and fade away. With this three-week time baseline, the supernovae generally do not have time to reach peak brightness, so almost all of the discoveries are pre-maximum. This guarantees that you can track the supernovae over maximum with scheduled follow-up observations. This strategy thus turns a rare, random event into something that can be studied in a systematic way. To make this a little more concrete, you can see what the actual data looks like in Fig. 3. All of the faintest specs and smudges in this picture are the distant galaxies that we are studying. We have to find a new spot of light among these tens of thousands of smudges that was not there three weeks before. As shown 735 Saul Perlmutter Status of the Cosmological Parameters Search Strategy Perlmutter et al. (1995) ... ... Fields R ... ~750 50–100 Scheduled Follow-Up Galaxies Photometry per flux Field λ Scheduled Follow-Up Spectroscopy flux RESULT: ~12 to 24 SNe Ia Discovered Before Maximum, at New Moon => Follow-up time Figure 2: Search strategy to discover “batches” of supernovae in a scheduled, systematic procedure [4]. in the blow-up figure, these are very minor-looking events, even though they are among the most dramatic, energetic events in the universe. With computer image analysis, however, we are able to find these events and trigger the sequence of follow up observations at telescopes around the world—and also at the Hubble Space Telescope. (To win time on the Hubble Space Telescope, not only do you have to predict the date of a new supernova discovery, but you also have to tell in advance which square degree of the sky will have the supernova in it.) This strategy turns out a batch of supernova every time we go out to the telescopes. We do this typically once per semester, and study one or two dozen events. By now, we have built up a sample at these very high redshifts of more than 80 supernovae. In the redshift distribution histogram (Fig. 4) the color coding indicates the search semester. You can see that we have found more and more each semester and worked our way out to higher and higher redshifts. The most recent supernovae have all been followed with the Hubble Space Telescope. 736 Saul Perlmutter Status of the Cosmological Parameters Figure 3: Supernova 1998ba, an example of a supernova discovery using the “batch approach.” 737 Saul Perlmutter Status of the Cosmological Parameters 81 Type Ia Supernovae Redshift Distribution Supernova Cosmology First 7 SNe Project Dec. 1995 SNe 14 13 Jan. 1997 SNe 12 Mar. 1996 SNe 11 10 9 NSN Hubble 8 Mar. 1997 SNe = Space HST Telescope 7 HST 6 5 Mar. 1998 4 Dec. 1997 SNe SNe HST 3 HST Oct. 2 HST HST 1998 HST HST HST SNe 1 HST HST HST HST 0 HST HST HST HST HST HST 0.0 0.1 0.2 0.3 0.4 0.50.6 0.7 0.8 0.9 1.0 1.1 1.2 Redshift Figure 4: The redshift distribution of the first 81 high-redshift supernovae discov- ered by the Supernova Cosmology Project. The label “HST” indicates supernovae that were followed with Hubble Space Telescope photometry. 738 Saul Perlmutter Status of the Cosmological Parameters 4 The (only) two other analysis steps needed Before this high-redshift supernova data can be plotted on the Hubble diagram and the cosmological parameters fitted, there are two small additional analysis steps necessary in order to compare the distant supernovae to the nearby super- novae on the same Hubble plot. First of all, although most type Ia supernovae follow a very similar light curve, there are a few outliers that are a little bit brighter or a little bit fainter.
Recommended publications
  • Dark Energy and Dark Matter As Inertial Effects Introduction
    Dark Energy and Dark Matter as Inertial Effects Serkan Zorba Department of Physics and Astronomy, Whittier College 13406 Philadelphia Street, Whittier, CA 90608 [email protected] ABSTRACT A disk-shaped universe (encompassing the observable universe) rotating globally with an angular speed equal to the Hubble constant is postulated. It is shown that dark energy and dark matter are cosmic inertial effects resulting from such a cosmic rotation, corresponding to centrifugal (dark energy), and a combination of centrifugal and the Coriolis forces (dark matter), respectively. The physics and the cosmological and galactic parameters obtained from the model closely match those attributed to dark energy and dark matter in the standard Λ-CDM model. 20 Oct 2012 Oct 20 ph] - PACS: 95.36.+x, 95.35.+d, 98.80.-k, 04.20.Cv [physics.gen Introduction The two most outstanding unsolved problems of modern cosmology today are the problems of dark energy and dark matter. Together these two problems imply that about a whopping 96% of the energy content of the universe is simply unaccounted for within the reigning paradigm of modern cosmology. arXiv:1210.3021 The dark energy problem has been around only for about two decades, while the dark matter problem has gone unsolved for about 90 years. Various ideas have been put forward, including some fantastic ones such as the presence of ghostly fields and particles. Some ideas even suggest the breakdown of the standard Newton-Einstein gravity for the relevant scales. Although some progress has been made, particularly in the area of dark matter with the nonstandard gravity theories, the problems still stand unresolved.
    [Show full text]
  • Saul Perlmutter Receives Nobel Prize in Physics 27 October 2011
    Saul Perlmutter receives Nobel Prize in physics 27 October 2011 wonderful that the Nobel Prize is being awarded for results which reflect humanity's long quest to understand our world and how we got here. The ideas and discoveries that led to our ability to measure the expansion history of the universe have a truly international heritage, with key contributions from almost every continent and culture. And quite appropriately, our result - the acceleration of the universe - was the product of two teams of scientists from around the world. These are the kinds of discoveries that the whole world can feel a part of and celebrate, as humanity advances its knowledge of our universe." Saul Perlmutter addresses reporters and Berkeley Lab "I offer my congratulations to Dr. Perlmutter and the staff at a press conference on the morning of October 4 entire Berkeley Lab team for their extraordinary following the announcement of his Nobel Prize in contributions to science, which are being Physics. Credit: Roy Kaltschmidt, Lawrence Berkeley recognized with the 2011 Nobel Prize in Physics," National Laboratory said Energy Secretary Steven Chu, former director of Berkeley Lab and himself a winner of the Nobel Prize in Physics in 1997. "His groundbreaking work showed us that the expansion of the universe is Saul Perlmutter, an astrophysicist at the U.S. actually speeding up rather than slowing down. Dr. Department of Energy's Lawrence Berkeley Perlmutter's award is another reminder of the National Laboratory and a professor of physics at incredible talent and world-leading expertise the University of California at Berkeley, has won America has at our National Laboratories.
    [Show full text]
  • Nobel Laureates Endorse Joe Biden
    Nobel Laureates endorse Joe Biden 81 American Nobel Laureates in Physics, Chemistry, and Medicine have signed this letter to express their support for former Vice President Joe Biden in the 2020 election for President of the United States. At no time in our nation’s history has there been a greater need for our leaders to appreciate the value of science in formulating public policy. During his long record of public service, Joe Biden has consistently demonstrated his willingness to listen to experts, his understanding of the value of international collaboration in research, and his respect for the contribution that immigrants make to the intellectual life of our country. As American citizens and as scientists, we wholeheartedly endorse Joe Biden for President. Name Category Prize Year Peter Agre Chemistry 2003 Sidney Altman Chemistry 1989 Frances H. Arnold Chemistry 2018 Paul Berg Chemistry 1980 Thomas R. Cech Chemistry 1989 Martin Chalfie Chemistry 2008 Elias James Corey Chemistry 1990 Joachim Frank Chemistry 2017 Walter Gilbert Chemistry 1980 John B. Goodenough Chemistry 2019 Alan Heeger Chemistry 2000 Dudley R. Herschbach Chemistry 1986 Roald Hoffmann Chemistry 1981 Brian K. Kobilka Chemistry 2012 Roger D. Kornberg Chemistry 2006 Robert J. Lefkowitz Chemistry 2012 Roderick MacKinnon Chemistry 2003 Paul L. Modrich Chemistry 2015 William E. Moerner Chemistry 2014 Mario J. Molina Chemistry 1995 Richard R. Schrock Chemistry 2005 K. Barry Sharpless Chemistry 2001 Sir James Fraser Stoddart Chemistry 2016 M. Stanley Whittingham Chemistry 2019 James P. Allison Medicine 2018 Richard Axel Medicine 2004 David Baltimore Medicine 1975 J. Michael Bishop Medicine 1989 Elizabeth H. Blackburn Medicine 2009 Michael S.
    [Show full text]
  • Dark Energy and Dark Matter
    Dark Energy and Dark Matter Jeevan Regmi Department of Physics, Prithvi Narayan Campus, Pokhara [email protected] Abstract: The new discoveries and evidences in the field of astrophysics have explored new area of discussion each day. It provides an inspiration for the search of new laws and symmetries in nature. One of the interesting issues of the decade is the accelerating universe. Though much is known about universe, still a lot of mysteries are present about it. The new concepts of dark energy and dark matter are being explained to answer the mysterious facts. However it unfolds the rays of hope for solving the various properties and dimensions of space. Keywords: dark energy, dark matter, accelerating universe, space-time curvature, cosmological constant, gravitational lensing. 1. INTRODUCTION observations. Precision measurements of the cosmic It was Albert Einstein first to realize that empty microwave background (CMB) have shown that the space is not 'nothing'. Space has amazing properties. total energy density of the universe is very near the Many of which are just beginning to be understood. critical density needed to make the universe flat The first property that Einstein discovered is that it is (i.e. the curvature of space-time, defined in General possible for more space to come into existence. And Relativity, goes to zero on large scales). Since energy his cosmological constant makes a prediction that is equivalent to mass (Special Relativity: E = mc2), empty space can possess its own energy. Theorists this is usually expressed in terms of a critical mass still don't have correct explanation for this but they density needed to make the universe flat.
    [Show full text]
  • Luis Alvarez: the Ideas Man
    CERN Courier March 2012 Commemoration Luis Alvarez: the ideas man The years from the early 1950s to the late 1980s came alive again during a symposium to commemorate the birth of one of the great scientists and inventors of the 20th century. Luis Alvarez – one of the greatest experimental physicists of the 20th century – combined the interests of a scientist, an inventor, a detective and an explorer. He left his mark on areas that ranged from radar through to cosmic rays, nuclear physics, particle accel- erators, detectors and large-scale data analysis, as well as particles and astrophysics. On 19 November, some 200 people gathered at Berkeley to commemorate the 100th anniversary of his birth. Alumni of the Alvarez group – among them physicists, engineers, programmers and bubble-chamber film scanners – were joined by his collaborators, family, present-day students and admirers, as well as scientists whose professional lineage traces back to him. Hosted by the Lawrence Berkeley National Laboratory (LBNL) and the University of California at Berkeley, the symposium reviewed his long career and lasting legacy. A recurring theme of the symposium was, as one speaker put it, a “Shakespeare-type dilemma”: how could one person have accom- plished all of that in one lifetime? Beyond his own initiatives, Alvarez created a culture around him that inspired others to, as George Smoot put it, “think big,” as well as to “think broadly and then deep” and to take risks. Combined with Alvarez’s strong scientific standards and great care in execut- ing them, these principles led directly to the awarding of two Nobel Luis Alvarez celebrating the announcement of his 1968 Nobel prizes in physics to scientists at Berkeley – George Smoot in 2006 prize.
    [Show full text]
  • Can an Axion Be the Dark Energy Particle?
    Kuwait53 J. Sci.Can 45 an(3) axion pp 53-56, be the 2018 dark energy particle? Can an axion be the dark energy particle? Elias C. Vagenas Theoretical Physics Group, Department of Physics Kuwait University, P.O. Box 5969, Safat 13060, Kuwait [email protected] Abstract Following a phenomenological analysis done by the late Martin Perl for the detection of the dark energy, we show that an axion of energy can be a viable candidate for the dark energy particle. In particular, we obtain the characteristic length and frequency of the axion as a quantum particle. Then, employing a relation that connects the energy density with the frequency of a particle, i.e., , we show that the energy density of axions, with the aforesaid value of mass, as obtained from our theoretical analysis is proportional to the dark energy density computed on observational data, i.e., . Keywords: Axion, axion-like particles, dark energy, dark energy particle 1. Introduction Therefore, though the energy density of the electric field, i.e., One of the most important and still unsolved problem in , can be detected and measured, the dark energy density, contemporary physics is related to the energy content of the i.e., , which is much larger has not been detected yet. universe. According to the recent results of the 2015 Planck Of course, one has to avoid to make an experiment for the mission (Ade et al., 2016), the universe roughly consists of detection and measurement of the dark energy near the 69.11% dark energy, 26.03% dark matter, and 4.86% baryonic surface of the Earth, or the Sun, or the planets, since the (ordinary) matter.
    [Show full text]
  • Dark Energy and CMB
    Dark Energy and CMB Conveners: S. Dodelson and K. Honscheid Topical Conveners: K. Abazajian, J. Carlstrom, D. Huterer, B. Jain, A. Kim, D. Kirkby, A. Lee, N. Padmanabhan, J. Rhodes, D. Weinberg Abstract The American Physical Society's Division of Particles and Fields initiated a long-term planning exercise over 2012-13, with the goal of developing the community's long term aspirations. The sub-group \Dark Energy and CMB" prepared a series of papers explaining and highlighting the physics that will be studied with large galaxy surveys and cosmic microwave background experiments. This paper summarizes the findings of the other papers, all of which have been submitted jointly to the arXiv. arXiv:1309.5386v2 [astro-ph.CO] 24 Sep 2013 2 1 Cosmology and New Physics Maps of the Universe when it was 400,000 years old from observations of the cosmic microwave background and over the last ten billion years from galaxy surveys point to a compelling cosmological model. This model requires a very early epoch of accelerated expansion, inflation, during which the seeds of structure were planted via quantum mechanical fluctuations. These seeds began to grow via gravitational instability during the epoch in which dark matter dominated the energy density of the universe, transforming small perturbations laid down during inflation into nonlinear structures such as million light-year sized clusters, galaxies, stars, planets, and people. Over the past few billion years, we have entered a new phase, during which the expansion of the Universe is accelerating presumably driven by yet another substance, dark energy. Cosmologists have historically turned to fundamental physics to understand the early Universe, successfully explaining phenomena as diverse as the formation of the light elements, the process of electron-positron annihilation, and the production of cosmic neutrinos.
    [Show full text]
  • Nobel Lecture: Accelerating Expansion of the Universe Through Observations of Distant Supernovae*
    REVIEWS OF MODERN PHYSICS, VOLUME 84, JULY–SEPTEMBER 2012 Nobel Lecture: Accelerating expansion of the Universe through observations of distant supernovae* Brian P. Schmidt (published 13 August 2012) DOI: 10.1103/RevModPhys.84.1151 This is not just a narrative of my own scientific journey, but constant, and suggested that Hubble’s data and Slipher’s also my view of the journey made by cosmology over the data supported this conclusion (Lemaˆitre, 1927). His work, course of the 20th century that has lead to the discovery of the published in a Belgium journal, was not initially widely read, accelerating Universe. It is complete from the perspective of but it did not escape the attention of Einstein who saw the the activities and history that affected me, but I have not tried work at a conference in 1927, and commented to Lemaˆitre, to make it an unbiased account of activities that occurred ‘‘Your calculations are correct, but your grasp of physics is around the world. abominable.’’ (Gaither and Cavazos-Gaither, 2008). 20th Century Cosmological Models: In 1907 Einstein had In 1928, Robertson, at Caltech (just down the road from what he called the ‘‘wonderful thought’’ that inertial accel- Edwin Hubble’s office at the Carnegie Observatories), pre- eration and gravitational acceleration were equivalent. It took dicted the Hubble law, and claimed to see it when he com- Einstein more than 8 years to bring this thought to its fruition, pared Slipher’s redshift versus Hubble’s galaxy brightness his theory of general Relativity (Norton and Norton, 1984)in measurements, but this observation was not substantiated November, 1915.
    [Show full text]
  • Modified Newtonian Dynamics
    Faculty of Mathematics and Natural Sciences Bachelor Thesis University of Groningen Modified Newtonian Dynamics (MOND) and a Possible Microscopic Description Author: Supervisor: L.M. Mooiweer prof. dr. E. Pallante Abstract Nowadays, the mass discrepancy in the universe is often interpreted within the paradigm of Cold Dark Matter (CDM) while other possibilities are not excluded. The main idea of this thesis is to develop a better theoretical understanding of the hidden mass problem within the paradigm of Modified Newtonian Dynamics (MOND). Several phenomenological aspects of MOND will be discussed and we will consider a possible microscopic description based on quantum statistics on the holographic screen which can reproduce the MOND phenomenology. July 10, 2015 Contents 1 Introduction 3 1.1 The Problem of the Hidden Mass . .3 2 Modified Newtonian Dynamics6 2.1 The Acceleration Constant a0 .................................7 2.2 MOND Phenomenology . .8 2.2.1 The Tully-Fischer and Jackson-Faber relation . .9 2.2.2 The external field effect . 10 2.3 The Non-Relativistic Field Formulation . 11 2.3.1 Conservation of energy . 11 2.3.2 A quadratic Lagrangian formalism (AQUAL) . 12 2.4 The Relativistic Field Formulation . 13 2.5 MOND Difficulties . 13 3 A Possible Microscopic Description of MOND 16 3.1 The Holographic Principle . 16 3.2 Emergent Gravity as an Entropic Force . 16 3.2.1 The connection between the bulk and the surface . 18 3.3 Quantum Statistical Description on the Holographic Screen . 19 3.3.1 Two dimensional quantum gases . 19 3.3.2 The connection with the deep MOND limit .
    [Show full text]
  • The Titans of the Cosmos
    FALL 2018 Titans of the Cosmos Exploring the Mysteries of Neutron Star Mergers & Supermassive Black Holes 10 | Educating the next generation of innovators in science and industry 16 | Berkeley leads the way in data science education Research Highlights, Department News & More CONTENTS CHAIR’SLETTER RESEARCH HIGHLIGHTS2 Recent breakthroughs in faculty-led investigations PHOTO: BEN AILES PHOTO: TITANS OF THE COSMOS Fall classes are underway, our introductory courses ON THE COVER: Exploring the Mysteries of are packed, and we have good news on several fronts. Berkeley astrophysicist Daniel Kasen's research group uses Neutron Star Mergers and On July 1 we welcomed our newest faculty member, supercomputers at the National Supermassive Black Holes condensed matter theorist Mike Zalatel. In August the Energy Research Scientific Com- puting Center at LBNL to model 2018 Academic Rankings of World Universities were cosmic explosions. See page 4. announced, with Berkeley Physics second, between MIT CHAIR and Stanford – fine company. In September we learned Wick Haxton 4 that Professor Barbara Jacak will be awarded the 2019 MANAGING EDITOR & Tom Bonner Prize of the American Physical Society for DIRECTOR OF DEVELOPMENT her leadership of the PHENIX detector at Brookhaven’s Rachel Schafer Relativistic Heavy Ion Collider, and new graduate stu- CONTRIBUTING EDITOR & dent Nick Sherman will receive the LeRoy Apker Award SCIENCE WRITER for outstanding undergraduate research in theoretical Devi Mathieu PHYSICS INNOVATORS condensed matter and mathematical physics. Most re- DESIGN 10INITIATIVE cently, Assistant Professor Norman Yao has been named Sarah Wittmer Educating the Next a Packard Fellow, one of the most prestigious awards CONTRIBUTORS Generation of Innovators available in STEM disciplines.
    [Show full text]
  • Reversed out (White) Reversed
    Berkeley rev.( white) Berkeley rev.( FALL 2014 reversed out (white) reversed IN THIS ISSUE Berkeley’s Space Sciences Laboratory Tabletop Physics Bringing More Women into Physics ALUMNI NEWS AND MORE! Cover: The MAVEN satellite mission uses instrumentation developed at UC Berkeley's Space Sciences Laboratory to explore the physics behind the loss of the Martian atmosphere. It’s a continuation of Berkeley astrophysicist Robert Lin’s pioneering work in solar physics. See p 7. photo credit: Lockheed Martin Physics at Berkeley 2014 Published annually by the Department of Physics Steven Boggs: Chair Anil More: Director of Administration Maria Hjelm: Director of Development, College of Letters and Science Devi Mathieu: Editor, Principal Writer Meg Coughlin: Design Additional assistance provided by Sarah Wittmer, Sylvie Mehner and Susan Houghton Department of Physics 366 LeConte Hall #7300 University of California, Berkeley Berkeley, CA 94720-7300 Copyright 2014 by The Regents of the University of California FEATURES 4 12 18 Berkeley’s Space Tabletop Physics Bringing More Women Sciences Laboratory BERKELEY THEORISTS INVENT into Physics NEW WAYS TO SEARCH FOR GOING ON SIX DECADES UC BERKELEY HOSTS THE 2014 NEW PHYSICS OF EDUCATION AND SPACE WEST COAST CONFERENCE EXPLORATION Berkeley theoretical physicists Ashvin FOR UNDERGRADUATE WOMEN Vishwanath and Surjeet Rajendran IN PHYSICS Since the Space Lab’s inception are developing new, small-scale in 1959, Berkeley physicists have Women physics students from low-energy approaches to questions played important roles in many California, Oregon, Washington, usually associated with large-scale of the nation’s space-based scientific Alaska, and Hawaii gathered on high-energy particle experiments.
    [Show full text]
  • Communications-Mathematics and Applied Mathematics/Download/8110
    A Mathematician's Journey to the Edge of the Universe "The only true wisdom is in knowing you know nothing." ― Socrates Manjunath.R #16/1, 8th Main Road, Shivanagar, Rajajinagar, Bangalore560010, Karnataka, India *Corresponding Author Email: [email protected] *Website: http://www.myw3schools.com/ A Mathematician's Journey to the Edge of the Universe What’s the Ultimate Question? Since the dawn of the history of science from Copernicus (who took the details of Ptolemy, and found a way to look at the same construction from a slightly different perspective and discover that the Earth is not the center of the universe) and Galileo to the present, we (a hoard of talking monkeys who's consciousness is from a collection of connected neurons − hammering away on typewriters and by pure chance eventually ranging the values for the (fundamental) numbers that would allow the development of any form of intelligent life) have gazed at the stars and attempted to chart the heavens and still discovering the fundamental laws of nature often get asked: What is Dark Matter? ... What is Dark Energy? ... What Came Before the Big Bang? ... What's Inside a Black Hole? ... Will the universe continue expanding? Will it just stop or even begin to contract? Are We Alone? Beginning at Stonehenge and ending with the current crisis in String Theory, the story of this eternal question to uncover the mysteries of the universe describes a narrative that includes some of the greatest discoveries of all time and leading personalities, including Aristotle, Johannes Kepler, and Isaac Newton, and the rise to the modern era of Einstein, Eddington, and Hawking.
    [Show full text]