An Alternative to Dark Matter and Dark Energy: Scale-Dependent Gravity in Superfluid Vacuum Theory

Total Page:16

File Type:pdf, Size:1020Kb

An Alternative to Dark Matter and Dark Energy: Scale-Dependent Gravity in Superfluid Vacuum Theory universe Article An Alternative to Dark Matter and Dark Energy: Scale-Dependent Gravity in Superfluid Vacuum Theory Konstantin G. Zloshchastiev Institute of Systems Science, Durban University of Technology, P.O. Box 1334, Durban 4000, South Africa; [email protected] Received: 29 August 2020; Accepted: 10 October 2020; Published: 15 October 2020 Abstract: We derive an effective gravitational potential, induced by the quantum wavefunction of a physical vacuum of a self-gravitating configuration, while the vacuum itself is viewed as the superfluid described by the logarithmic quantum wave equation. We determine that gravity has a multiple-scale pattern, to such an extent that one can distinguish sub-Newtonian, Newtonian, galactic, extragalactic and cosmological terms. The last of these dominates at the largest length scale of the model, where superfluid vacuum induces an asymptotically Friedmann–Lemaître–Robertson–Walker-type spacetime, which provides an explanation for the accelerating expansion of the Universe. The model describes different types of expansion mechanisms, which could explain the discrepancy between measurements of the Hubble constant using different methods. On a galactic scale, our model explains the non-Keplerian behaviour of galactic rotation curves, and also why their profiles can vary depending on the galaxy. It also makes a number of predictions about the behaviour of gravity at larger galactic and extragalactic scales. We demonstrate how the behaviour of rotation curves varies with distance from a gravitating center, growing from an inner galactic scale towards a metagalactic scale: A squared orbital velocity’s profile crosses over from Keplerian to flat, and then to non-flat. The asymptotic non-flat regime is thus expected to be seen in the outer regions of large spiral galaxies. Keywords: quantum gravity; cosmology; superfluid vacuum; emergent spacetime; dark matter; galactic rotation curve; quantum Bose liquid; logarithmic fluid; logarithmic wave equation 1. Introduction Astronomical observations over many length scales support the existence of a number of novel phenomena, which are usually attributed to dark matter (DM) and dark energy (DE). Dark matter was introduced to explain a range of observed phenomena at a galactic scale, such as flat rotation curves, while dark energy is expected to account for cosmological-scale dynamics, such as the accelerating expansion of the Universe. For instance, the LCDM model, which is currently the most popular approach used in cosmology and galaxy-scale astrophysics, makes use of both DE and cold DM concepts [1]. In spite of being a generally successful framework purporting to explain the large-scale structure of the Universe, it currently faces certain challenges [2,3]. There is also growing consensus that a convincing theory of DM- and DE-attributed phenomena cannot be a stand-alone model; but should, instead, be a part of a fundamental theory involving all known interactions. In turn, we contend that formulating this fundamental theory will be impossible without a clear understanding of the dynamical structure of the physical vacuum, which underlies all interactions that we know of. Moreover, this theory must operate at a quantum level, which necessitates us rethinking of the concept of gravity using basic notions of quantum mechanics. Universe 2020, 6, 180; doi:10.3390/universe6100180 www.mdpi.com/journal/universe Universe 2020, 6, 180 2 of 25 One of the promising candidates for a theory of physical vacuum is superfluid vacuum theory (SVT), a post-relativistic approach to high-energy physics and gravity. Historically, it evolved from Dirac’s idea of viewing the physical vacuum as a nontrivial quantum object, whose phase and derived velocity are non-observable in a quantum-mechanical sense [4]. The term ‘post-relativistic’, in this context, means that SVT can generally be a non-relativistic theory; which nevertheless contains relativity as a special case, or limit, with respect to some dynamical value such as momentum (akin to general relativity being a superset of the Newton’s theory of gravity). Therefore, underlying three-dimensional space would not be physically observable until an observer goes beyond the above-mentioned limit, as will be discussed in more detail later in this article. The dynamics and structure of superfluid vacuum are being studied, using various approaches which agree upon the main paradigm (physical vacuum being a background quantum liquid of a certain kind, and elementary particles being excitations thereof), but differ in their physical details, such as an underlying model of the liquid [5–7]. It is important to work with a precise definition of superfluid, to ensure that we avoid the most common misconceptions which otherwise might arise when one attempts to apply superfluid models to astrophysics and cosmology, some details can be found in AppendixA. In fact, some superfluid-like models of dark matter based on classical perfect fluids, scalar field theories or scalar-tensor gravities, turned out to be vulnerable to experimental verification [8]. Moreover, superfluids are often confused not only with perfect fluids, but also with the concomitant phenomenon of Bose-Einstein condensates (BEC), which is another kind of quantum matter occurring in low-temperature condensed matter [9]. However, even though BEC’s do share certain features with superfluids, this does not imply that they are superfluidic in general. In particular, quantum excitations in laboratory superfluids that we know of have dispersion relations of a distinctive shape called the Landau “roton” spectrum. Such a shape of the spectral curve is crucial, as it ensures the suppression of dissipative fluctuations at a quantum level [10,11], which results in inviscid flow [12,13]. If plotted as an excitation energy versus momentum, the curve starts from the origin, climbs up to a local maximum (called the maxon peak), then slightly descends to a local nontrivial minimum (called the “roton” energy gap); then grows again, this time all the way up, to the boundary of the theory’s applicability range. In fact it is not the roton energy gap alone, but the energy barrier formed by the maxon peak and roton minimum in momentum space, which ensures the above-mentioned suppression of quantum fluctuations in quantum liquid and, ultimately, causes its flow to become inviscid. In other words, it is the global characteristics of the dispersion curve, not just the existence of a nontrivial local minimum and related energy gap, which is important for superfluidity to occur. Obviously, these are non-trivial properties, which cannot possibly occur in all quantum liquids and condensates. Further details and aspects are discussed in AppendixA. This paper is organized as follows. Theory of physical vacuum based on the logarithmic superfluid model is outlined in Section2, where we also demonstrate how four-dimensional spacetime can emerge from the three-dimensional dynamics of quantum liquid. In Section3, we derive the gravitational potential, induced by the logarithmic superfluid vacuum in a given state, using certain simplifying assumptions. Thereafter, in Section4, we give a brief physical interpretation of different parts of the derived gravitational potential and estimate their characteristic length scales. In Section5, profiles of induced matter density are derived and discussed for the case of spherical symmetry. Galactic scale phenomena are discussed in Section6, where the phenomenon of galactic rotation curves is explained without introducing any exotic matter ad hoc. In Section7, we discuss the various mechanisms of the accelerating expansion of the Universe, as well as the cosmological singularity, “vacuum catastrophe” and cosmological coincidence problems. Conclusions are drawn in Section8. Universe 2020, 6, 180 3 of 25 2. Logarithmic Superfluid Vacuum Superfluid vacuum theory assumes that the physical vacuum is described, when disregarding quantum fluctuations, by the fluid condensate wavefunction Y(r, t), which is a three-dimensional Euclidean scalar. The state itself is described by a ray in the corresponding Hilbert space, therefore this wavefunction obeys a normalization condition Z hYjYi = r dV = M, (1) V where M and V are the total mass and volume of the fluid, respectively, and r = jYj2 is the fluid mass density. The wavefunction’s dynamics is governed by an equation of a U(1)-symmetric Schrödinger form: " # h¯ 2 −ih¯ ¶ − r2 + V (r, t) + F(jYj2) Y = 0, (2) t 2m ext where m is the constituent particles’ mass, Vext(r, t) is an external or trapping potential and F(r) is a duly chosen function, which effectively takes into account many-body effects inside the fluid. This wave equation can be formally derived as a minimizing condition of an action functional with the following Lagrangian: ih¯ h¯ 2 L = (Y¶ Y∗ − Y∗¶ Y) + jrYj2 + V (r, t) jYj2 + V(jYj2), (3) 2 t t 2m ext where V(r) equals to a primitive of F(r) up to an additive constant: F(r) = V0(r); throughout the paper the prime denotes a derivative with respect to the function’s argument. In this picture, massless excitations, such as photons, are analogous to acoustic waves propagating p 0 with velocity cs ∝ jp (r)j, where fluid pressure p = p(r) is determined via the equation of state. For the system (2), both the equation of state and speed of sound can be derived using the fluid-Schrödinger analogy, which was established for a special case in [14], and generalized for an arbitrary F(r) in works [7,15]. In a leading-order approximation with respect to the Planck constant, we obtain 1 Z 1 p = − rF0(r) dr, c2 = rjF0(r)j, (4) m s m while higher-order corrections would induce Korteweg-type effects, thus significantly complicating the subject matter [15]. Furthermore, it is natural to require that superfluid vacuum theory must recover Einstein’s theory of relativity at a certain limit. One can show that at a limit of low momenta of quantum excitations, often called a “phononic” limit by analogy with laboratory quantum liquids, Lorentz symmetry does emerge.
Recommended publications
  • Symmetry and Gravity
    universe Article Making a Quantum Universe: Symmetry and Gravity Houri Ziaeepour 1,2 1 Institut UTINAM, CNRS UMR 6213, Observatoire de Besançon, Université de Franche Compté, 41 bis ave. de l’Observatoire, BP 1615, 25010 Besançon, France; [email protected] or [email protected] 2 Mullard Space Science Laboratory, University College London, Holmbury St. Mary, Dorking GU5 6NT, UK Received: 05 September 2020; Accepted: 17 October 2020; Published: 23 October 2020 Abstract: So far, none of attempts to quantize gravity has led to a satisfactory model that not only describe gravity in the realm of a quantum world, but also its relation to elementary particles and other fundamental forces. Here, we outline the preliminary results for a model of quantum universe, in which gravity is fundamentally and by construction quantic. The model is based on three well motivated assumptions with compelling observational and theoretical evidence: quantum mechanics is valid at all scales; quantum systems are described by their symmetries; universe has infinite independent degrees of freedom. The last assumption means that the Hilbert space of the Universe has SUpN Ñ 8q – area preserving Diff.pS2q symmetry, which is parameterized by two angular variables. We show that, in the absence of a background spacetime, this Universe is trivial and static. Nonetheless, quantum fluctuations break the symmetry and divide the Universe to subsystems. When a subsystem is singled out as reference—observer—and another as clock, two more continuous parameters arise, which can be interpreted as distance and time. We identify the classical spacetime with parameter space of the Hilbert space of the Universe.
    [Show full text]
  • The Particle Zoo
    219 8 The Particle Zoo 8.1 Introduction Around 1960 the situation in particle physics was very confusing. Elementary particlesa such as the photon, electron, muon and neutrino were known, but in addition many more particles were being discovered and almost any experiment added more to the list. The main property that these new particles had in common was that they were strongly interacting, meaning that they would interact strongly with protons and neutrons. In this they were different from photons, electrons, muons and neutrinos. A muon may actually traverse a nucleus without disturbing it, and a neutrino, being electrically neutral, may go through huge amounts of matter without any interaction. In other words, in some vague way these new particles seemed to belong to the same group of by Dr. Horst Wahl on 08/28/12. For personal use only. particles as the proton and neutron. In those days proton and neutron were mysterious as well, they seemed to be complicated compound states. At some point a classification scheme for all these particles including proton and neutron was introduced, and once that was done the situation clarified considerably. In that Facts And Mysteries In Elementary Particle Physics Downloaded from www.worldscientific.com era theoretical particle physics was dominated by Gell-Mann, who contributed enormously to that process of systematization and clarification. The result of this massive amount of experimental and theoretical work was the introduction of quarks, and the understanding that all those ‘new’ particles as well as the proton aWe call a particle elementary if we do not know of a further substructure.
    [Show full text]
  • Consequences of Kaluza-Klein Covariance
    CONSEQUENCES OF KALUZA-KLEIN COVARIANCE Paul S. Wesson Department of Physics and Astronomy, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada Space-Time-Matter Consortium, http://astro.uwaterloo.ca/~wesson PACs: 11.10Kk, 11.25Mj, 0.45-h, 04.20Cv, 98.80Es Key Words: Classical Mechanics, Quantum Mechanics, Gravity, Relativity, Higher Di- mensions Addresses: Mail to Waterloo above; email: [email protected] Abstract The group of coordinate transformations for 5D noncompact Kaluza-Klein theory is broader than the 4D group for Einstein’s general relativity. Therefore, a 4D quantity can take on different forms depending on the choice for the 5D coordinates. We illustrate this by deriving the physical consequences for several forms of the canonical metric, where the fifth coordinate is altered by a translation, an inversion and a change from spacelike to timelike. These cause, respectively, the 4D cosmological ‘constant’ to be- come dependent on the fifth coordinate, the rest mass of a test particle to become measured by its Compton wavelength, and the dynamics to become wave-mechanical with a small mass quantum. These consequences of 5D covariance – whether viewed as positive or negative – help to determine the viability of current attempts to unify gravity with the interactions of particles. 1. Introduction Covariance, or the ability to change coordinates while not affecting the validity of the equations, is an essential property of any modern field theory. It is one of the found- ing principles for Einstein’s theory of gravitation, general relativity. However, that theory is four-dimensional, whereas many theories which seek to unify gravitation with the interactions of particles use higher-dimensional spaces.
    [Show full text]
  • Electron Shape and Structure: a New Vortex Theory
    Journal of High Energy Physics, Gravitation and Cosmology, 2020, 6, 340-352 https://www.scirp.org/journal/jhepgc ISSN Online: 2380-4335 ISSN Print: 2380-4327 Electron Shape and Structure: A New Vortex Theory Nader Butto Petah Tikva, Israel How to cite this paper: Butto, N. (2020) Abstract Electron Shape and Structure: A New Vor- tex Theory. Journal of High Energy Phys- Along with all other quantum objects, an electron is partly a wave and partly ics, Gravitation and Cosmology, 6, 340-352. a particle. The corpuscular properties of a particle are demonstrated when it https://doi.org/10.4236/jhepgc.2020.63027 is shown to have a localized position in space along its trajectory at any given Received: May 19, 2020 moment. When an electron looks more like a particle it has no shape, “point Accepted: June 29, 2020 particle”, according to the Standard Model, meaning that it interacts as if it is Published: July 2, 2020 entirely located at a single point in space and does not spread out to fill a Copyright © 2020 by author(s) and three-dimensional volume. Therefore, in the sense of particle-like interac- Scientific Research Publishing Inc. tions, an electron has no shape. In this paper, a new theory is proposed in This work is licensed under the Creative which the electron has a structure and a shape. The central idea is that an Commons Attribution International electron is a frictionless vortex with conserved momentum made out of con- License (CC BY 4.0). http://creativecommons.org/licenses/by/4.0/ densed vacuum generated in the Big Bang from massless virtual photons that Open Access acquire mass when moving in the vortex at the speed of light.
    [Show full text]
  • Dark Energy and Dark Matter As Inertial Effects Introduction
    Dark Energy and Dark Matter as Inertial Effects Serkan Zorba Department of Physics and Astronomy, Whittier College 13406 Philadelphia Street, Whittier, CA 90608 [email protected] ABSTRACT A disk-shaped universe (encompassing the observable universe) rotating globally with an angular speed equal to the Hubble constant is postulated. It is shown that dark energy and dark matter are cosmic inertial effects resulting from such a cosmic rotation, corresponding to centrifugal (dark energy), and a combination of centrifugal and the Coriolis forces (dark matter), respectively. The physics and the cosmological and galactic parameters obtained from the model closely match those attributed to dark energy and dark matter in the standard Λ-CDM model. 20 Oct 2012 Oct 20 ph] - PACS: 95.36.+x, 95.35.+d, 98.80.-k, 04.20.Cv [physics.gen Introduction The two most outstanding unsolved problems of modern cosmology today are the problems of dark energy and dark matter. Together these two problems imply that about a whopping 96% of the energy content of the universe is simply unaccounted for within the reigning paradigm of modern cosmology. arXiv:1210.3021 The dark energy problem has been around only for about two decades, while the dark matter problem has gone unsolved for about 90 years. Various ideas have been put forward, including some fantastic ones such as the presence of ghostly fields and particles. Some ideas even suggest the breakdown of the standard Newton-Einstein gravity for the relevant scales. Although some progress has been made, particularly in the area of dark matter with the nonstandard gravity theories, the problems still stand unresolved.
    [Show full text]
  • Planck Mass Rotons As Cold Dark Matter and Quintessence* F
    Planck Mass Rotons as Cold Dark Matter and Quintessence* F. Winterberg Department of Physics, University of Nevada, Reno, USA Reprint requests to Prof. F. W.; Fax: (775) 784-1398 Z. Naturforsch. 57a, 202–204 (2002); received January 3, 2002 According to the Planck aether hypothesis, the vacuum of space is a superfluid made up of Planck mass particles, with the particles of the standard model explained as quasiparticle – excitations of this superfluid. Astrophysical data suggests that ≈70% of the vacuum energy, called quintessence, is a neg- ative pressure medium, with ≈26% cold dark matter and the remaining ≈4% baryonic matter and radi- ation. This division in parts is about the same as for rotons in superfluid helium, in terms of the Debye energy with a ≈70% energy gap and ≈25% kinetic energy. Having the structure of small vortices, the rotons act like a caviton fluid with a negative pressure. Replacing the Debye energy with the Planck en- ergy, it is conjectured that cold dark matter and quintessence are Planck mass rotons with an energy be- low the Planck energy. Key words: Analog Models of General Relativity. 1. Introduction The analogies between Yang Mills theories and vor- tex dynamics [3], and the analogies between general With greatly improved observational techniques a relativity and condensed matter physics [4 –10] sug- number of important facts about the physical content gest that string theory should perhaps be replaced by and large scale structure of our universe have emerged. some kind of vortex dynamics at the Planck scale. The They are: successful replacement of the bosonic string theory in 1.
    [Show full text]
  • Conformal Symmetry in Field Theory and in Quantum Gravity
    universe Review Conformal Symmetry in Field Theory and in Quantum Gravity Lesław Rachwał Instituto de Física, Universidade de Brasília, Brasília DF 70910-900, Brazil; [email protected] Received: 29 August 2018; Accepted: 9 November 2018; Published: 15 November 2018 Abstract: Conformal symmetry always played an important role in field theory (both quantum and classical) and in gravity. We present construction of quantum conformal gravity and discuss its features regarding scattering amplitudes and quantum effective action. First, the long and complicated story of UV-divergences is recalled. With the development of UV-finite higher derivative (or non-local) gravitational theory, all problems with infinities and spacetime singularities might be completely solved. Moreover, the non-local quantum conformal theory reveals itself to be ghost-free, so the unitarity of the theory should be safe. After the construction of UV-finite theory, we focused on making it manifestly conformally invariant using the dilaton trick. We also argue that in this class of theories conformal anomaly can be taken to vanish by fine-tuning the couplings. As applications of this theory, the constraints of the conformal symmetry on the form of the effective action and on the scattering amplitudes are shown. We also remark about the preservation of the unitarity bound for scattering. Finally, the old model of conformal supergravity by Fradkin and Tseytlin is briefly presented. Keywords: quantum gravity; conformal gravity; quantum field theory; non-local gravity; super- renormalizable gravity; UV-finite gravity; conformal anomaly; scattering amplitudes; conformal symmetry; conformal supergravity 1. Introduction From the beginning of research on theories enjoying invariance under local spacetime-dependent transformations, conformal symmetry played a pivotal role—first introduced by Weyl related changes of meters to measure distances (and also due to relativity changes of periods of clocks to measure time intervals).
    [Show full text]
  • Naturalness and New Approaches to the Hierarchy Problem
    Naturalness and New Approaches to the Hierarchy Problem PiTP 2017 Nathaniel Craig Department of Physics, University of California, Santa Barbara, CA 93106 No warranty expressed or implied. This will eventually grow into a more polished public document, so please don't disseminate beyond the PiTP community, but please do enjoy. Suggestions, clarifications, and comments are welcome. Contents 1 Introduction 2 1.0.1 The proton mass . .3 1.0.2 Flavor hierarchies . .4 2 The Electroweak Hierarchy Problem 5 2.1 A toy model . .8 2.2 The naturalness strategy . 13 3 Old Hierarchy Solutions 16 3.1 Lowered cutoff . 16 3.2 Symmetries . 17 3.2.1 Supersymmetry . 17 3.2.2 Global symmetry . 22 3.3 Vacuum selection . 26 4 New Hierarchy Solutions 28 4.1 Twin Higgs / Neutral naturalness . 28 4.2 Relaxion . 31 4.2.1 QCD/QCD0 Relaxion . 31 4.2.2 Interactive Relaxion . 37 4.3 NNaturalness . 39 5 Rampant Speculation 42 5.1 UV/IR mixing . 42 6 Conclusion 45 1 1 Introduction What are the natural sizes of parameters in a quantum field theory? The original notion is the result of an aggregation of different ideas, starting with Dirac's Large Numbers Hypothesis (\Any two of the very large dimensionless numbers occurring in Nature are connected by a simple mathematical relation, in which the coefficients are of the order of magnitude unity" [1]), which was not quantum in nature, to Gell- Mann's Totalitarian Principle (\Anything that is not compulsory is forbidden." [2]), to refinements by Wilson and 't Hooft in more modern language.
    [Show full text]
  • Deriving the Properties of Space Time Using the Non-Compressible
    Deriving the properties of space time using the non-compressible solutions of the Navier-Stokes Equations Ryan McDuffee∗ (Dated: September 24, 2019) Recent observations of gravitational waves by the Laser Interferometer Gravitational-Wave Ob- servatory (LIGO) has confirmed one of the last outstanding predictions in general relativity and in the process opened up a new frontier in astronomy and astrophysics. Additionally the observation of gravitational waves has also given us the data needed to deduce the physical properties of space time. Bredberg et al have shown in their 2011 paper titled From Navier-Stokes to Einstein, that for every solution of the incompressible Navier-Stokes equation in p + 1 dimensions, there is a uniquely associated dual” solution of the vacuum Einstein equations in p + 2 dimensions. The author shows that the physical properties of space time can be deduced using the recent measurements from the Laser Interferometer Gravitational-Wave Observatory and solutions from the incompressible Navier-Stokes equation. I. INTRODUCTION to calculate a hypothetical viscosity of space time and thus deduce the structure. Albert Einstein first published his theory of general Before moving forward with the analysis, it must be relativity in 1915, a year later he would predict the exis- understood that the Viscosity of space time that the au- tence of gravitational waves [1]. He based this prediction thor is intending to calculate, is an analogues property on his observation that the linearized weak field equa- rather than a literal one. Meaning that rather then try- tions had wave solutions [2][3], these transverse waves ing to estimate the thickness of a fluid like space time, we would be comprised of spatial strain and travel at the intend to show that by calculating the viscosity term in speed of light and would be generated by the time varia- a Navier-Stokes like equation, it is possible to calculate tions of the mass quadrupole moment of the source.
    [Show full text]
  • Absence of Landau Damping in Driven Three-Component Bose–Einstein
    www.nature.com/scientificreports OPEN Absence of Landau damping in driven three-component Bose– Einstein condensate in optical Received: 19 June 2017 Accepted: 10 July 2018 lattices Published: xx xx xxxx Gavriil Shchedrin, Daniel Jaschke & Lincoln D. Carr We explore the quantum many-body physics of a three-component Bose-Einstein condensate in an optical lattice driven by laser felds in V and Λ confgurations. We obtain exact analytical expressions for the energy spectrum and amplitudes of elementary excitations, and discover symmetries among them. We demonstrate that the applied laser felds induce a gap in the otherwise gapless Bogoliubov spectrum. We fnd that Landau damping of the collective modes above the energy of the gap is carried by laser-induced roton modes and is considerably suppressed compared to the phonon-mediated damping endemic to undriven scalar condensates Multicomponent Bose-Einstein condensates (BECs) are a unique form of matter that allow one to explore coherent many-body phenomena in a macroscopic quantum system by manipulating its internal degrees of freedom1–3. Te ground state of alkali-based BECs, which includes 7Li, 23Na, and 87Rb, is characterized by the hyperfne spin F, that can be best probed in optical lattices, which liberate its 2F + 1 internal components and thus provides a direct access to its internal structure4–11. Driven three-component F = 1 BECs in V and Λ confgurations (see Fig. 1(b) and (c)) are totally distinct from two-component BECs3 due to the light interaction with three-level systems that results in the laser-induced coherence between excited states and ultimately leads to a number of fascinating physical phenomena, such as lasing without inversion (LWI)12,13, ultraslow light14,15, and quantum memory16.
    [Show full text]
  • Dark Matter and the Early Universe: a Review Arxiv:2104.11488V1 [Hep-Ph
    Dark matter and the early Universe: a review A. Arbey and F. Mahmoudi Univ Lyon, Univ Claude Bernard Lyon 1, CNRS/IN2P3, Institut de Physique des 2 Infinis de Lyon, UMR 5822, 69622 Villeurbanne, France Theoretical Physics Department, CERN, CH-1211 Geneva 23, Switzerland Institut Universitaire de France, 103 boulevard Saint-Michel, 75005 Paris, France Abstract Dark matter represents currently an outstanding problem in both cosmology and particle physics. In this review we discuss the possible explanations for dark matter and the experimental observables which can eventually lead to the discovery of dark matter and its nature, and demonstrate the close interplay between the cosmological properties of the early Universe and the observables used to constrain dark matter models in the context of new physics beyond the Standard Model. arXiv:2104.11488v1 [hep-ph] 23 Apr 2021 1 Contents 1 Introduction 3 2 Standard Cosmological Model 3 2.1 Friedmann-Lema^ıtre-Robertson-Walker model . 4 2.2 A quick story of the Universe . 5 2.3 Big-Bang nucleosynthesis . 8 3 Dark matter(s) 9 3.1 Observational evidences . 9 3.1.1 Galaxies . 9 3.1.2 Galaxy clusters . 10 3.1.3 Large and cosmological scales . 12 3.2 Generic types of dark matter . 14 4 Beyond the standard cosmological model 16 4.1 Dark energy . 17 4.2 Inflation and reheating . 19 4.3 Other models . 20 4.4 Phase transitions . 21 5 Dark matter in particle physics 21 5.1 Dark matter and new physics . 22 5.1.1 Thermal relics . 22 5.1.2 Non-thermal relics .
    [Show full text]
  • Experimental Tests of Quantum Gravity and Exotic Quantum Field Theory Effects
    Advances in High Energy Physics Experimental Tests of Quantum Gravity and Exotic Quantum Field Theory Effects Guest Editors: Emil T. Akhmedov, Stephen Minter, Piero Nicolini, and Douglas Singleton Experimental Tests of Quantum Gravity and Exotic Quantum Field Theory Effects Advances in High Energy Physics Experimental Tests of Quantum Gravity and Exotic Quantum Field Theory Effects Guest Editors: Emil T. Akhmedov, Stephen Minter, Piero Nicolini, and Douglas Singleton Copyright © 2014 Hindawi Publishing Corporation. All rights reserved. This is a special issue published in “Advances in High Energy Physics.” All articles are open access articles distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Editorial Board Botio Betev, Switzerland Ian Jack, UK Neil Spooner, UK Duncan L. Carlsmith, USA Filipe R. Joaquim, Portugal Luca Stanco, Italy Kingman Cheung, Taiwan Piero Nicolini, Germany EliasC.Vagenas,Kuwait Shi-Hai Dong, Mexico Seog H. Oh, USA Nikos Varelas, USA Edmond C. Dukes, USA Sandip Pakvasa, USA Kadayam S. Viswanathan, Canada Amir H. Fatollahi, Iran Anastasios Petkou, Greece Yau W. Wah, USA Frank Filthaut, The Netherlands Alexey A. Petrov, USA Moran Wang, China Joseph Formaggio, USA Frederik Scholtz, South Africa Gongnan Xie, China Chao-Qiang Geng, Taiwan George Siopsis, USA Hong-Jian He, China Terry Sloan, UK Contents Experimental Tests of Quantum Gravity and Exotic Quantum Field Theory Effects,EmilT.Akhmedov,
    [Show full text]