Vitamin E Fact Sheet for Consumers
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Dispensing of Vitamin Products by Retail Pharmacies in South Africa: Implications for Dietitians
South African Journal of Clinical Nutrition 2016; 29(4):133–138 http://dx.doi.org/10.1080/16070658.2016.1219468 SAJCN ISSN 1607-0658 EISSN 2221-1268 Open Access article distributed under the terms of the © 2016 The Author(s) Creative Commons License [CC BY-NC 3.0] http://creativecommons.org/licenses/by-nc/3.0 RESEARCH Dispensing of vitamin products by retail pharmacies in South Africa: Implications for dietitians Ilse Trutera* and Liana Steenkampb a Department of Pharmacy, Drug Utilisation Research Unit (DURU), Nelson Mandela Metropolitan University, Port Elizabeth, South Africa b HIV & AIDS Research Unit, Nelson Mandela Metropolitan University, Port Elizabeth, South Africa *Corresponding author, email: [email protected] Objective: The objective of this study was to analyse the dispensing patterns of vitamins (Anatomical Therapeutic Chemical (ATC) group A11) over a one-year period in a group of community pharmacies in South Africa. Design and setting: A retrospective drug utilisation study was conducted on community pharmacy electronic dispensing records in South Africa recorded in 2013. Outcome measures: All products for ATC subgroup A11 were extracted and analysed. Results: A total of 164 233 vitamin products were dispensed to 84 805 patients (62.64% female patients). Males received on average 2.09 (SD = 2.63) vitamin products per year, compared to 1.84 (SD = 2.13) products for females. Ergocalciferol (A11CC01) was the most often dispensed (37.48% of all vitamin products), followed by plain Vitamin B-complex products (A11EA00) accounting for 32.77%. Ergocalciferol (vitamin D2) is only available on prescription (50 000 IU tablets or 50 000 IU/ml oily drops) in South Africa. -
Report on Effects of Beta-Carotene Supplementation in Combination with Tocopherol and Ascorbate in Clinical and Chemopreventive Trials (Adopted by the SCF on 19/3/98)
Report on Effects of Beta-carotene Supplementation in Combination with Tocopherol and Ascorbate in Clinical and Chemopreventive Trials (Adopted by the SCF on 19/3/98) Terms of Reference The committee was asked by the Commission to review on recent reports of the studies on health effects of high doses of beta-carotene, retinol and alpha-tocopherol as well as ascorbate in controlled studies. Introduction Epidemiological studies of the last ten years have indicated that beta-carotene is a potential agent for the chemical prevention against carcinogenesis. In contrast, the recent prospective study performed by Heinonen et al. (1) has strikingly suggested that supplementation with beta-carotene significantly increased the incidence of lung, prostate and stomach cancer. The rising question is the possible dose dependency of a preventive or harmful action of beta-carotene and possible synergistic effects with other antioxidants. To answer this question clinical trials for therapy and intervention studies in healthy populations dealing with beta- carotene supplementation in different dosages below the GRAS daily intake of 200 mg have to be regarded. Clinical trials Therapeutic dosages of beta-carotene applied varied in a relative wide range of 20 mg/d to 180 mg/d. The highest daily dosage of 180 mg beta-carotene in combination with 100.000 IU vitamin A ( 30 mg retinol equivalents) was applied 1988 by Stich et al. (2) in tobacco chewers who had already sustained premalignant leukoplakia. After 6 months the single treatment with beta-carotene induced a significant remission of leukoplakias compared to the placebo group, although the combination of beta-carotene and retinol was much more effective. -
Nourishing and Health Benefits of Coenzyme Q10 – a Review
Czech J. Food Sci. Vol. 26, No. 4: 229–241 Nourishing and Health Benefits of Coenzyme Q10 – a Review Martina BOREKOVÁ1, Jarmila HOJEROVÁ1, Vasiľ KOPRDA1 and Katarína BAUEROVÁ2 1Institute of Biotechnology and Food Science, Faculty of Chemical and Food Technology, Slovak University of Technology, Bratislava, Slovak Republic; 2Institute of Experimental Pharmacology, Slovak Academy of Sciences, Bratislava, Slovak Republic Abstract Boreková M., Hojerová J., Koprda V., Bauerová K. (2008): Nourishing and health benefits of coen- zyme Q10 – a review. Czech J. Food Sci., 26: 229–241. Coenzyme Q10 is an important mitochondrial redox component and endogenously produced lipid-soluble antioxidant of the human organism. It plays a crucial role in the generation of cellular energy, enhances the immune system, and acts as a free radical scavenger. Ageing, poor eating habits, stress, and infection – they all affect the organism’s ability to provide adequate amounts of CoQ10. After the age of about 35, the organism begins to lose the ability to synthesise CoQ10 from food and its deficiency develops. Many researches suggest that using CoQ10 supplements alone or in com- bination with other nutritional supplements may help maintain health of elderly people or treat some of the health problems or diseases. Due to these functions, CoQ10 finds its application in different commercial branches such as food, cosmetic, or pharmaceutical industries. This review article gives a survey of the history, chemical and physical properties, biochemistry and antioxidant activity of CoQ10 in the human organism. It discusses levels of CoQ10 in the organisms of healthy people, stressed people, and patients with various diseases. This paper shows the distribution and contents of two ubiquinones in foods, especially in several kinds of grapes, the benefits of CoQ10 as nutritional and topical supplements and its therapeutic applications in various diseases. -
The Structure and Antioxidant Properties
materials Review Recent Developments in Effective Antioxidants: The Structure and Antioxidant Properties Monika Parcheta 1 , Renata Swisłocka´ 1,* , Sylwia Orzechowska 2,3 , Monika Akimowicz 4 , Renata Choi ´nska 4 and Włodzimierz Lewandowski 1 1 Department of Chemistry, Biology and Biotechnology, Bialystok University of Technology, Wiejska 45E, 15-351 Bialystok, Poland; [email protected] (M.P.); [email protected] (W.L.) 2 Solaris National Synchrotron Radiation Centre, Jagiellonian University, Czerwone Maki 98, 30-392 Krakow, Poland; [email protected] 3 M. Smoluchowski Institute of Physics, Jagiellonian University, Łojasiewicza 11, 30-348 Kraków, Poland 4 Prof. Waclaw Dabrowski Institute of Agriculture and Food Biotechnology–State Research Institute, Rakowiecka 36, 02-532 Warsaw, Poland; [email protected] (M.A.); [email protected] (R.C.) * Correspondence: [email protected] Abstract: Since the last few years, the growing interest in the use of natural and synthetic antioxidants as functional food ingredients and dietary supplements, is observed. The imbalance between the number of antioxidants and free radicals is the cause of oxidative damages of proteins, lipids, and DNA. The aim of the study was the review of recent developments in antioxidants. One of the crucial issues in food technology, medicine, and biotechnology is the excess free radicals reduction to obtain healthy food. The major problem is receiving more effective antioxidants. The study aimed to analyze the properties of efficient antioxidants and a better understanding of the molecular ´ Citation: Parcheta, M.; Swisłocka, R.; mechanism of antioxidant processes. Our researches and sparing literature data prove that the Orzechowska, S.; Akimowicz, M.; ligand antioxidant properties complexed by selected metals may significantly affect the free radical Choi´nska,R.; Lewandowski, W. -
Guidelines on Food Fortification with Micronutrients
GUIDELINES ON FOOD FORTIFICATION FORTIFICATION FOOD ON GUIDELINES Interest in micronutrient malnutrition has increased greatly over the last few MICRONUTRIENTS WITH years. One of the main reasons is the realization that micronutrient malnutrition contributes substantially to the global burden of disease. Furthermore, although micronutrient malnutrition is more frequent and severe in the developing world and among disadvantaged populations, it also represents a public health problem in some industrialized countries. Measures to correct micronutrient deficiencies aim at ensuring consumption of a balanced diet that is adequate in every nutrient. Unfortunately, this is far from being achieved everywhere since it requires universal access to adequate food and appropriate dietary habits. Food fortification has the dual advantage of being able to deliver nutrients to large segments of the population without requiring radical changes in food consumption patterns. Drawing on several recent high quality publications and programme experience on the subject, information on food fortification has been critically analysed and then translated into scientifically sound guidelines for application in the field. The main purpose of these guidelines is to assist countries in the design and implementation of appropriate food fortification programmes. They are intended to be a resource for governments and agencies that are currently implementing or considering food fortification, and a source of information for scientists, technologists and the food industry. The guidelines are written from a nutrition and public health perspective, to provide practical guidance on how food fortification should be implemented, monitored and evaluated. They are primarily intended for nutrition-related public health programme managers, but should also be useful to all those working to control micronutrient malnutrition, including the food industry. -
Antioxidative Effects of A-Tocopherol and Riboflavin-Butyrate in Rats Dosed with Methyl Linoleate Hydroperoxide
Agric. Biol. Chem., 47 (7), 1577- 1582, 1983 1577 Antioxidative Effects of a-Tocopherol and Riboflavin-butyrate in Rats Dosed with Methyl Linoleate Hydroperoxide Teruo Miyazawa, Chiharu Sato and Takashi Kaneda Department of Food Chemistry, Faculty of Agriculture, Tohoku University, Sendai 980, Japan Received January 6, 1983 The antioxidative effects of dietary a-tocopherol (TOC) and riboftavin-tetrabutyrate (RTB)against tissue lipoperoxidation caused by the long-term administration of methyl linole- ate hydroperoxide (HPO) to rats were investigated by measuring the spontaneous chemilumi- nescence (CL) intensities and thiobarbituric acid (TBA) reactants of the liver, lung and heart. TOCsupplementation resulted in the effective decrease of CLintensities and TBAreac- tants in the three organs, while RTBsupplementation led to the definitive decay of both indices of the lung and a significant decrease in the CL intensity of the heart, as compared with those of rats dosed with HPOand not given any supplemental antioxidant. Although the activities of glutathione peroxidase and glutathione reductase in the three organs obtained from rats dosed with HPOfor 29 days were clearly lower than those of the control rats, both enzyme activities in rats dosed with antioxidants other than HPOwere gener- ally maintained at levels almost equal to those of the control rats. Glutathione peroxidase of the liver and heart and glutathione reductase of the liver were shownto be further activated by the simultaneous supplementation of TOCand RTB. The results indicated that both TOCand RTBeffectively act as antioxidants in rats dosed with HPOover a long-term. Oneof the antioxidative actions of both agents is ascribed to pro- tection of the glutathione peroxidase system in organs undergoing lipoperoxidation caused by the long-term treatment of dietary hydroperoxides. -
A Review of Dietary (Phyto)Nutrients for Glutathione Support
nutrients Review A Review of Dietary (Phyto)Nutrients for Glutathione Support Deanna M. Minich 1,* and Benjamin I. Brown 2 1 Human Nutrition and Functional Medicine Graduate Program, University of Western States, 2900 NE 132nd Ave, Portland, OR 97230, USA 2 BCNH College of Nutrition and Health, 116–118 Finchley Road, London NW3 5HT, UK * Correspondence: [email protected] Received: 8 July 2019; Accepted: 23 August 2019; Published: 3 September 2019 Abstract: Glutathione is a tripeptide that plays a pivotal role in critical physiological processes resulting in effects relevant to diverse disease pathophysiology such as maintenance of redox balance, reduction of oxidative stress, enhancement of metabolic detoxification, and regulation of immune system function. The diverse roles of glutathione in physiology are relevant to a considerable body of evidence suggesting that glutathione status may be an important biomarker and treatment target in various chronic, age-related diseases. Yet, proper personalized balance in the individual is key as well as a better understanding of antioxidants and redox balance. Optimizing glutathione levels has been proposed as a strategy for health promotion and disease prevention, although clear, causal relationships between glutathione status and disease risk or treatment remain to be clarified. Nonetheless, human clinical research suggests that nutritional interventions, including amino acids, vitamins, minerals, phytochemicals, and foods can have important effects on circulating glutathione which may translate to clinical benefit. Importantly, genetic variation is a modifier of glutathione status and influences response to nutritional factors that impact glutathione levels. This narrative review explores clinical evidence for nutritional strategies that could be used to improve glutathione status. -
A Critical Study on Chemistry and Distribution of Phenolic Compounds in Plants, and Their Role in Human Health
IOSR Journal of Environmental Science, Toxicology and Food Technology (IOSR-JESTFT) e-ISSN: 2319-2402,p- ISSN: 2319-2399. Volume. 1 Issue. 3, PP 57-60 www.iosrjournals.org A Critical Study on Chemistry and Distribution of Phenolic Compounds in Plants, and Their Role in Human Health Nisreen Husain1, Sunita Gupta2 1 (Department of Zoology, Govt. Dr. W.W. Patankar Girls’ PG. College, Durg (C.G.) 491001,India) email - [email protected] 2 (Department of Chemistry, Govt. Dr. W.W. Patankar Girls’ PG. College, Durg (C.G.) 491001,India) email - [email protected] Abstract: Phytochemicals are the secondary metabolites synthesized in different parts of the plants. They have the remarkable ability to influence various body processes and functions. So they are taken in the form of food supplements, tonics, dietary plants and medicines. Such natural products of the plants attribute to their therapeutic and medicinal values. Phenolic compounds are the most important group of bioactive constituents of the medicinal plants and human diet. Some of the important ones are simple phenols, phenolic acids, flavonoids and phenyl-propanoids. They act as antioxidants and free radical scavengers, and hence function to decrease oxidative stress and their harmful effects. Thus, phenols help in prevention and control of many dreadful diseases and early ageing. Phenols are also responsible for anti-inflammatory, anti-biotic and anti- septic properties. The unique molecular structure of these phytochemicals, with specific position of hydroxyl groups, owes to their powerful bioactivities. The present work reviews the critical study on the chemistry, distribution and role of some phenolic compounds in promoting health-benefits. -
Potential Adverse Effects of Resveratrol: a Literature Review
International Journal of Molecular Sciences Review Potential Adverse Effects of Resveratrol: A Literature Review Abdullah Shaito 1 , Anna Maria Posadino 2, Nadin Younes 3, Hiba Hasan 4 , Sarah Halabi 5, Dalal Alhababi 3, Anjud Al-Mohannadi 3, Wael M Abdel-Rahman 6 , Ali H. Eid 7,*, Gheyath K. Nasrallah 3,* and Gianfranco Pintus 6,2,* 1 Department of Biological and Chemical Sciences, Lebanese International University, 1105 Beirut, Lebanon; [email protected] 2 Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; [email protected] 3 Department of Biomedical Science, College of Health Sciences, and Biomedical Research Center Qatar University, P.O Box 2713 Doha, Qatar; [email protected] (N.Y.); [email protected] (D.A.); [email protected] (A.A.-M.) 4 Institute of Anatomy and Cell Biology, Justus-Liebig-University Giessen, 35392 Giessen, Germany; [email protected] 5 Biology Department, Faculty of Arts and Sciences, American University of Beirut, 1105 Beirut, Lebanon; [email protected] 6 Department of Medical Laboratory Sciences, College of Health Sciences and Sharjah Institute for Medical Research, University of Sharjah, Sharjah P.O Box: 27272, United Arab Emirates; [email protected] 7 Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, P.O. Box 11-0236 Beirut, Lebanon * Correspondence: [email protected] (A.H.E.); [email protected] (G.K.N.); [email protected] (G.P.) Received: 13 December 2019; Accepted: 15 March 2020; Published: 18 March 2020 Abstract: Due to its health benefits, resveratrol (RE) is one of the most researched natural polyphenols. -
Vitamin A, E, & D Unit Change
Vitamin A, E, & D Unit Change Agenda The following provides an overview of the updated units that NQAC Dublin will be using to adhere to FDA guideline changes regarding Nutrition and Supplement Facts labels. This presentation will review: • FDA Guidelines • Methods Affected • Unit Changes by Vitamin • Conversions In August of 2019, the FDA updated its guideline requirements for Nutrition and Supplement Facts labels regarding vitamin A, vitamin D, and vitamin E. The following link can be used to access the FDA guidelines directly: www.fda.gov/regulatory-information Which methods are affected by this change? • LI-00.608 –Multi Fat • LI-03.701 –Fat Soluble Vitamin Determination in Premixes • LI-00.683- Carotene • GOP-756-1001- Total Vitamin A by Calculation (will be obsoleted) FDA Provided Unit Conversion Table: Vitamin A The previous RDI for vitamin A was expressed in International Units (IU), a measurement based on the biological activity or effect, where one IU of vitamin A activity had been defined as equal to 0.30 mcg of all-trans-retinol or 0.60 mcg of all-trans-β-carotene The new unit of measure, RAE, considers the vitamin A activity of β-carotene in supplements to be half the activity of pre-formed retinol, and the vitamin A activity of dietary β-carotene to be one- sixth of the β-carotene in supplements Furthermore, carotenoids, such as β-carotene, added to food is assumed to have the same bioconversion as those naturally occurring in foods (12:1). For the other dietary provitamin A carotenoids, β-cryptoxanthin and α-carotene, the RAE is set at 24 based on a vitamin A activity approximately half of that for β-carotene. -
Vitamins a and E and Carotenoids
Fat-Soluble Vitamins & Micronutrients: Vitamins A and E and Carotenoids Vitamins A (retinol) and E (tocopherol) and the carotenoids are fat-soluble micronutrients that are found in many foods, including some vegetables, fruits, meats, and animal products. Fish-liver oils, liver, egg yolks, butter, and cream are known for their higher content of vitamin A. Nuts and seeds are particularly rich sources of vitamin E (Thomas 2006). At least 700 carotenoids—fat-soluble red and yellow pigments—are found in nature (Britton 2004). Americans consume 40–50 of these carotenoids, primarily in fruits and vegetables (Khachik 1992), and smaller amounts in poultry products, including egg yolks, and in seafoods (Boylston 2007). Six major carotenoids are found in human serum: alpha-carotene, beta-carotene, beta-cryptoxanthin, lutein, trans-lycopene, and zeaxanthin. Major carotene sources are orange-colored fruits and vegetables such as carrots, pumpkins, and mangos. Lutein and zeaxanthin are also found in dark green leafy vegetables, where any orange coloring is overshadowed by chlorophyll. Trans-Lycopene is obtained primarily from tomato and tomato products. For information on the carotenoid content of U.S. foods, see the 1998 carotenoid database created by the U.S. Department of Agriculture and the Nutrition Coordinating Center at the University of Minnesota (http://www.nal.usda.gov/fnic/foodcomp/Data/car98/car98.html). Vitamin A, found in foods that come from animal sources, is called preformed vitamin A. Some carotenoids found in colorful fruits and vegetables are called provitamin A; they are metabolized in the body to vitamin A. Among the carotenoids, beta-carotene, a retinol dimer, has the most significant provitamin A activity. -
Niacin (Nicotinic Acid) in Non-Physiological Doses Causes Hyperhomocysteineaemia in Sprague–Dawley Rats
Downloaded from British Journal of Nutrition (2002), 87, 115–119 DOI: 10.1079/BJN2001486 q The Authors 2002 https://www.cambridge.org/core Niacin (nicotinic acid) in non-physiological doses causes hyperhomocysteineaemia in Sprague–Dawley rats Tapan K. Basu*, Neelam Makhani and Gary Sedgwick . IP address: Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, T6G 2P5 Canada (Received 22 September 2000 – Revised 17 July 2001 – Accepted 6 August 2001) 170.106.35.93 Niacin (nicotinic acid) in its non-physiological dose level is known to be an effective lipid- , on lowering agent; its potential risk as a therapeutic agent, however, has not been critically 27 Sep 2021 at 22:43:08 considered. Since niacin is excreted predominantly as methylated pyridones, requiring methionine as a methyl donor, the present study was undertaken to examine whether metabolism of the amino acid is altered in the presence of large doses of niacin. Male Sprague–Dawley rats were given a nutritionally adequate, semi-synthetic diet containing niacin at a level of either 400 or 1000 mg/kg diet (compared to 30 mg/kg in the control diet) for up to 3 months. Supplementation with niacin (1000 mg/kg diet) for 3 months resulted in a significant increase in plasma and urinary total homocysteine levels; this increase was further accentuated in the , subject to the Cambridge Core terms of use, available at presence of a high methionine diet. The hyperhomocysteineaemia was accompanied by a significant decrease in plasma concentrations of vitamins B6 and B12, which are cofactors for the metabolism of homocysteine.