Will Mega-Dosing Vitamins/Minerals Help My Immunity? (PDF)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Dispensing of Vitamin Products by Retail Pharmacies in South Africa: Implications for Dietitians
South African Journal of Clinical Nutrition 2016; 29(4):133–138 http://dx.doi.org/10.1080/16070658.2016.1219468 SAJCN ISSN 1607-0658 EISSN 2221-1268 Open Access article distributed under the terms of the © 2016 The Author(s) Creative Commons License [CC BY-NC 3.0] http://creativecommons.org/licenses/by-nc/3.0 RESEARCH Dispensing of vitamin products by retail pharmacies in South Africa: Implications for dietitians Ilse Trutera* and Liana Steenkampb a Department of Pharmacy, Drug Utilisation Research Unit (DURU), Nelson Mandela Metropolitan University, Port Elizabeth, South Africa b HIV & AIDS Research Unit, Nelson Mandela Metropolitan University, Port Elizabeth, South Africa *Corresponding author, email: [email protected] Objective: The objective of this study was to analyse the dispensing patterns of vitamins (Anatomical Therapeutic Chemical (ATC) group A11) over a one-year period in a group of community pharmacies in South Africa. Design and setting: A retrospective drug utilisation study was conducted on community pharmacy electronic dispensing records in South Africa recorded in 2013. Outcome measures: All products for ATC subgroup A11 were extracted and analysed. Results: A total of 164 233 vitamin products were dispensed to 84 805 patients (62.64% female patients). Males received on average 2.09 (SD = 2.63) vitamin products per year, compared to 1.84 (SD = 2.13) products for females. Ergocalciferol (A11CC01) was the most often dispensed (37.48% of all vitamin products), followed by plain Vitamin B-complex products (A11EA00) accounting for 32.77%. Ergocalciferol (vitamin D2) is only available on prescription (50 000 IU tablets or 50 000 IU/ml oily drops) in South Africa. -
Control of Interstitial Pneumonia by Drip Infusion of Megadose Vitamin C, Dehydroepiandrosterone and Cortisol
in vivo 22 : 263-268 (2008) Short Review Control of Interstitial Pneumonia by Drip Infusion of Megadose Vitamin C, Dehydroepiandrosterone and Cortisol. A Short Review of our Experience MITSUO KODAMA 1, ATSUSHI OYAMA 2 and HIROSHI TAKAGI 3 1Kodama Research Institute of Preventive Medicine, 2Hikarigaoka Clinic, and 3Second Department of Surgery, Nagoya University School of Medicine, Nagoya, Japan Abstract. Interstitial pneumonia can be controlled by the granulatory tissue (1). The interstitial tissues are also combined use of a prophylactic antibiotic system and the drip involved in the site of granulation (1). All these descriptions infusion system including megadose vitamin C, dehydro- are in good agreement with the pathological changes of epiandrosterone (D) and cortisol (F), a fortified substitute of 3 interstitial pneumonia (2). In the treatment section, adrenocortical elements. The response of patients was satisfying Heilmeyer warned of the possible emergence of antibiotic with few side-effects of F. It was shown that an excess of resistance in local bacteria (1). Eventually, cortisone and vitamin C improved the therapeutic efficacy of D-F complex, adrenocorticotropic hormone (ACTH) could be tried under and that D and F improved the immunodeficient state of the the antibiotic protection (1). Above all, attention should be host. The benefit of D as an adrenal androgen in immunology directed to the control of both the heart and the general found another example in the combined use of cyclosporine A circulation system (1). With the use of cortisone and ACTH, (CS) and glucocorticoid (G) in the kidney transplantation Heilmeyer might have been inspired by the opinion of a clinic: CS and G helps improve graft take by creating a state of group of researchers that his chronic pneumonia might androgen excess, as testified in both humans and mice – an respond to a beneficial action of glucocorticoid, as is the alleviation of immune conflict. -
Optimal Foods
Optimal Foods 1. Almonds: high in monounsaturated and polyunsaturated fats, with 20% of calories coming from protein and dietary fiber. Nutrients include potassium, magnesium, calcium, iron, zinc, vitamin E and an antioxidant flavonoid called amygdlin also known as laetrile. 2. Barley: Like oat bran it is high in beta-glucan fiber which helps to lower cholesterol. Nutrients include copper, magnesium, phosphorous and niacin. 3. Berries : The darker the berry the higher in anti-oxidants. Nutritionally they are an excellent source of flavonoids, especially anthocyanidins, vitamin C and both soluble and insoluble fiber. 4. Brussels Sprouts : Similar to broccoli, and a member of the cabbage family, it contains cancer fighting glucosinolates. Nutritionally it is an excellent source of vitamin C and K, the B vitamins, beta-carotene, potassium and dietary fiber. 5. Carrots: It contains the highest source of proviatamin A carotenes as well as vitamin K, biotin, vitamin C, B6, potassium, thiamine and fiber. 6. Dark Chocolate: It is rich in the flavonoids, similar to those found in berries and apples, that are more easily absorbed than in other foods. It also provides an amino acid called arginine that helps blood vessels to dilate hence regulating blood flow and helping to lower blood pressure. Choose high-quality semisweet dark chocolate with the highest cocoa content that appeals to your taste buds. 7. Dark leafy greens : Kale, arugula, spinach, mustard greens, chard, collards, etc: low calorie, anti-oxidant dense food with carotenes, vitamin C, folic acid, manganese, copper, vitamin E, copper, vitamin B6, potassium, calcium, iron and dietary fiber. Kale is a particularly excellent bioavailable source of calcium while spinach is not. -
The Effect of Vitamin Supplementation on Subclinical
molecules Review The Effect of Vitamin Supplementation on Subclinical Atherosclerosis in Patients without Manifest Cardiovascular Diseases: Never-ending Hope or Underestimated Effect? Ovidiu Mitu 1,2,* , Ioana Alexandra Cirneala 1,*, Andrada Ioana Lupsan 3, Mircea Iurciuc 4 , 5 5 2, Ivona Mitu , Daniela Cristina Dimitriu , Alexandru Dan Costache y , Antoniu Octavian Petris 1,2 and Irina Iuliana Costache 1,2 1 Department of Cardiology, Clinical Emergency Hospital “Sf. Spiridon”, 700111 Iasi, Romania 2 1st Medical Department, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iasi, Romania 3 Department of Cardiology, University of Medicine, Pharmacy, Science and Technology, 540139 Targu Mures, Romania 4 Department of Cardiology, University of Medicine and Pharmacy “Victor Babes”, 300041 Timisoara, Romania 5 2nd Morpho-Functional Department, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iasi, Romania * Correspondence: [email protected] (O.M.); [email protected] (I.A.C.); Tel.: +40-745-279-714 (O.M.) Medical Student, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iasi, Romania. y Academic Editors: Raluca Maria Pop, Ada Popolo and Stefan Cristian Vesa Received: 25 March 2020; Accepted: 7 April 2020; Published: 9 April 2020 Abstract: Micronutrients, especially vitamins, play an important role in the evolution of cardiovascular diseases (CVD). It has been speculated that additional intake of vitamins may reduce the CVD burden by acting on the inflammatory and oxidative response starting from early stages of atherosclerosis, when the vascular impairment might still be reversible or, at least, slowed down. The current review assesses the role of major vitamins on subclinical atherosclerosis process and the potential clinical implications in patients without CVD. -
Vitamin A, E, & D Unit Change
Vitamin A, E, & D Unit Change Agenda The following provides an overview of the updated units that NQAC Dublin will be using to adhere to FDA guideline changes regarding Nutrition and Supplement Facts labels. This presentation will review: • FDA Guidelines • Methods Affected • Unit Changes by Vitamin • Conversions In August of 2019, the FDA updated its guideline requirements for Nutrition and Supplement Facts labels regarding vitamin A, vitamin D, and vitamin E. The following link can be used to access the FDA guidelines directly: www.fda.gov/regulatory-information Which methods are affected by this change? • LI-00.608 –Multi Fat • LI-03.701 –Fat Soluble Vitamin Determination in Premixes • LI-00.683- Carotene • GOP-756-1001- Total Vitamin A by Calculation (will be obsoleted) FDA Provided Unit Conversion Table: Vitamin A The previous RDI for vitamin A was expressed in International Units (IU), a measurement based on the biological activity or effect, where one IU of vitamin A activity had been defined as equal to 0.30 mcg of all-trans-retinol or 0.60 mcg of all-trans-β-carotene The new unit of measure, RAE, considers the vitamin A activity of β-carotene in supplements to be half the activity of pre-formed retinol, and the vitamin A activity of dietary β-carotene to be one- sixth of the β-carotene in supplements Furthermore, carotenoids, such as β-carotene, added to food is assumed to have the same bioconversion as those naturally occurring in foods (12:1). For the other dietary provitamin A carotenoids, β-cryptoxanthin and α-carotene, the RAE is set at 24 based on a vitamin A activity approximately half of that for β-carotene. -
All There Is to C • Vitamin C and Health the Vitamin C Essentials • Getting Your Vitamin C
Overview • Journey at C: Vitamin C in the Body All There is to C • Vitamin C and Health The vitamin C essentials • Getting Your Vitamin C Alexander Michels PhD • Vitamin C Myths Linus Pauling Institute Oregon State University May 11th, 2015 Journey at C Journey at C Vitamin C is Ascorbic Acid Vitamin C in the Small Intestine Ascorbic acid is vitamin C by definition: Only sources of ascorbic acid can cure scurvy. Image Source: Wikimedia Commons Extra vitamin C beyond the transport capacity passes through to the large intestine and may be lost Sodium-dependent Vitamin C Journey at C Transporters (SVCTs) Journey at C Vitamin C Intestinal Absorption Absorption and Vitamin C Transporters Ascorbic Acid Dehydroascorbic Acid (Oxidized form of Ascorbic Acid) Glucose Transporters (GLUTs) Remember: There is a limit to vitamin C absorption! 1 Note: Tissue ascorbic acid levels on this slide are hypothetical, but are driven by plasma vitamin C levels. As plasma levels increase, different tissues increase vitamin C Journey at C levels at different rates. The brain is given priority at low Journey at C vitamin C levels, while less essential organs are saturated Vitamin C in Tissues with vitamin C only at higher blood ascorbic acid levels. Vitamin C from Circulation to Tissues Plasma levels peak about 2 hours after a single dose. Vitamin C is transported into tissues when plasma levels rise. From Michels et al. Ann Rev Nutr 33 (2013) Vitamin C levels decline in the Journey at C plasma once kidney reuptake is Journey at C saturated, which also means that Vitamin C Urinary Excretion more passes through to the urine. -
Vitamins a and E and Carotenoids
Fat-Soluble Vitamins & Micronutrients: Vitamins A and E and Carotenoids Vitamins A (retinol) and E (tocopherol) and the carotenoids are fat-soluble micronutrients that are found in many foods, including some vegetables, fruits, meats, and animal products. Fish-liver oils, liver, egg yolks, butter, and cream are known for their higher content of vitamin A. Nuts and seeds are particularly rich sources of vitamin E (Thomas 2006). At least 700 carotenoids—fat-soluble red and yellow pigments—are found in nature (Britton 2004). Americans consume 40–50 of these carotenoids, primarily in fruits and vegetables (Khachik 1992), and smaller amounts in poultry products, including egg yolks, and in seafoods (Boylston 2007). Six major carotenoids are found in human serum: alpha-carotene, beta-carotene, beta-cryptoxanthin, lutein, trans-lycopene, and zeaxanthin. Major carotene sources are orange-colored fruits and vegetables such as carrots, pumpkins, and mangos. Lutein and zeaxanthin are also found in dark green leafy vegetables, where any orange coloring is overshadowed by chlorophyll. Trans-Lycopene is obtained primarily from tomato and tomato products. For information on the carotenoid content of U.S. foods, see the 1998 carotenoid database created by the U.S. Department of Agriculture and the Nutrition Coordinating Center at the University of Minnesota (http://www.nal.usda.gov/fnic/foodcomp/Data/car98/car98.html). Vitamin A, found in foods that come from animal sources, is called preformed vitamin A. Some carotenoids found in colorful fruits and vegetables are called provitamin A; they are metabolized in the body to vitamin A. Among the carotenoids, beta-carotene, a retinol dimer, has the most significant provitamin A activity. -
B-COMPLEX FORTE with VITAMIN C CAPSULES BECOSULES Capsules
For the use only of a Registered Medical Practitioner or a Hospital or a Laboratory. B-COMPLEX FORTE WITH VITAMIN C CAPSULES BECOSULES Capsules 1. NAME OF THE MEDICINAL PRODUCT BECOSULES 2. QUALITATIVE AND QUANTITATIVE COMPOSITION Each capsule contains: Thiamine Mononitrate I.P. 10 mg Riboflavin I.P. 10 mg Pyridoxine Hydrochloride I.P. 3 mg Vitamin B12 I.P. ( as STABLETS 1:100) 15 mcg Niacinamide I.P. 100 mg Calcium Pantothenate I.P. 50 mg Folic Acid I.P. 1.5 mg Biotin U.S.P. 100 mcg Ascorbic Acid I.P. (as coated) 150 mg Appropriate overages added For Therapeutic Use For a full list of excipients, see section 6.1. All strengths/presentations mentioned in this document might not be available in the market. 3. PHARMACOLOGICAL FORM Capsules 4. CLINICAL PARTICULARS 4.1 Therapeutic Indications Trademark Proprietor: Pfizer Products Inc. USA Licensed User: Pfizer Limited, India BECOSULES Capsules Page 1 of 7 LPDBCC092017 PfLEET Number: 2017-0033507 Becosules capsules are indicated in the treatment of patients with deficiencies of, or increased requirement for, vitamin B-complex, and vitamin C. Such patients and conditions include: Decreased intake because of restricted or unbalanced diet as in anorexia, diabetes mellitus, obesity and alcoholism. Reduced availability during treatment with antimicrobials which alter normal intestinal flora, in prolonged diarrhea and in chronic gastro-intestinal disorders. Increased requirements due to increased metabolic rate as in fever and tissue wasting, e.g. febrile illness, acute or chronic infections, surgery, burns and fractures. Stomatitis, glossitis, cheilosis, paraesthesias, neuralgia and dermatitis. Micronutrient deficiencies during pregnancy or lactation. -
Adverse Effects of Antioxidative Vitamins
REVIEW PAPERS International Journal of Occupational Medicine and Environmental Health 2012;25(2):105 – 121 DOI 10.2478/S13382-012-0022-x ADVERSE EFFECTS OF ANTIOXIDATIVE VITAMINS MACIEJ RUTKOWSKI1 and KRZYSZTOF GRZEGORCZYK2 1 Medical University of Łódź, Łódź, Poland Department of Clinical Chemistry and Biochemistry 2 Wł. Biegański Memorial Regional Specialistic Hospital, Łódź, Poland Department of Endoscopy and One Day Gastroenterology Abstract High doses of synthetic antioxidative vitamins: A, E, C and β-carotene are often used on long-term basis in numerous preventive and therapeutic medical applications. Instead of expected health effects, the use of those vitamins may however lead to cases of hypervitaminosis and even to intoxication. The article points out main principles of safety which are to be observed during supplementation with antioxidative vitamins. Toxic effects resulting from erroneous administration of high doses of those substances on organs and systems of the organism are also discussed. Attention is drawn to interactions of antioxidative vitamins with concomitantly used drugs, as well as intensification of adverse effects caused by various exo- genous chemical factors. Moreover, the article presents the evaluation of supplementation with these vitamins, which was performed in large studies. Key words: Vitamins A, E and C, β-carotene, Supplementation, Side actions, Toxic effects INTRODUCTION pharmaceutical drugs, and their preparations are gener- ally sold over the counter. However, it is commonly disre- Supplementation with synthetic antioxidative vitamins: garded that the excessive intake of antioxidative vitamins A, β-carotene (provitamin A), E and C, is widely propa- may be in fact harmful. Enthusiasts of at-home vitamin gated to-day, both as an adjunct to the applied pharma- supplementation, who blindly believe in newspaper rev- cotherapy and as one of factors to provide ”health and elations and advertisements, are therefore vulnerable to beauty”. -
Vitamin K Intake in Chronic Stroke: Implications for Dietary Recommendations
nutrients Article Vitamin K Intake in Chronic Stroke: Implications for Dietary Recommendations Chad Wessinger, Charlene Hafer-Macko and Alice S. Ryan * VA Research Service, Department of Medicine, Division of Gerontology and Geriatric Medicine at the University of Maryland School of Medicine, and the Baltimore VA Medical Center Geriatric Research, Education and Clinical Center (GRECC), VA Maryland Health Care System, Baltimore, MD 21201, USA; [email protected] (C.W.); [email protected] (C.H.-M.) * Correspondence: [email protected]; Tel.: +410-605-7851; Fax: +410-605-7913 Received: 30 August 2020; Accepted: 30 September 2020; Published: 6 October 2020 Abstract: Previous research has identified a possible association between vitamin K intake and cardiometabolic disease. This could mean that the assessment of vitamin K intake is a meaningful tool when monitoring individuals with preexisting cardiovascular disease. Sixty chronic stroke survivors (men and women, body mass index (BMI) 30.36 6.61 kg/m2, age 61.7 7.2 years) completed food ± ± records which were analyzed for energy, macronutrient, micronutrient, and food group servings. Participants were divided into two groups: below vitamin K recommendation (BEL, n = 49) and met vitamin K recommendation (MET, n = 11). Energy and macronutrient intake did not differ between groups (all p > 0.127). Vegetable intake was higher in the MET group (p = 0.0001). Vitamin K intake was higher in the MET group (p = 0.0001). Calcium (p = 0.003), vitamin A (p = 0.007), and vitamin E (p = 0.005) intakes were higher in the MET group. There were no differences in sodium, potassium, vitamin D, vitamin C, and iron intakes between groups (all p > 0.212). -
The Interactions Between Selenium and Iodine Deficiencies in Man And
Nutrition Research Reviews (1999), 12, 55±73 55 The interactions between selenium and iodine de®ciencies in man and animals John R. Arthur1*, Geoffrey J. Beckett2 and Julie H. Mitchell1 1Division of Micronutrient and Lipid Metabolism, Rowett Research Institute, Greenburn Road, Bucksburn, Aberdeen AB21 9SB, UK 2University Department of Clinical Biochemistry, The Royal In®rmary, Edinburgh EH3 9YW, UK Abstract Up to one billion people live in areas where they may be at risk from I de®ciency. Many of the debilitating effects of the de®ciency may be irreversible, consequently it is essential to understand the mechanisms whereby lack of I can cause disease 0 through decreased thyroxine and 3,3 ,5-triiodothyronine (T3) synthesis. Since Se has an essential role in thyroid hormone metabolism, it has the potential to play a major part in the outcome of I de®ciency. These effects of Se derive from two aspects of its biological function. First, three Se-containing deiodinases regulate the synthesis and degradation of the biologically active thyroid hormone, T3. Second, selenoperoxidases and possibly thioredoxin reductase (EC 1.6.4.5) protect the thyroid gland from H2O2 produced during the synthesis of thyroid hormones. The mechanisms whereby Se de®ciency exacerbates the hypothyroidism due to I de®ciency have been elucidated in animals. In contrast to these adverse effects, concurrent Se de®ciency may also cause changes in deiodinase activities which can protect the brain from low T3 concentrations in I de®ciency. Animals with Se and I de®ciency have changes in serum thyroid hormone concentrations that are similar to those observed in patients with I de®ciency disease. -
Estonian Statistics on Medicines 2016 1/41
Estonian Statistics on Medicines 2016 ATC code ATC group / Active substance (rout of admin.) Quantity sold Unit DDD Unit DDD/1000/ day A ALIMENTARY TRACT AND METABOLISM 167,8985 A01 STOMATOLOGICAL PREPARATIONS 0,0738 A01A STOMATOLOGICAL PREPARATIONS 0,0738 A01AB Antiinfectives and antiseptics for local oral treatment 0,0738 A01AB09 Miconazole (O) 7088 g 0,2 g 0,0738 A01AB12 Hexetidine (O) 1951200 ml A01AB81 Neomycin+ Benzocaine (dental) 30200 pieces A01AB82 Demeclocycline+ Triamcinolone (dental) 680 g A01AC Corticosteroids for local oral treatment A01AC81 Dexamethasone+ Thymol (dental) 3094 ml A01AD Other agents for local oral treatment A01AD80 Lidocaine+ Cetylpyridinium chloride (gingival) 227150 g A01AD81 Lidocaine+ Cetrimide (O) 30900 g A01AD82 Choline salicylate (O) 864720 pieces A01AD83 Lidocaine+ Chamomille extract (O) 370080 g A01AD90 Lidocaine+ Paraformaldehyde (dental) 405 g A02 DRUGS FOR ACID RELATED DISORDERS 47,1312 A02A ANTACIDS 1,0133 Combinations and complexes of aluminium, calcium and A02AD 1,0133 magnesium compounds A02AD81 Aluminium hydroxide+ Magnesium hydroxide (O) 811120 pieces 10 pieces 0,1689 A02AD81 Aluminium hydroxide+ Magnesium hydroxide (O) 3101974 ml 50 ml 0,1292 A02AD83 Calcium carbonate+ Magnesium carbonate (O) 3434232 pieces 10 pieces 0,7152 DRUGS FOR PEPTIC ULCER AND GASTRO- A02B 46,1179 OESOPHAGEAL REFLUX DISEASE (GORD) A02BA H2-receptor antagonists 2,3855 A02BA02 Ranitidine (O) 340327,5 g 0,3 g 2,3624 A02BA02 Ranitidine (P) 3318,25 g 0,3 g 0,0230 A02BC Proton pump inhibitors 43,7324 A02BC01 Omeprazole