Host-Generalist Fungal Pathogens of Seedlings May Maintain Forest

Total Page:16

File Type:pdf, Size:1020Kb

Host-Generalist Fungal Pathogens of Seedlings May Maintain Forest 1 Supporting Information 2 Article title: : Host-generalist fungal pathogens of seedlings may maintain forest diversity via 3 host-specific impacts and differential susceptibility among tree species 4 Authors: Erin R. Spear and Kirk D. Broders 5 6 The following Supporting Information is available for this article: 7 Fig. S1 Examples of disease symptoms in the forests of Panama. 8 Fig. S2 Details of shadehouse-based inoculation experiments. 9 Fig. S3 Rank abundance plot and OTU accumulation curve. 10 Fig. S4 Overlap in fungal OTUs among sampling years, methods used to obtain symptomatic 11 seedlings, isolation media, and tissue sampled. 12 Fig. S5 Correlation between OTU host range and isolation frequency. 13 Table S1 Taxonomic assignments, traits, sampling effort, and observed OTUs for tree species 14 evaluated in our survey and experimental approaches. 15 Table S2 Methodological details pertaining to the multi-year collection of symptomatic 16 seedlings, and microbial isolation and sequencing. 17 Table S3 Average light levels, air temperatures, and relative humidities of the shadehouses 18 used for inoculation experiments versus ambient conditions. 19 Table S4 Estimated taxonomic placement, isolation frequency, number of observed hosts, 20 estimated host specialization, and phylogenetic pattern of host use of the OTUs. 21 Table S5 Overlap in seedling-associated OTUs among tree species. 22 Table S6 Results of the beta-binomial generalized linear regression with the proportion of 23 diseased seedlings as a function of seed size and shade tolerance. 24 Table S7 Average estimates based on the best-ranked beta-binomial generalized linear 1 25 regressions with the proportion of diseased seedlings as a function of seed size and spatial 26 distribution relative to annual rainfall. 27 Methods S1 Methods used to estimate the taxonomic placement of the 66 OTUs and assign 28 nomenclature. 2 29 30 Fig. S1 Disease symptoms on the (a,g-j,m,o,p-t,v) stems, (b-f,k,l,n,o) leaves, and (u) root of 31 seedlings in the forests of Panama. In some panels, arrows direct the viewer’s attention to 32 disease. 3 33 34 Fig. S2 (a) Inoculation experiments were conducted in Smithsonian Tropical Research Institute 35 shadehouses in Gamboa, Panama. (b) Surface-sterilized seeds were germinated in flats of 36 autoclave-sterilized commercial soil. (c,f) Seedlings were transplanted to individual pots 37 containing autoclaved commercial soil and (d,e) either rice visibly colonized by one of the 38 fungal isolates or inoculum-free, autoclave-sterilized rice. Disease symptoms were documented 39 every three days and were categorized as seedling mortality, (g-o) stem damage, (p,q) wilted 40 tissue, and (r,s) stunted seedling growth. 4 41 42 Fig. S3 (a) The 66 observed OTUs, defined by 99% ITS sequence similarity, are ranked from most 43 to least abundant on the horizontal axis, with the total number of isolates per OTU plotted on 44 the vertical axis (full dataset: n = 211 isolates) (BiodiversityR package; Kindt & Coe, 2005). Most 45 of the OTUs are rare (50% singletons), indicated by the steep shape of the curve. The four 46 common OTUs (observed ≥10 times and comprising 35% of the isolates) are named. (b) Non- 47 asymptotic accumulation of OTUs isolated from 124 symptomatic seedlings (vegan package; 48 Oksanen et al., 2019). The curve, derived from the observed richness and representing the 49 mean accumulation of OTUs over 999 randomizations of seedling order, indicates incomplete 50 sampling and a diverse community. 5 51 References: 52 Kindt R, Coe R. 2005. Tree diversity analysis. A manual and software for common statistical 53 methods for ecological and biodiversity studies. Nairobi, Kenya: World Agroforestry 54 Centre (ICRAF). 55 Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, Minchin PR, O'Hara RB, 56 Simpson GL, Solymos P et al. 2019. vegan: Community Ecology Package. R package 57 version 2.5-6. [WWW document] URL https://CRAN.R-project.org/package=vegan 58 [accessed 2 June 2020]. 6 59 60 Fig. S4 Venn diagrams depicting the overlap in non-singleton fungal operational taxonomic 61 units (OTUs; based on 99% sequence similarity) among the five sampling years, three methods 62 used to obtain seedlings with disease symptoms, four media used for isolation, and three 63 tissues sampled (data subset A: n = 178 isolates, from 110 seedlings). (a) Fungi, and two 64 oomycetes, were isolated from symptomatic seedlings in Panama over five years (2007, 2010- 65 2012, 2019). (b) Symptomatic seedlings were obtained in three ways: (i) opportunistic 66 collection of naturally occurring seedlings, (ii) seedlings germinated in a shadehouse and then 67 transplanted to forest sites, and (iii) surface-sterilized seeds planted directly in forest sites. (c, 7 68 d) The advancing margin(s) of diseased area(s) was/were excised, and the excised tissue 69 piece(s) (leaf, stem, and/or root) was/were surface sterilized (Gilbert & Webb, 2007) and plated 70 on (i) Water agar, (ii) Pimaricin, Ampicillin, Rifampicin, and Pentachloronitrobenzene (PARP); 71 and/or Malt Extract Agar (MEA) amended with antibiotic to prevent bacterial growth, either (iii) 72 chloramphenicol or (iv) rifampicin. See Table S2 and Spear (2007) for additional methodological 73 details. (a) Of the 33 non-singleton OTUs, 19 were observed in more than one year. While no 74 OTUs were observed across all five years, three OTUs were observed across four of the 75 sampling years. The greatest number of unique, non-singleton OTUs were observed in 2019, 76 the year we collected the greatest number of seedlings. (b) Eighteen non-singleton OTUs were 77 isolated from seedlings obtained using more than one method. Four non-singleton OTUs were 78 isolated from seedlings obtained using all three methods. We isolated the greatest number of 79 unique, non-singleton OTUs from naturally occurring seedlings, the most common sampling 80 method. (c) Nineteen non-singleton OTUs were isolated on multiple media. One non-singleton 81 OTU was isolated from tissue pieces plated on all four media. We isolated the greatest number 82 of unique, non-singleton OTUs on MEA + rifampicin, the media used for the greatest number of 83 seedlings and tissue pieces. (d) Twenty-two non-singleton OTUs were isolated from multiple 84 tissues. Four non-singleton OTUs were isolated from all three tissues. We isolated the greatest 85 number of unique, non-singleton OTUs from leaves, the best-sampled tissue. 86 References: 87 Gilbert GS, Webb CO. 2007. Phylogenetic signal in plant pathogen-host range. Proceedings of 88 the National Academy of Sciences, USA 104: 4979-4983. 89 Spear ER. 2017. Phylogenetic relationships and spatial distributions of putative fungal 90 pathogens of seedlings across a rainfall gradient in Panama. Fungal Ecology 26: 65-73 8 91 92 Fig. S5 The observed host range of an OTU is positively correlated with isolation frequency 93 (survey-based assessment of host range: blue points, one-tailed Spearman's rank correlation 94 rho = 0.963, P < 0.001; host range observed during the inoculation experiments: green points, 95 one-tailed Spearman's rank correlation rho = 0.721, P = 0.053), suggesting that host-generalized 96 fungi may be more common in this system. 9 97 Table S1 Tree species from which putative pathogens were isolated (original host = OH, 26 tree species) and/or for which 98 vulnerability to pathogens was assessed (target = T, 35 tree species) via inoculation experiments. For each tree species, the following 99 is listed: a two- or three-letter code (for Fig. 3 and Tables 1, S2, and S5), taxonomic assignments, and the number of seedlings 100 collected, sites from which seedlings were collected, unique isolates observed, and OTUs observed. Average seed dry mass (mg), 101 shade tolerance, and spatial distribution relative to annual rainfall are listed for the tree species used to explore the relationship 102 between disease susceptibility and plant life history traits. The imperfect match between original hosts and targets was driven by 103 limited seed availability, long seed dormancy periods, and space and time constraints. Additionally, several tree species that were 104 not original hosts were included in the inoculation experiments as phytometers (measures of the pathogenicity of the isolates) 105 because of their previously observed disease susceptibility (e.g., L. seemannii, Augspurger & Wilkinson, 2007). Role Species Code Family Order Seed Shade Dist.3 Seedlings Sites Isolates OTUs mass tol.2 collected (mg)1 OH, T Anacardium excelsum ANE Anacardiaceae Sapindales 1507 dry 20 5 41 24 OH, T Dalbergia retusa DR Fabaceae Fabales 130 tol dry 18 2 20 10 OH Pouteria reticulata PR Sapotaceae Ericales 11 1 30 18 OH, T Virola surinamensis VS Myristicaceae Magnoliales 11 3 15 11 OH Faramea occidentalis FO Rubiaceae Gentianales 7 1 13 7 OH Protium panamense PP Burseraceae Sapindales 7 1 18 11 OH Protium tenuifolium PT Burseraceae Sapindales 6 2 10 9 OH, T Calophyllum longifolium CL Calophyllaceae Malpighiales 5 1 14 9 OH, T Castilla elastica CE Moraceae Rosales 203.4 dry 5 2 6 4 OH, T Hymenaea courbaril HC Fabaceae Fabales 5 3 6 5 OH Cassia moschata CAM Fabaceae Fabales 4 3 5 4 OH, T Lacmellea panamensis LAP Apocynaceae Gentianales 237.4 tol wet 4 3 7 5 OH Nectandra cuspidata NC Lauraceae Laurales 4 2 5 5 OH, T Cochlospermum vitifolium CV Bixaceae Malvales 26 intol 3 1 4 4 OH Swietenia macrophylla SWM Meliaceae Sapindales 2 1 2 2 OH, T Trichilia tuberculata TT Meliaceae Sapindales 151 tol 2 2 2 2 OH, T Brosimum utile
Recommended publications
  • ZAPOTE the Popular Name Represents Many Diverse Edible Fruits of Guatemala
    Sacred Animals and Exotic Tropical Plants monzón sofía photo: by Dr. Nicholas M. Hellmuth and Daniela Da’Costa Franco, FLAAR Reports ZAPOTE The popular name represents many diverse edible fruits of Guatemala ne of the tree fruits raised by the Most zapotes have a soft fruit inside and Maya long ago that is still enjoyed a “zapote brown” covering outside (except today is the zapote. Although for a few that have other external colors). It Othere are several fruits of the same name, the is typical for Spanish nomenclature of fruits popular nomenclature is pure chaos. Some of and flowers to be totally confusing. Zapote is the “zapote” fruits belong to the sapotaceae a vestige of the Nahuatl (Aztec) word tzapotl. family and all are native to Mesoamerica. The first plant on our list, Manilkara But other botanically unrelated fruits are also zapote, is commonly named chicozapote. called zapote/sapote; some are barely edible This is one of the most appreciated edible (such as the zapotón). There are probably species because of its commercial value. It even other zapote-named fruits that are not is distributed from the southeast of Mexico, all native to Mesoamerica. especially the Yucatán Peninsula into Belize 60 Dining ❬ ANTIGUA and the Petén area, where it is occasionally now collecting pertinent information related an abundant tree in the forest. The principal to the eating habits of Maya people, and all products of these trees are the fruit; the the plants they used and how they used them latex, which is used as the basis of natural for food.
    [Show full text]
  • Method to Estimate Dry-Kiln Schedules and Species Groupings: Tropical and Temperate Hardwoods
    United States Department of Agriculture Method to Estimate Forest Service Forest Dry-Kiln Schedules Products Laboratory Research and Species Groupings Paper FPL–RP–548 Tropical and Temperate Hardwoods William T. Simpson Abstract Contents Dry-kiln schedules have been developed for many wood Page species. However, one problem is that many, especially tropical species, have no recommended schedule. Another Introduction................................................................1 problem in drying tropical species is the lack of a way to Estimation of Kiln Schedules.........................................1 group them when it is impractical to fill a kiln with a single Background .............................................................1 species. This report investigates the possibility of estimating kiln schedules and grouping species for drying using basic Related Research...................................................1 specific gravity as the primary variable for prediction and grouping. In this study, kiln schedules were estimated by Current Kiln Schedules ..........................................1 establishing least squares relationships between schedule Method of Schedule Estimation...................................2 parameters and basic specific gravity. These relationships were then applied to estimate schedules for 3,237 species Estimation of Initial Conditions ..............................2 from Africa, Asia and Oceana, and Latin America. Nine drying groups were established, based on intervals of specific Estimation
    [Show full text]
  • Calophyllum Brasiliense Extracts Induced Apoptosis in Human Breast Adenocarcinoma Cells
    European Journal of Medicinal Plants 32(4): 50-64, 2021; Article no.EJMP.69623 ISSN: 2231-0894, NLM ID: 101583475 Calophyllum brasiliense Extracts Induced Apoptosis in Human Breast Adenocarcinoma Cells Michelle S. F. Correia1, Anuska M. Alvares-Saraiva1, Elizabeth C. P. Hurtado1, Mateus L. B. Paciencia2, Fabiana T. C. Konno1, Sergio A. Frana1,2 and Ivana B. Suffredini1,2* 1Program in Environmental and Experimental Pathology, Paulista University, R. Dr. Bacelar, 1212, São Paulo, SP, 04026-002, Brazil. 2Center for Research in Biodiversity, Paulista University, Av. Paulista, 900, 1 Andar, São Paulo, SP, 01310-100, Brazil. Authors’ contributions This work was carried out in collaboration among all authors. Authors IBS, AMAS, ECPH, FTCK’ designed the study, author IBS performed the statistical analysis and wrote the protocol, authors MSFC and IBS wrote the first draft of the manuscript. Authors MSFC, SAF and MLBP managed the analyses of the study and the literature searches. All authors read and approved the final manuscript. Article Information DOI: 10.9734/EJMP/2021/v32i430384 Editor(s): (1) Dr. Francisco Cruz-Sosa, Metropolitan Autonomous University, México. (2) Prof. Marcello Iriti, Milan State University, Italy. Reviewers: (1) Zeuko’o Menkem Elisabeth, University of Buea, Cameroon. (2) Ravi Prem Kalsait, Dr. Babasaheb Ambedkar Technological University, India. Complete Peer review History: http://www.sdiarticle4.com/review-history/69623 Received 10 April 2021 Accepted 15 June 2021 Original Research Article Published 21 June 2021 ABSTRACT Aims: Apoptosis, or programmed cell death, is linked to several mechanisms of cell growth control. The present work aimed at evaluating the induction of apoptosis in MCF-7 human breast adenocarcinoma cell by Calophyllum brasiliense.
    [Show full text]
  • Use of Native Tree Species by an Hispanic Community in Panama Author(S): Salomón Aguilar and Richard Condit Source: Economic Botany, Vol
    Use of Native Tree Species by an Hispanic Community in Panama Author(s): Salomón Aguilar and Richard Condit Source: Economic Botany, Vol. 55, No. 2 (Apr. - Jun., 2001), pp. 223-235 Published by: Springer on behalf of New York Botanical Garden Press Stable URL: http://www.jstor.org/stable/4256423 . Accessed: 29/07/2011 18:56 Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at . http://www.jstor.org/page/info/about/policies/terms.jsp. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive only for your personal, non-commercial use. Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at . http://www.jstor.org/action/showPublisher?publisherCode=nybg. Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed page of such transmission. JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact [email protected]. New York Botanical Garden Press and Springer are collaborating with JSTOR to digitize, preserve and extend access to Economic Botany. http://www.jstor.org USE OF NATIVE TREE SPECIES BY AN HISPANIC COMMUNITY IN PANAMA1 SALOMON AGUILAR AND RICHARD CONDIT Aguilar, Salomon and Richard Condit (Centerfor Tropical Forest Science, Smithsonian TropicalResearch Institute,Unit 0948, APO AA 34002-0948 USA;fax 507-212-8148 (Pana- ma); email [email protected]).
    [Show full text]
  • Complete Inventory
    Maya Ethnobotany Complete Inventory of plants 1 Fifth edition, November 2011 Maya Ethnobotany Complete Inventory:: fruits,nuts, root crops, grains,construction materials, utilitarian uses, sacred plants, sacred flowers Guatemala, Mexico, Belize, Honduras Nicholas M. Hellmuth Maya Ethnobotany Complete Inventory of plants 2 Introduction This opus is a progress report on over thirty years of studying plants and agriculture of the present-day Maya with the goal of understanding plant usage by the Classic Maya. As a progress report it still has a long way to go before being finished. But even in its unfinished state, this report provides abundant listings of plants in a useful thematic arrangement. The only other publication that I am familiar with which lists even close to most of the plants utilized by the Maya is in an article by Cyrus Lundell (1938). • Obviously books on Mayan agriculture should have informative lists of all Maya agricultural crops, but these do not tend to include plants used for house construction. • There are monumental monographs, such as all the trees of Guatemala (Parker 2008) but they are botanical works, not ethnobotanical, and there is no cross-reference by kind of use. You have to go through over one thousand pages and several thousand tree species to find what you are looking for. • There are even important monographs on Maya ethnobotany, but they are usually limited to one country, or one theme, often medicinal plants. • There are even nice monographs on edible plants of Central America (Chízmar 2009), but these do not include every local edible plant, and their focus is not utilitarian plants at all, nor sacred plants.
    [Show full text]
  • A Família Rubiaceae Na Reserva Biológica Guaribas, Paraíba, Brasil
    Acta bot. bras. 18(2): 305-318. 2004 A família Rubiaceae na Reserva Biológica Guaribas, Paraíba, Brasil. Subfamílias Antirheoideae, Cinchonoideae e Ixoroideae1 Maria do Socorro Pereira2,3,4 e Maria Regina de V. Barbosa2 Recebido em 07/09/2002. Aceito em 12/09/2003 RESUMO – (A família Rubiaceae na Reserva Biológica Guaribas, Paraíba, Brasil. Subfamílias Antirheoideae, Cinchonoideae e Ixoroideae). Este trabalho consiste no levantamento dos representantes das subfamílias Antirheoideae, Cinchonoideae e Ixoroideae na Reserva Biológica Guaribas, Paraíba, Brasil. Foram realizadas coletas intensivas no período de outubro/2000 a outubro/2001, as quais resultaram no reconhecimento de 12 espécies, 10 gêneros e cinco tribos, distribuídos nas três subfamílias. A subfamília melhor representada foi Antirheoideae, com cinco espécies, quatro gêneros e duas tribos. Os gêneros com maior número de espécies foram Guettarda L. (2) e Tocoyena Aubl. (2). Alibertia A. Rich. ex DC., Alseis Schott, Chiococca P. Browne, Chomelia Jacq., Coutarea Aubl., Posoqueria Aubl., Sabicea Aubl. e Salzmannia DC. apresentaram uma única espécie cada. São apresentadas chaves para identificação, descrições, comentários sobre morfologia e distribuição das espécies, e ilustrações dos táxons verificados. Palavras-chave: Rubiaceae, Nordeste do Brasil, Mata Atlântica, taxonomia ABSTRACT – (The family Rubiaceae in the Guaribas Biological Reserve, Paraíba State, Brazil. Subfamilies Antirheoideae, Cinchonoideae and Ixoroideae). This paper is a survey of Rubiaceae subfamilies Antirheoideae, Cinchonoideae and Ixoroideae in the Guaribas Biological Reserve, Paraíba, Brazil. Intensive collections were made from October/2000 to October/2001. Twelve species, 10 genera and five tribes were recognized. The most diverse subfamily was Antirheoideae, with five species, four genera and two tribes. The genera with the most species were Guettarda L.
    [Show full text]
  • Livro-Inpp.Pdf
    GOVERNMENT OF BRAZIL President of Republic Michel Miguel Elias Temer Lulia Minister for Science, Technology, Innovation and Communications Gilberto Kassab MUSEU PARAENSE EMÍLIO GOELDI Director Nilson Gabas Júnior Research and Postgraduate Coordinator Ana Vilacy Moreira Galucio Communication and Extension Coordinator Maria Emilia Cruz Sales Coordinator of the National Research Institute of the Pantanal Maria de Lourdes Pinheiro Ruivo EDITORIAL BOARD Adriano Costa Quaresma (Instituto Nacional de Pesquisas da Amazônia) Carlos Ernesto G.Reynaud Schaefer (Universidade Federal de Viçosa) Fernando Zagury Vaz-de-Mello (Universidade Federal de Mato Grosso) Gilvan Ferreira da Silva (Embrapa Amazônia Ocidental) Spartaco Astolfi Filho (Universidade Federal do Amazonas) Victor Hugo Pereira Moutinho (Universidade Federal do Oeste Paraense) Wolfgang Johannes Junk (Max Planck Institutes) Coleção Adolpho Ducke Museu Paraense Emílio Goeldi Natural resources in wetlands: from Pantanal to Amazonia Marcos Antônio Soares Mário Augusto Gonçalves Jardim Editors Belém 2017 Editorial Project Iraneide Silva Editorial Production Iraneide Silva Angela Botelho Graphic Design and Electronic Publishing Andréa Pinheiro Photos Marcos Antônio Soares Review Iraneide Silva Marcos Antônio Soares Mário Augusto G.Jardim Print Graphic Santa Marta Dados Internacionais de Catalogação na Publicação (CIP) Natural resources in wetlands: from Pantanal to Amazonia / Marcos Antonio Soares, Mário Augusto Gonçalves Jardim. organizers. Belém : MPEG, 2017. 288 p.: il. (Coleção Adolpho Ducke) ISBN 978-85-61377-93-9 1. Natural resources – Brazil - Pantanal. 2. Amazonia. I. Soares, Marcos Antonio. II. Jardim, Mário Augusto Gonçalves. CDD 333.72098115 © Copyright por/by Museu Paraense Emílio Goeldi, 2017. Todos os direitos reservados. A reprodução não autorizada desta publicação, no todo ou em parte, constitui violação dos direitos autorais (Lei nº 9.610).
    [Show full text]
  • Food Quality, Competition, and Parasitism Influence Feeding Preference in a Neotropical Lepidopteran
    Ecology, 87(12), 2006, pp. 3058–3069 Ó 2006 by the Ecological Society of America FOOD QUALITY, COMPETITION, AND PARASITISM INFLUENCE FEEDING PREFERENCE IN A NEOTROPICAL LEPIDOPTERAN 1,2,3 2 2 1,2 THOMAS A. KURSAR, BRETT T. WOLFE, MARY JANE EPPS, AND PHYLLIS D. COLEY 1Department of Biology, University of Utah, Salt Lake City, Utah 84112 USA 2Smithsonian Tropical Research Institute, Balboa, Panama Abstract. We surveyed Lepidoptera found on 11 species of Inga (Fabaceae:Mimosoideae) co-existing on Barro Colorado Island, Panama, to evaluate factors influencing diet choice. Of the 47 species of caterpillars (747 individuals) recorded, each fed on a distinct set of Inga.In the field, 96% of the individuals were found on young leaves. Growth rates of caterpillars that were fed leaves in the laboratory were 60% higher on young leaves compared to mature leaves. When caterpillars were fed leaves of nonhost Inga, they grew more slowly. These data provide support for a link between preference and performance. However, among hosts on which larvae normally occurred, faster growth rates were not associated with greater host electivity (the proportion of larvae found on each host species in the field, corrected for host abundance). Growth rates on normal hosts were positively correlated with leaf expansion rates of the host, and fast expansion was associated with leaves with higher nutritional content. Detailed studies on a gelechiid leaf roller, the species with the largest diet breadth, allowed us to assess the importance of factors other than growth that could influence diet electivity. This species showed a 1.7-fold difference in growth rate among Inga hosts and faster growth on species with fast-expanding leaves.
    [Show full text]
  • Ornamental Garden Plants of the Guianas Pt. 2
    Surinam (Pulle, 1906). 8. Gliricidia Kunth & Endlicher Unarmed, deciduous trees and shrubs. Leaves alternate, petiolate, odd-pinnate, 1- pinnate. Inflorescence an axillary, many-flowered raceme. Flowers papilionaceous; sepals united in a cupuliform, weakly 5-toothed tube; standard petal reflexed; keel incurved, the petals united. Stamens 10; 9 united by the filaments in a tube, 1 free. Fruit dehiscent, flat, narrow; seeds numerous. 1. Gliricidia sepium (Jacquin) Kunth ex Grisebach, Abhandlungen der Akademie der Wissenschaften, Gottingen 7: 52 (1857). MADRE DE CACAO (Surinam); ACACIA DES ANTILLES (French Guiana). Tree to 9 m; branches hairy when young; poisonous. Leaves with 4-8 pairs of leaflets; leaflets elliptical, acuminate, often dark-spotted or -blotched beneath, to 7 x 3 (-4) cm. Inflorescence to 15 cm. Petals pale purplish-pink, c.1.2 cm; standard petal marked with yellow from middle to base. Fruit narrowly oblong, somewhat woody, to 15 x 1.2 cm; seeds up to 11 per fruit. Range: Mexico to South America. Grown as an ornamental in the Botanic Gardens, Georgetown, Guyana (Index Seminum, 1982) and in French Guiana (de Granville, 1985). Grown as a shade tree in Surinam (Ostendorf, 1962). In tropical America this species is often interplanted with coffee and cacao trees to shade them; it is recommended for intensified utilization as a fuelwood for the humid tropics (National Academy of Sciences, 1980; Little, 1983). 9. Pterocarpus Jacquin Unarmed, nearly evergreen trees, sometimes lianas. Leaves alternate, petiolate, odd- pinnate, 1-pinnate; leaflets alternate. Inflorescence an axillary or terminal panicle or raceme. Flowers papilionaceous; sepals united in an unequally 5-toothed tube; standard and wing petals crisped (wavy); keel petals free or nearly so.
    [Show full text]
  • Survey of Mangosteen Clones with Distinctive Morphology in Eastern of Thailand
    International Journal of Agricultural Technology 2015 Vol.Fungal 11(2): Diversity 227-242 Available online http://www.ijat-aatsea.com ISSN 2630-0192 (Online) Survey of Mangosteen Clones with Distinctive Morphology in Eastern of Thailand Makhonpas, C*., Phongsamran, S. and Silasai, A. School of Crop Production Technology and Landscape, Faculty of Agro-Industial Technology, Rajamangala University of Technology, Chanthaburi Campus, Thailand. Makhonpas, C., Phongsamran, S. and Silasai, A. (2015). Survey of mangosteen clones with distinctive morphology in eastern of Thailand. International Journal of Agricultural Technology Vol. 11(2):227-242. Abstract Mangosteen clone survey in Eastern Region of Thailand as Rayong, Chanthaburi and Trat Province in 2008 and 2009 showed diferential morphology as mangosteen phenotype was different and could be distinguished in 6 characters i.e small leave and small fruits trees, oblong shape trees, thin (not prominent) persistent stigma lobe thickness fruit trees, full and partial variegated mature leave color (combination of green and white color) trees, oblong shape leave trees and greenish yellow mature fruit color trees. Generally, rather short shoot, elliptic leaf blade shape, undulate leaf blade margin and thin or cavitied persistent stigma lobe thickness fruits are dominant marker of full seedless fruits that rarely found trees. Survey of mid-sized mangosteen orchards (200-300 trees) showed that over 70% full seedless fruits trees could be found only about 1-3% of all trees. Keywords: clones, mangosteen, phenotypes Introduction Mangosteen is a tropical fruit that grows and bears good fruit in Thailand. The fruit is delicious. It is popular with consumers both in Thailand and abroad, and has been called the queen of tropical fruits.
    [Show full text]
  • Phylogeny and Systematics of the Rauvolfioideae
    PHYLOGENY AND SYSTEMATICS Andre´ O. Simo˜es,2 Tatyana Livshultz,3 Elena OF THE RAUVOLFIOIDEAE Conti,2 and Mary E. Endress2 (APOCYNACEAE) BASED ON MOLECULAR AND MORPHOLOGICAL EVIDENCE1 ABSTRACT To elucidate deeper relationships within Rauvolfioideae (Apocynaceae), a phylogenetic analysis was conducted using sequences from five DNA regions of the chloroplast genome (matK, rbcL, rpl16 intron, rps16 intron, and 39 trnK intron), as well as morphology. Bayesian and parsimony analyses were performed on sequences from 50 taxa of Rauvolfioideae and 16 taxa from Apocynoideae. Neither subfamily is monophyletic, Rauvolfioideae because it is a grade and Apocynoideae because the subfamilies Periplocoideae, Secamonoideae, and Asclepiadoideae nest within it. In addition, three of the nine currently recognized tribes of Rauvolfioideae (Alstonieae, Melodineae, and Vinceae) are polyphyletic. We discuss morphological characters and identify pervasive homoplasy, particularly among fruit and seed characters previously used to delimit tribes in Rauvolfioideae, as the major source of incongruence between traditional classifications and our phylogenetic results. Based on our phylogeny, simple style-heads, syncarpous ovaries, indehiscent fruits, and winged seeds have evolved in parallel numerous times. A revised classification is offered for the subfamily, its tribes, and inclusive genera. Key words: Apocynaceae, classification, homoplasy, molecular phylogenetics, morphology, Rauvolfioideae, system- atics. During the past decade, phylogenetic studies, (Civeyrel et al., 1998; Civeyrel & Rowe, 2001; Liede especially those employing molecular data, have et al., 2002a, b; Rapini et al., 2003; Meve & Liede, significantly improved our understanding of higher- 2002, 2004; Verhoeven et al., 2003; Liede & Meve, level relationships within Apocynaceae s.l., leading to 2004; Liede-Schumann et al., 2005). the recognition of this family as a strongly supported Despite significant insights gained from studies clade composed of the traditional Apocynaceae s.
    [Show full text]
  • Biodiversity in Forests of the Ancient Maya Lowlands and Genetic
    Biodiversity in Forests of the Ancient Maya Lowlands and Genetic Variation in a Dominant Tree, Manilkara zapota (Sapotaceae): Ecological and Anthropogenic Implications by Kim M. Thompson B.A. Thomas More College M.Ed. University of Cincinnati A Dissertation submitted to the University of Cincinnati, Department of Biological Sciences McMicken College of Arts and Sciences for the degree of Doctor of Philosophy October 25, 2013 Committee Chair: David L. Lentz ABSTRACT The overall goal of this study was to determine if there are associations between silviculture practices of the ancient Maya and the biodiversity of the modern forest. This was accomplished by conducting paleoethnobotanical, ecological and genetic investigations at reforested but historically urbanized ancient Maya ceremonial centers. The first part of our investigation was conducted at Tikal National Park, where we surveyed the tree community of the modern forest and recovered preserved plant remains from ancient Maya archaeological contexts. The second set of investigations focused on genetic variation and structure in Manilkara zapota (L.) P. Royen, one of the dominant trees in both the modern forest and the paleoethnobotanical remains at Tikal. We hypothesized that the dominant trees at Tikal would be positively correlated with the most abundant ancient plant remains recovered from the site and that these trees would have higher economic value for contemporary Maya cultures than trees that were not dominant. We identified 124 species of trees and vines in 43 families. Moderate levels of evenness (J=0.69-0.80) were observed among tree species with shared levels of dominance (1-D=0.94). From the paleoethnobotanical remains, we identified a total of 77 morphospecies of woods representing at least 31 plant families with 38 identified to the species level.
    [Show full text]